JP2008043920A - Organic matter-containing gas treatment facility and its treatment method - Google Patents

Organic matter-containing gas treatment facility and its treatment method Download PDF

Info

Publication number
JP2008043920A
JP2008043920A JP2006224384A JP2006224384A JP2008043920A JP 2008043920 A JP2008043920 A JP 2008043920A JP 2006224384 A JP2006224384 A JP 2006224384A JP 2006224384 A JP2006224384 A JP 2006224384A JP 2008043920 A JP2008043920 A JP 2008043920A
Authority
JP
Japan
Prior art keywords
organic matter
gas
activated carbon
organic
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006224384A
Other languages
Japanese (ja)
Inventor
Kenji Nakajima
健次 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006224384A priority Critical patent/JP2008043920A/en
Priority to PCT/JP2007/066107 priority patent/WO2008023659A1/en
Publication of JP2008043920A publication Critical patent/JP2008043920A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • B01D2253/342Monoliths
    • B01D2253/3425Honeycomb shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic matter-containing gas treatment facility which can significantly reduce a moisture content (dissolved) to such an extent that no bleeding hardly occurs, even in the case where a hydrophilic organic matter-containing gas is recovered and the organic matter is recycled for a printing ink, and meantime, enables efficient adsorption/desorption of the gas containing a low concentration and yet a large amount of the organic matter to achieve an efficient recovery of the organic matter, and can certainly eliminate explosion risks, and an organic matter-containing gas treatment method. <P>SOLUTION: The organic matter-containing gas treatment facility comprises the following components: a dehumidification mechanism 2 which removes a moisture content of the gas to be treated containing the organic matter, an active carbon adsorber 4 which is fitted and filled with a honeycomb-shape active carbon for adsorbing/removing the organic matter contained in the dehumidified treated gas, heated gas feeders 6, 7 and 12 which feed an inert gas heated to desorb the organic matter adsorbed by the active carbon adsorber 4 from the active carbon, coolers 13 and 14 which dehydrate the organic matter desorbed by the heated inert gas by refrigerating the organic matter to 0°C or below, and a recovery device 15 which recovers the dehydrated organic matter. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は有機物含有ガス処理設備とその処理方法に関し、詳しくは、主として親水性の有機物を低濃度かつ大量に含有するガスを処理する有機物含有ガス処理設備とその処理方法に関する。   The present invention relates to an organic substance-containing gas treatment facility and a treatment method thereof, and more particularly to an organic matter-containing gas treatment equipment and treatment method for treating a gas mainly containing a hydrophilic organic substance in a low concentration and a large amount.

従来、有機溶剤、VOC(揮発性有機化合物)、その他の有機化合物を含むガスを処理するには、粒状活性炭を充填した充填槽に通流させて、有機物を粒状活性炭に吸着させた後、多量の水蒸気を通流させ有機物を加熱・脱離させて回収したり、焼却したりする方法が知られている。しかし、粒状活性炭に吸着させる方法は、ガスの線流速が10〜30cm/秒、粒状活性炭の充填高さが100〜300cm程度であり、粒状活性炭の開口率が低く、通気抵抗が大きいため、通流されるガスの接触効率が低という問題がある。   Conventionally, in order to treat a gas containing organic solvent, VOC (volatile organic compound) and other organic compounds, it is passed through a filling tank filled with granular activated carbon to adsorb organic matter on granular activated carbon, and then a large amount There is known a method of collecting and incinerating organic substances by heating and desorbing them by passing water vapor. However, the method of adsorbing to the granular activated carbon is that the linear flow rate of the gas is 10 to 30 cm / second, the filling height of the granular activated carbon is about 100 to 300 cm, the opening ratio of the granular activated carbon is low, and the ventilation resistance is large. There is a problem that the contact efficiency of the flowing gas is low.

つまり、活性炭が粒状であると、ガスの流れにムラが生じ易く、吸着ムラに伴って、充填層内部で局部的に発熱して、吸着性能が低下し、活性炭に吸着した有機物が脱離し始めたりするだけでなく、発熱するおそれもある。しかも、吸着した有機物を脱離させるために、加熱空気などのような酸素を含む加熱ガスを通流させると、局部的な発熱が生じて有機物が発火し、粒状活性炭が燃焼するおそれがある。のみならず、繰り返し使用する間に、粒状活性炭から微粉が生じて、目詰まりを生じ易くなり、通気抵抗が急激に増加することがあるという問題がある。   In other words, if the activated carbon is granular, unevenness in the gas flow is likely to occur, and due to uneven adsorption, local heat is generated inside the packed bed, the adsorption performance decreases, and organic substances adsorbed on the activated carbon begin to desorb. There is also a risk of heat generation. In addition, when a heated gas containing oxygen such as heated air is passed to desorb the adsorbed organic matter, local heat generation occurs, the organic matter may ignite, and the granular activated carbon may burn. In addition, there is a problem in that fine powder is generated from the granular activated carbon during repeated use, clogging is likely to occur, and the airflow resistance may increase rapidly.

粒状活性炭に代えて、繊維状活性炭を使用する方法が考えられている(例えば、特許文献1)。この方法も、通気抵抗が大きく、処理ガス中の粉塵によって目詰まりを生じ易く、長期間の使用に耐えず、頻繁に保守点検を行う必要があり、作業性は劣るという問題がある。   A method of using fibrous activated carbon instead of granular activated carbon has been considered (for example, Patent Document 1). This method also has a problem that the ventilation resistance is large, clogging is likely to occur due to dust in the processing gas, it cannot withstand long-term use, frequent maintenance and inspection are required, and workability is inferior.

通気抵抗を小さくする方法として、ハニカム状活性炭を用いる方法も考えられている(例えば、特許文献2)。   As a method for reducing the ventilation resistance, a method using honeycomb-like activated carbon is also considered (for example, Patent Document 2).

上記従来のハニカム状活性炭を使用する方法は、吸着した有機物を回収するため水蒸気を通流させた後、乾燥させるべく熱風を送給させた場合に、有機物によっては爆発限界に達して爆発すると言う問題があるため、本願発明者らは、かかる問題を解決した有機物含有ガス処理設備とその処理方法の発明をした(特許文献3)。   The above-described conventional method using the honeycomb-like activated carbon is said to explode depending on the organic matter when it reaches the explosion limit when hot air is fed to dry after passing water vapor to collect the adsorbed organic matter. Since there is a problem, the present inventors have invented an organic substance-containing gas treatment facility and a treatment method for solving the problem (Patent Document 3).

特開平11−239723号公報JP 11-239723 A 特開平10−216477号公報JP-A-10-216477 特開2006−88102号公報JP 2006-88102 A

ところが、この有機物含有ガス処理設備を印刷工場などで使用して、排ガス中の有機溶剤を回収して再利用しようとした場合、次のような問題が生じる。つまり、有機溶剤として、トルエンなどの非親水性溶剤に代えて、より毒性の低い親水性の有機溶剤(例えば、酢酸エチル、メチルエチルケトン等)が多用されるようになっており、その際、有機溶剤中に少なくない水分を含むため、この有機溶剤を印刷インクに使用すると、印刷面にインクの滲みが生じる。もっとも、上記従来の処理設備により回収された有機溶剤に含有する水分は、大気中の相対湿度の多寡にも影響され、相対湿度が低い場合でも、有機溶剤に含有する溶存水分は1.5重量%程度含まれており、通常は、2〜3重量%程度含まれる。   However, when this organic substance-containing gas processing facility is used in a printing factory or the like to recover and reuse the organic solvent in the exhaust gas, the following problems arise. That is, instead of non-hydrophilic solvents such as toluene, hydrophilic organic solvents with lower toxicity (for example, ethyl acetate, methyl ethyl ketone, etc.) are often used as organic solvents. When this organic solvent is used for printing ink because it contains a certain amount of moisture, ink bleeding occurs on the printing surface. However, the moisture contained in the organic solvent recovered by the conventional treatment equipment is also affected by the relative humidity in the atmosphere, and even when the relative humidity is low, the dissolved moisture contained in the organic solvent is 1.5 weight. %, Usually about 2 to 3% by weight.

そこで、本発明の目的は、上記従来技術の有する問題点に鑑みて、親水性の有機物を含むガスを回収して、有機物を印刷インクに再利用したとしても滲みが生じ難い程度に含有(溶存)水分量を大幅に低減でき、それでいて低濃度かつ大量の有機物を含むガスを効果的に吸着すると共に脱離させて有機物を効率的に回収すると共に、爆発する危険性を確実に防止可能な有機物含有ガス処理設備とその処理方法を提供することにある。   Therefore, in view of the above-mentioned problems of the prior art, the object of the present invention is to recover gas containing a hydrophilic organic substance, and to contain the organic substance so that bleeding does not easily occur even when the organic substance is reused for printing ink (dissolved). ) Organic substances that can greatly reduce the amount of water, yet effectively adsorb and desorb gases containing low concentrations and large quantities of organic substances, efficiently recovering organic substances, and reliably preventing the risk of explosion It is to provide a contained gas treatment facility and a treatment method thereof.

上記課題は、請求項記載の各発明により達成される。すなわち、本発明に係る有機物含有ガス処理設備の特徴構成は、有機物を含有する被処理ガス中に含まれる水分を除去する除湿機構と、除湿された被処理ガス中の有機物を吸着除去するためのハニカム状活性炭が充填・装着されて活性炭吸着装置と、この活性炭吸着装置によって吸着された有機物を活性炭から脱離するため加熱された不活性ガスを送給する加熱ガス供給装置と、この加熱された不活性ガスにより脱離された有機物を零度以下に冷却して脱水する冷却装置と、脱水された有機物を回収する回収装置と、を有することにある。   The above objects can be achieved by the inventions described in the claims. That is, the characteristic configuration of the organic substance-containing gas processing facility according to the present invention includes a dehumidifying mechanism that removes moisture contained in the gas to be treated containing organic substances, and an organic substance in the dehumidified gas to be adsorbed and removed. Activated carbon adsorbing device filled with and loaded with honeycomb-like activated carbon, heated gas supply device for supplying heated inert gas to desorb organic matter adsorbed by the activated carbon adsorbing device from the activated carbon, and the heated The object of the present invention is to have a cooling device that cools and dehydrates the organic matter desorbed by the inert gas to a temperature below zero degree, and a recovery device that collects the dehydrated organic matter.

この構成によれば、活性炭吸着装置により被処理ガス中の有機物を吸着・除去する前に、予め除湿機構によって水分を低減すると共に、不活性ガスにより脱離された有機物を零度以下に冷却して脱水する冷却装置により、不活性ガスに含まれる有機物中の水分を除去できるため、回収される有機物中の水分を十分に低減でき、たとえ親水性の有機物を含むガスを回収して、有機物を印刷インクに再利用したとしても滲みが生じ難い程度に含有(溶存)水分量を確実に低減できる。しかも、活性炭吸着装置にハニカム状活性炭を使用していることから、通気抵抗を小さくできると共に吸着率が高いため、大量かつ低濃度のガスを処理する場合でも効率的であり、しかもハニカム状活性炭に吸着した有機物を脱離するのに不活性ガスを通流するようにしているので、脱離した有機物の発火を防止できると共に、爆発を確実に阻止できるのみならず、有機物の回収が容易であるため、蒸留塔など大掛かりな設備を必要としない。もとより、窒素を有機物の脱離に使用するため、従来技術のように水蒸気を使用する場合に比べて、水処理の必要がないという利点をも有する。   According to this configuration, before the organic substance in the gas to be treated is adsorbed / removed by the activated carbon adsorption device, the moisture is reduced in advance by the dehumidifying mechanism and the organic substance desorbed by the inert gas is cooled to below zero degree. The dehydrating cooling device can remove the moisture in the organic matter contained in the inert gas, so the moisture in the collected organic matter can be reduced sufficiently, even if the gas containing hydrophilic organic matter is collected and printed. Even when reused in ink, the amount of contained (dissolved) water can be reliably reduced to such a degree that bleeding is unlikely to occur. Moreover, since the activated carbon adsorption device uses honeycomb-like activated carbon, the ventilation resistance can be reduced and the adsorption rate is high, so it is efficient even when processing a large amount of gas at a low concentration. Since the inert gas is allowed to flow to desorb the adsorbed organic matter, it is possible not only to prevent ignition of the desorbed organic matter, but also to prevent explosion reliably and to easily collect the organic matter. Therefore, large-scale facilities such as a distillation tower are not required. Of course, since nitrogen is used for desorption of organic substances, there is an advantage that water treatment is not necessary as compared with the case of using water vapor as in the prior art.

その結果、親水性の有機物を含むガスを回収して、有機物を印刷インクに再利用したとしても滲みが生じ難い程度に含有水分量を大幅に低減でき、それでいて低濃度かつ大量の有機物を含むガスを効果的に吸着すると共に脱離させて有機物を効率的に回収すると共に、爆発する危険性を確実に防止可能な有機物含有ガス処理設備を提供することができた。   As a result, gas containing hydrophilic organic substances can be recovered and the water content can be greatly reduced to such an extent that bleeding is unlikely to occur even when the organic substances are reused in printing ink, yet a gas containing a low concentration and a large amount of organic substances. It was possible to provide an organic substance-containing gas treatment facility that can effectively adsorb and desorb the organic matter to efficiently recover the organic substance and reliably prevent the risk of explosion.

前記除湿機構が、冷媒の送給を受ける熱交換器から構成されたプレクーラーと、これに続く除湿装置とを有しており、この除湿装置が円筒状容器内に回転可能に、モレキュラーシーブスあるいはゼオライトがハニカム状に配置されたハニカムローターから構成されていることが好ましい。   The dehumidifying mechanism has a precooler composed of a heat exchanger that receives refrigerant and a subsequent dehumidifying device, and the dehumidifying device can be rotated in a cylindrical container, It is preferable that the zeolite is composed of a honeycomb rotor arranged in a honeycomb shape.

この構成によれば、プレクーラーにより低温に冷やされた被処理ガスは、更にモレキュラーシーブスあるいはゼオライトがハニカム状に配置されたハニカムローターによって除湿され、安定した低露点にされて下流側に送給されるため、下流側に配置された各装置により、有機物中の水分が一層確実に除去され低減されることになる。   According to this configuration, the gas to be treated that has been cooled to a low temperature by the precooler is further dehumidified by the honeycomb rotor in which molecular sieves or zeolite is arranged in a honeycomb shape, and is supplied to the downstream side with a stable low dew point. Therefore, the water in the organic matter is more reliably removed and reduced by each device arranged on the downstream side.

前記不活性ガスが窒素であり、この窒素を加熱して前記活性炭吸着装置に送給して有機物を脱離するようになっていると共に、脱離された有機物を前記冷却装置に送給する経路に、加熱していない窒素を導入するようになっていることが好ましい。   The inert gas is nitrogen, and the nitrogen is heated and sent to the activated carbon adsorption device to desorb organic matter, and the desorbed organic matter is sent to the cooling device. In addition, it is preferable to introduce nitrogen that is not heated.

この構成によれば、窒素は安価であるため処理コストを低減でき、しかも処理設備全体の熱利用率を高めて省エネルギーを実現できる。   According to this configuration, since nitrogen is inexpensive, the processing cost can be reduced, and furthermore, the heat utilization rate of the entire processing equipment can be increased and energy saving can be realized.

又、本発明に係る有機物含有ガス処理方法の特徴構成は、有機物を含有する被処理ガス中に含まれる水分を除湿機構により除去し、除湿された被処理ガス中の有機物をハニカム状活性炭が充填・装着されて活性炭吸着装置に導入して吸着除去し、この活性炭吸着装置によって吸着された有機物を活性炭から脱離するため加熱した不活性ガスを送給し、この加熱された不活性ガスにより脱離された有機物を冷却装置により零度以下に凍結して脱水し、脱水された有機物を回収することにある。   Further, the organic substance-containing gas treatment method according to the present invention is characterized in that moisture contained in a gas to be treated containing organic substances is removed by a dehumidifying mechanism, and the organic substance in the dehumidified gas to be treated is filled with honeycomb activated carbon.・ Introduced into activated carbon adsorbing device and adsorbed and removed, heated inert gas is fed to desorb organic substances adsorbed by this activated carbon adsorbing device from activated carbon, and desorbed by this heated inert gas The separated organic substance is frozen by a cooling device to below zero degree and dehydrated, and the dehydrated organic substance is recovered.

この構成によれば、親水性の有機物を含むガスを回収して、有機物を印刷インクに再利用したとしても滲みが生じ難い程度に含有水分量を大幅に低減でき、それでいて低濃度かつ大量の有機物を含むガスを効果的に吸着すると共に脱離させて有機物を効率的に回収すると共に、爆発する危険性を確実に防止可能な有機物含有ガス処理方法を提供することができる。   According to this configuration, it is possible to significantly reduce the moisture content to such an extent that even if the organic substance is collected into a printing ink and the organic substance is reused for printing ink, the moisture content can be greatly reduced. It is possible to provide an organic substance-containing gas processing method capable of effectively adsorbing and desorbing a gas containing and efficiently recovering an organic substance, and reliably preventing the risk of an explosion.

前記除湿機構による被処理ガス中の水分除去を、冷媒の送給を受ける熱交換器から構成されたプレクーラーと、これに続く除湿装置に前記被処理ガスを通して行い、前記除湿装置が円筒状容器内に回転可能に、モレキュラーシーブスあるいはゼオライトがハニカム状に配置されたハニカムローターから構成されていることが好ましい。   Moisture removal in the gas to be treated by the dehumidifying mechanism is performed by passing the gas to be treated through a precooler composed of a heat exchanger that receives a refrigerant and a dehumidifying device following the precooler, and the dehumidifying device is a cylindrical container It is preferably composed of a honeycomb rotor in which molecular sieves or zeolite is arranged in a honeycomb shape so as to be rotatable inside.

この構成によれば、除湿機構の下流側に配置された各装置により、有機物中の水分を一層確実に除去し低減できることになる。   According to this configuration, water in the organic substance can be more reliably removed and reduced by each device arranged on the downstream side of the dehumidifying mechanism.

前記不活性ガスとして窒素を用い、この窒素を加熱して前記活性炭吸着装置に送給して有機物を脱離すると共に、脱離された有機物を前記冷却装置に送給する経路に、加熱していない窒素を導入することが好ましい。   Nitrogen is used as the inert gas, and the nitrogen is heated and sent to the activated carbon adsorption device to desorb organic matter, and the desorbed organic matter is heated to a path for feeding the cooling device. It is preferable to introduce no nitrogen.

この構成によれば、安価な窒素を用いて処理コストを低減でき、しかも処理設備全体の熱利用率を高めて処理コストを低くできる。   According to this configuration, the processing cost can be reduced by using inexpensive nitrogen, and the processing cost can be lowered by increasing the heat utilization rate of the entire processing equipment.

本発明の実施形態を、図面を参照して詳細に説明する。図1は、本実施形態に係る有機物含有ガス処理設備の概略全体構成を示す。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic overall configuration of an organic substance-containing gas processing facility according to the present embodiment.

この有機物含有ガス処理設備の概略構造を、図1に示す。すなわち、各種化学工場などから発生した被処理ガス(有機物含有ガス)は、送給ファン1により、除湿機構2を構成する、プレクーラー2aとこれに続く除湿装置2bに送給されると共に、除湿機構2により水分が除湿された被処理ガスは、有機物を吸着除去する活性炭吸着装置4に送られる。更に、この有機物含有ガス処理設備は、活性炭吸着装置4によって吸着された有機物を活性炭から脱離するため加熱された不活性ガスを送給する装置5と、この加熱された不活性ガスにより脱離された有機物を零度以下に冷却して脱水する冷却装置6と、脱水された有機物を回収する回収装置7などとを有して構成されている。   A schematic structure of this organic substance-containing gas processing facility is shown in FIG. That is, the gas to be treated (organic substance-containing gas) generated from various chemical factories is fed by the feed fan 1 to the precooler 2a and the subsequent dehumidifier 2b constituting the dehumidifying mechanism 2, and dehumidified. The gas to be treated whose moisture has been dehumidified by the mechanism 2 is sent to an activated carbon adsorption device 4 that adsorbs and removes organic substances. Further, the organic substance-containing gas treatment facility includes a device 5 for supplying a heated inert gas to desorb the organic matter adsorbed by the activated carbon adsorption device 4 from the activated carbon, and a desorption by the heated inert gas. The apparatus includes a cooling device 6 that cools the dehydrated organic matter to below zero degree and dehydrates, a recovery device 7 that collects the dehydrated organic matter, and the like.

プレクーラー2aは、熱交換器から構成されていて、ブラインチラー10から冷媒を送給される。この熱交換器には、ブライン貯槽タンクTから送られた冷媒(ブライン)を冷却するブラインチラー10から、ポンプP1により、配管11を通して冷媒が送給・循環されるようになっている。   The precooler 2 a is configured by a heat exchanger and is supplied with a refrigerant from the blownler 10. In this heat exchanger, the refrigerant is fed and circulated through the pipe 11 by the pump P1 from the brachinler 10 that cools the refrigerant (brine) sent from the brine storage tank T.

プレクーラー2aに続く除湿装置2bは、例えば、円筒状容器内に回転可能に、ハニカム状に配置されたモレキュラーシーブスあるいはゼオライト等が収容されたローター(ハニカムローター)を構成していて、これが徐回転(例えば、約10回転/時間程度)する中を被処理ガスが通過することにより、被処理ガス中の水分が除去されつつ、シールされ区画された別経路に対して反対方向から、再生ファン(図示略)より温風(110〜150℃程度)が吹き込まれて再生される方式などを採用することができる。この除湿装置2bにより、被処理ガスを安定した低い露点(例えば、−30℃以下)にすることができる。   The dehumidifying device 2b following the precooler 2a constitutes, for example, a rotor (honeycomb rotor) in which molecular sieves or zeolite arranged in a honeycomb shape are accommodated so as to be rotatable in a cylindrical container. (For example, about 10 rotations / hour) While the gas to be processed passes through, the moisture in the gas to be processed is removed while the regeneration fan (from the opposite direction to the sealed and separated path) A system in which warm air (about 110 to 150 ° C.) is blown and regenerated from an unillustrated) can be employed. By this dehumidifying device 2b, the gas to be treated can be set to a stable low dew point (for example, −30 ° C. or lower).

なお、被処理ガス中の塵芥などを除去するため、被処理ガスを除湿機構2に導入する前に、予め市販の各種除塵フィルターなどからなるプレフィルターを配置していてもよい。   In addition, in order to remove dust etc. in the gas to be treated, before introducing the gas to be treated into the dehumidifying mechanism 2, a prefilter made of various commercially available dust removing filters may be disposed in advance.

除湿機構2を経た被処理ガスは、制御バルブ3を介して複数の活性炭吸着装置4に送給される。この活性炭吸着装置4は、図1では2台並列されており、このようにすると、1台を吸着用に使用し、他方を脱着・再生用として使用することができる。もとより、活性炭吸着装置2は1台でもよく、更に多数台配置してもよく、その台数、仕様などは被処理ガスの量や、特性により適宜選択される。   The gas to be treated that has passed through the dehumidifying mechanism 2 is supplied to a plurality of activated carbon adsorption devices 4 through a control valve 3. In FIG. 1, two activated carbon adsorption devices 4 are arranged in parallel. In this way, one can be used for adsorption and the other can be used for desorption / regeneration. Of course, the activated carbon adsorption device 2 may be one or more, and the number, specifications, etc. of the activated carbon adsorption device 2 may be appropriately selected depending on the amount of gas to be treated and characteristics.

活性炭吸着装置4には、ハニカム状活性炭が充填・装着されていて、従来技術のように、粒状活性炭や繊維状活性炭を使用しないため、活性炭吸着装置4は、通気抵抗が小さくて圧力損失が小さく、それでいて吸着能が高いことが特徴である。ハニカム状活性炭の圧力損失が小さいことから、送給ファン1の動力源は小さくてよく、消費エネルギーは少なくて済む。この活性炭吸着装置4は種々の構成が考えられるが、例えば、多孔板と流体ジャケットとを有するユニットに、ハニカム状活性炭を約90〜450mm程度積層して構成されている。   The activated carbon adsorbing device 4 is filled and fitted with honeycomb activated carbon and does not use granular activated carbon or fibrous activated carbon as in the prior art. Therefore, the activated carbon adsorbing device 4 has low ventilation resistance and low pressure loss. It is still characterized by high adsorption capacity. Since the pressure loss of the honeycomb activated carbon is small, the power source of the feeding fan 1 may be small, and the energy consumption is small. The activated carbon adsorbing device 4 may have various configurations. For example, the activated carbon adsorbing device 4 is configured by stacking about 90 to 450 mm of honeycomb activated carbon on a unit having a perforated plate and a fluid jacket.

ハニカム状活性炭の比表面積は、約200〜3000m2 /g程度のものを使用することが好ましく、約300〜2500m2 /g程度のものを使用することがより好ましく、約400〜2000m2 /g程度のものを使用することがより一層好ましい。 The specific surface area of the honeycomb active carbon, it is preferred to use those about 200~3000m 2 / g, it is more preferable to use those about 300~2500m 2 / g, about 400~2000m 2 / g It is even more preferable to use a material having a degree.

ハニカム状活性炭の透孔は、六角形に限定されるものではなく、正方形、長方形、多角形、円形、略円形など種々の形状のものを採用できる。透孔の数(セル数)は多いほど被処理数との接触が多く吸着能が高くなって好ましいが、透孔数が多過ぎると、圧力損失も大きくなり、製造上も困難となってコストは高くなる。そこで、透孔数は約15〜2326個/10cm2 程度が好ましく、約30〜1550個/10cm2 程度がより好ましく、約39〜1162個/10cm2 程度がより一層好ましい。 The through-holes of the honeycomb-like activated carbon are not limited to hexagonal shapes, and various shapes such as squares, rectangles, polygons, circles, and substantially circles can be adopted. The larger the number of through-holes (number of cells), the more contact with the number of objects to be treated and the higher the adsorption capacity, which is preferable. However, if the number of through-holes is too large, the pressure loss increases, making it difficult to manufacture and cost Becomes higher. Therefore, it is preferable hole number about 15 to 2326 pieces / 10 cm 2, about more preferably from 30 to 1,550 pieces / 10 cm about 2, about 39 to 1,162 pieces / 10 cm 2 approximately and even more preferred.

ハニカム状活性炭の製造方法は、特に限定されないが、通常、活性炭原料にバインダーを加えてハニカム状に成型し、炭化・賦活化した後、必要に応じて酸洗浄されるか、あるいは、活性炭自体をハニカム状に成型した後、乾燥され焼成されて製造される。   The method for producing the honeycomb-shaped activated carbon is not particularly limited. Usually, the activated carbon raw material is added with a binder, formed into a honeycomb shape, carbonized and activated, and then washed with acid as necessary, or the activated carbon itself is used. After being formed into a honeycomb, it is dried and fired.

活性炭吸着装置4に有機物が吸着・除去された処理排ガスは、その後、制御バルブ5を経て大気中に放出されるが、処理排ガス中に残留する有機物が排出基準値以下でない場合、更に無害化処理を施されて放出されることになる。   The treated exhaust gas from which the organic matter has been adsorbed and removed by the activated carbon adsorbing device 4 is then released into the atmosphere through the control valve 5, but if the organic matter remaining in the treated exhaust gas is not below the emission standard value, further detoxification treatment is performed. Will be released.

また、活性炭吸着装置4の下流側には、ハニカム状活性炭に吸着した有機物を脱離し、回収する装置が設けられている。この場合、ハニカム状活性炭に通流させる被処理ガスの線流速(LVa)と、有機物を吸着したハニカム状活性炭から有機物を脱離するときのガスの線速度(LVb)との関係は重要であり、LVb/LVa=0〜1/10,000であることを要すると共に、より好ましくLVb/LVa=1/10〜1/10,000である。この範囲であると、ハニカム状活性炭に吸着した有機物を効率的に脱離することができる。具体的には、ハニカム状活性炭に有機物を含有する被処理ガスを線速度30〜300cm/秒で通流させ、この線速度の1/10〜1/10,000で脱離用窒素を通流させることが、効率的に有機物を脱離させることができる。   Further, on the downstream side of the activated carbon adsorption device 4, there is provided a device for desorbing and collecting organic substances adsorbed on the honeycomb-like activated carbon. In this case, the relationship between the linear flow rate (LVa) of the gas to be treated to be passed through the honeycomb-like activated carbon and the linear velocity (LVb) of the gas when the organic matter is desorbed from the honeycomb-like activated carbon having adsorbed the organic matter is important. LVb / LVa = 0 to 1 / 10,000 and more preferably LVb / LVa = 1/10 to 1 / 10,000. Within this range, organic substances adsorbed on the honeycomb-like activated carbon can be efficiently desorbed. Specifically, a treatment gas containing an organic substance is passed through honeycomb activated carbon at a linear velocity of 30 to 300 cm / second, and desorption nitrogen is passed at 1/10 to 1 / 10,000 of the linear velocity. It is possible to efficiently desorb organic substances.

有機物を吸着したハニカム状活性炭からの有機物脱離は、従来、130℃程度に加熱した1.9気圧程度の加圧水蒸気を送給して行い、脱離後熱風乾燥するようにしていたが、このようにすると、有機物が特に低沸点のベンゼン、トルエン、キシレン(いわゆるBTX)である場合、乾燥用に送給される熱風との間で爆発限界に達することがあり、そのため細心の注意を要する等、作業し難く、防爆設備その他の設備を設ける必要があるという問題があった。そこで、かかる問題を確実に解消するため、本実施形態では、不活性ガスである窒素を90〜110℃程度、好ましくは約100℃程度に加熱して送給するようにしている。もとより、窒素に代えて他の不活性ガスを使用してもよい。   Conventionally, organic substance detachment from the honeycomb-like activated carbon adsorbed with organic substance was performed by supplying pressurized steam of about 1.9 atmospheres heated to about 130 ° C., and was dehydrated with hot air. As a result, when the organic substance is benzene, toluene or xylene (so-called BTX) having a particularly low boiling point, the explosion limit may be reached with the hot air sent for drying. It was difficult to work, and there was a problem that it was necessary to provide explosion-proof equipment and other equipment. Therefore, in order to solve this problem with certainty, in this embodiment, nitrogen, which is an inert gas, is heated to about 90 to 110 ° C., preferably about 100 ° C., and then fed. Of course, other inert gases may be used instead of nitrogen.

すなわち、窒素は、窒素容器(気体入りボンベあるいは液体窒素容器など)12から制御バルブを介して窒素ガス循環ファン6により、熱媒油槽7に送給され熱交換されて、ハニカム状活性炭に吸着している有機物の沸点より幾分高い温度にまで加熱され、配管20を通流し制御バルブ8を介して活性炭吸着装置4に送給される。熱媒油槽7の熱量は、ヒーター24を取り付けること等により直接あるいは間接に加熱することにより得られる。熱媒油槽7の熱媒体は、ポンプP2により循環され、所定温度に維持されるようになっている。もっとも、熱媒油槽7の熱量は、工場内の他の熱源から発生した熱を供給して利用してもよい。窒素を送給するのに、必ずしも窒素ガス循環ファン6を用いなくてもよく、他の送給手段を用いてもよい。ここに、窒素容器12、窒素ガス循環ポンプ6、熱媒油槽7などは加熱ガス送給装置を構成する。   That is, nitrogen is fed from the nitrogen container (gas cylinder or liquid nitrogen container, etc.) 12 through the control valve to the heat transfer oil tank 7 by the nitrogen gas circulation fan 6 to be heat exchanged and adsorbed on the honeycomb activated carbon. It is heated to a temperature somewhat higher than the boiling point of the organic matter, and flows through the pipe 20 and is fed to the activated carbon adsorbing device 4 through the control valve 8. The amount of heat in the heat transfer oil tank 7 is obtained by heating directly or indirectly by attaching a heater 24 or the like. The heat medium in the heat medium oil tank 7 is circulated by the pump P2 and maintained at a predetermined temperature. However, the heat quantity of the heat transfer oil tank 7 may be used by supplying heat generated from other heat sources in the factory. It is not always necessary to use the nitrogen gas circulation fan 6 for feeding nitrogen, and other feeding means may be used. Here, the nitrogen container 12, the nitrogen gas circulation pump 6, the heat medium oil tank 7, and the like constitute a heated gas feeding device.

活性炭吸着装置4のハニカム状活性炭に吸着された有機物は、加熱窒素により脱離されて、窒素と共に脱着窒素制御バルブ9を経て、第1冷却器13に送給され幾分冷却される。第1冷却器13へは、第1チラーユニット16から冷媒が熱交用冷却水循環ポンプP3により送給・循環されるようになっている。図番17は、第1チラーユニット16に送る冷却水を貯槽する、供給ポンプP4を備えた冷却水槽である。   The organic matter adsorbed on the honeycomb-like activated carbon of the activated carbon adsorption device 4 is desorbed by heated nitrogen, and is fed to the first cooler 13 through the desorption nitrogen control valve 9 together with nitrogen, and is somewhat cooled. Refrigerant is fed and circulated from the first chiller unit 16 to the first cooler 13 by a heat exchanger cooling water circulation pump P3. Reference numeral 17 is a cooling water tank equipped with a supply pump P4 for storing cooling water to be sent to the first chiller unit 16.

なお、ハニカム状活性炭から加熱窒素で脱離した有機物を第1冷却器13に送給する経路に、窒素容器12から窒素の一部を加熱することなく、配管21を通して導入することが好ましい。このようにすると、第1冷却器13における熱消費量が少なくて済み、設備全体の熱利用率が高まり、省エネルギーとなる。図番22は、導入する冷却用窒素の量を制御する冷却バルブである。   In addition, it is preferable to introduce the organic substance desorbed from the honeycomb-shaped activated carbon with heated nitrogen to the first cooler 13 through the pipe 21 without heating a part of nitrogen from the nitrogen container 12. If it does in this way, the heat consumption in the 1st cooler 13 may be small, the heat utilization factor of the whole installation increases, and it becomes energy saving. Reference numeral 22 is a cooling valve for controlling the amount of cooling nitrogen introduced.

更に、有機物を含む窒素は、第2冷却器14の内部に多数配置されている細管内に送給されて冷却され、有機物は液状にされる。その場合、第2冷却器14では、有機物を含む窒素を零度以下、好ましくは−10℃以下に冷却するので、窒素中の水分は、細管表面に凍結されて分離・除去される。第2冷却器14は、図1では2台並列に配置されて水分除去の効率を高くしているが、1台でもよく、更に増設してもよい。   Furthermore, nitrogen containing organic matter is fed into a plurality of narrow tubes arranged inside the second cooler 14 and cooled, and the organic matter is made liquid. In that case, since the second cooler 14 cools nitrogen containing organic matter to zero degrees or less, preferably -10 ° C. or less, the moisture in the nitrogen is frozen on the surface of the thin tube and separated and removed. In FIG. 1, two second coolers 14 are arranged in parallel to increase the efficiency of moisture removal, but may be one or more.

また、有機物と水分を除去された窒素は、窒素を加熱する熱媒油槽7に送給されて再利用することができる。図番23は、窒素の送給量を制御する制御バルブである。   Moreover, nitrogen from which organic substances and moisture have been removed can be reused by being fed to a heat transfer oil tank 7 for heating the nitrogen. Reference numeral 23 is a control valve for controlling the supply amount of nitrogen.

液状の有機物は、更にデカンター等の回収槽15に送られて、高い純度の有機物として回収される。このようにすることにより、高純度の有機物中の溶存水分は、0.5重量%以下程度にできる。従って、有機物が酢酸エチルである場合には、それを特にグラビア印刷インクの溶剤として用いたとしても、インクの滲みが生じるのを確実に抑制できる。第1,第2冷却器13,14は冷却装置を構成し、デカンター15は回収装置を構成する。もっとも、被処理ガス中の有機物によっては、必ずしもデカンター15である必要はなく、他の回収手段を使用してもよい。   The liquid organic substance is further sent to a collection tank 15 such as a decanter and collected as a high-purity organic substance. By doing in this way, the dissolved water | moisture content in high purity organic substance can be made into about 0.5 weight% or less. Therefore, when the organic substance is ethyl acetate, even if it is used as a solvent for gravure printing ink, it is possible to reliably suppress the occurrence of ink bleeding. The first and second coolers 13 and 14 constitute a cooling device, and the decanter 15 constitutes a recovery device. However, depending on the organic matter in the gas to be treated, the decanter 15 is not necessarily required, and other recovery means may be used.

第2冷却器14へは、第2チラーユニット18から冷媒が熱交換器19を介して送給され、ブライン循環ポンプP5により循環されるようになっている。   The refrigerant is supplied from the second chiller unit 18 to the second cooler 14 via the heat exchanger 19, and is circulated by the brine circulation pump P5.

被処理ガスである有機物含有ガスとして、酢酸エチルを含有する排ガスを処理した例について説明する。大気中の相対湿度は約60%であり、酢酸エチル(約2000重量ppm)を含有する排ガス流量(約300Nm3 /h)を、図1に示すように、プレクーラーで5℃以下に冷却し、次いで除湿装置であるハニカムローターで露点−30℃以下にした後、ハニカム状活性炭を内蔵した活性炭吸着装置4に送給して吸着させた。活性炭吸着装置4は、ハニカム状活性炭約20,000枚を含み、寸法3,000×4,500×高さ1,000mmのものを用いた。酢酸エチルを吸着したハニカム状活性炭に対して、約100℃に加熱した窒素を通流させて酢酸エチルを脱離させ、有機物を含む窒素を、約15℃以下に冷却した第1冷却器13、次いで約−10℃に冷却した第2冷却器14を通流させた。最終的にデカンターから回収された液状酢酸エチルは、約137kg/hであり(回収率約97%)、この酢酸エチル中に含まれる溶存水分は、0.35重量%であった。
〔別実施の形態〕
(1)上記実施形態では、有機物として酢酸エチルを有する被処理ガスを処理する例を示したが、これに限定されるものではなく、回収有機物中の水分を低減したい場合に、本発明は広く適用することができる。
An example in which an exhaust gas containing ethyl acetate is treated as an organic substance-containing gas that is a gas to be treated will be described. The relative humidity in the atmosphere is about 60%, and the exhaust gas flow rate (about 300 Nm 3 / h) containing ethyl acetate (about 2000 ppm by weight) is cooled to 5 ° C. or less with a precooler as shown in FIG. Then, after the dew point was set to −30 ° C. or less with a honeycomb rotor which is a dehumidifying device, the dehydrate was supplied to the activated carbon adsorbing device 4 containing the honeycomb-like activated carbon to be adsorbed. The activated carbon adsorption device 4 includes about 20,000 honeycomb activated carbons and has a size of 3,000 × 4,500 × height of 1,000 mm. A first cooler 13 in which nitrogen heated to about 100 ° C. is passed through the honeycomb-shaped activated carbon having adsorbed ethyl acetate to desorb ethyl acetate, and nitrogen containing organic matter is cooled to about 15 ° C. or less; Subsequently, the 2nd cooler 14 cooled to about -10 degreeC was passed. The liquid ethyl acetate finally recovered from the decanter was about 137 kg / h (recovery rate: about 97%), and the dissolved water contained in this ethyl acetate was 0.35% by weight.
[Another embodiment]
(1) In the above embodiment, an example of processing a gas to be processed having ethyl acetate as an organic substance has been shown. However, the present invention is not limited to this, and the present invention is widely used when it is desired to reduce moisture in the recovered organic substance. Can be applied.

本発明は、各種化学工業、食品工業、製紙工業、薬品工業などから排出される、有機物を含むガスを処理する場合に、広く適用することができる。   The present invention can be widely applied when processing gases containing organic substances discharged from various chemical industries, food industries, paper industries, pharmaceutical industries, and the like.

本発明の一実施形態に係る有機物含有ガス処理設備の概略全体フロー図Schematic overall flow diagram of an organic substance-containing gas processing facility according to an embodiment of the present invention

符号の説明Explanation of symbols

2 除湿機構
2a プレクーラー
2b 除湿装置
4 活性炭吸着装置
6,7,12 加熱ガス送給装置
13,14 冷却装置
15 回収装置
2 Dehumidifying mechanism 2a Precooler 2b Dehumidifying device 4 Activated carbon adsorption device 6, 7, 12 Heated gas feeding device 13, 14 Cooling device 15 Recovery device

Claims (6)

有機物を含有する被処理ガス中に含まれる水分を除去する除湿機構と、除湿された被処理ガス中の有機物を吸着除去するためのハニカム状活性炭が充填・装着されて活性炭吸着装置と、この活性炭吸着装置によって吸着された有機物を活性炭から脱離するため加熱された不活性ガスを送給する加熱ガス供給装置と、この加熱された不活性ガスにより脱離された有機物を零度以下に凍結して脱水する冷却装置と、脱水された有機物を回収する回収装置と、を有する有機物含有ガス処理設備。 A dehumidifying mechanism for removing moisture contained in the gas to be treated containing organic matter, an activated carbon adsorbing device filled with and fitted with honeycomb-like activated carbon for adsorbing and removing the organic matter in the dehumidified gas to be treated, and the activated carbon A heated gas supply device that feeds a heated inert gas to desorb the organic matter adsorbed by the adsorption device from the activated carbon, and the organic matter desorbed by the heated inert gas is frozen to below zero degree. An organic matter-containing gas processing facility comprising a cooling device for dehydration and a recovery device for collecting the dehydrated organic matter. 前記除湿機構が、冷媒の送給を受ける熱交換器から構成されたプレクーラーと、これに続く除湿装置とを有しており、この除湿装置が円筒状容器内に回転可能に、モレキュラーシーブスあるいはゼオライトがハニカム状に配置されたハニカムローターから構成されている請求項1の有機物含有ガス処理設備。 The dehumidifying mechanism has a precooler composed of a heat exchanger that receives refrigerant and a subsequent dehumidifying device, and the dehumidifying device can be rotated in a cylindrical container, 2. The organic substance-containing gas treatment facility according to claim 1, wherein the zeolite comprises a honeycomb rotor arranged in a honeycomb shape. 前記不活性ガスが窒素であり、この窒素を加熱して前記活性炭吸着装置に送給して有機物を脱離するようになっていると共に、脱離された有機物を前記冷却装置に送給する経路に、加熱していない窒素を導入するようになっている請求項1又は2の有機物含有ガス処理設備。 The inert gas is nitrogen, and the nitrogen is heated and sent to the activated carbon adsorption device to desorb organic matter, and the desorbed organic matter is sent to the cooling device. 3. The organic substance-containing gas treatment facility according to claim 1 or 2, wherein unheated nitrogen is introduced into the atmosphere. 有機物を含有する被処理ガス中に含まれる水分を除湿機構により除去し、除湿された被処理ガス中の有機物をハニカム状活性炭が充填・装着されて活性炭吸着装置に導入して吸着除去し、この活性炭吸着装置によって吸着された有機物を活性炭から脱離するため加熱した不活性ガスを送給し、この加熱された不活性ガスにより脱離された有機物を冷却装置により零度以下に凍結して脱水し、脱水された有機物を回収する有機物含有ガス処理方法。 Moisture contained in the gas to be treated containing organic substances is removed by a dehumidifying mechanism, and the organic substance in the dehumidified gas to be treated is filled and mounted with honeycomb-like activated carbon, introduced into the activated carbon adsorption device, and adsorbed and removed. In order to desorb the organic matter adsorbed by the activated carbon adsorption device, heated inert gas is fed, and the organic matter desorbed by the heated inert gas is frozen to below zero degree by the cooling device and dehydrated. An organic substance-containing gas treatment method for recovering dehydrated organic substances. 前記除湿機構による被処理ガス中の水分除去を、冷媒の送給を受ける熱交換器から構成されたプレクーラーと、これに続く除湿装置に前記被処理ガスを通して行い、前記除湿装置が円筒状容器内に回転可能に、モレキュラーシーブスあるいはゼオライトがハニカム状に配置されたハニカムローターから構成されている請求項4の有機物含有ガス処理方法。 Moisture removal in the gas to be treated by the dehumidifying mechanism is performed by passing the gas to be treated through a precooler composed of a heat exchanger that receives a refrigerant and a dehumidifying device following the precooler, and the dehumidifying device is a cylindrical container The organic substance-containing gas treatment method according to claim 4, wherein the organic substance-containing gas treatment method comprises a honeycomb rotor in which molecular sieves or zeolite is arranged in a honeycomb shape so as to be rotatable inside. 前記不活性ガスとして窒素を用い、この窒素を加熱して前記活性炭吸着装置に送給して有機物を脱離すると共に、脱離された有機物を前記冷却装置に送給する経路に、加熱していない窒素を導入する請求項4又は5の有機物含有ガス処理方法。 Nitrogen is used as the inert gas, and the nitrogen is heated and sent to the activated carbon adsorption device to desorb organic matter, and the desorbed organic matter is heated to a path for feeding the cooling device. The organic substance containing gas processing method of Claim 4 or 5 which introduce | transduces nitrogen which is not.
JP2006224384A 2006-08-21 2006-08-21 Organic matter-containing gas treatment facility and its treatment method Pending JP2008043920A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006224384A JP2008043920A (en) 2006-08-21 2006-08-21 Organic matter-containing gas treatment facility and its treatment method
PCT/JP2007/066107 WO2008023659A1 (en) 2006-08-21 2007-08-20 Apparatus for treating organic-containing gas and method of treating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006224384A JP2008043920A (en) 2006-08-21 2006-08-21 Organic matter-containing gas treatment facility and its treatment method

Publications (1)

Publication Number Publication Date
JP2008043920A true JP2008043920A (en) 2008-02-28

Family

ID=39106745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006224384A Pending JP2008043920A (en) 2006-08-21 2006-08-21 Organic matter-containing gas treatment facility and its treatment method

Country Status (2)

Country Link
JP (1) JP2008043920A (en)
WO (1) WO2008023659A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350204A (en) * 2011-10-17 2012-02-15 沈阳环境科学研究院 Modular absorbing and purifying device for volatile organic waste gases
CN103521027A (en) * 2013-09-25 2014-01-22 江苏中远环保科技有限公司 Oxygen-removed oil gas recovery method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109045932A (en) * 2018-09-20 2018-12-21 岭商(浙江)生物科技有限公司 A kind of exhaust treatment system and its treatment process of fish meal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182825A (en) * 1984-09-29 1986-04-26 Daikin Ind Ltd Solvent recovery apparatus
JPH0290921A (en) * 1988-09-26 1990-03-30 Kobe Steel Ltd Concentrator for fluorocarbon-containing gas
JPH0342013A (en) * 1989-07-06 1991-02-22 Kobe Steel Ltd Solvent recovery appratus
JPH0515725A (en) * 1991-07-09 1993-01-26 Kobe Steel Ltd Apparatus for concentrating and recovering solvent
JPH09141053A (en) * 1995-05-10 1997-06-03 Mitsubishi Heavy Ind Ltd Recovering method of organic volatile material
JP2006088102A (en) * 2004-09-27 2006-04-06 Kenji Nakajima Treating apparatus and treating method of organic substance-containing gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182825A (en) * 1984-09-29 1986-04-26 Daikin Ind Ltd Solvent recovery apparatus
JPH0290921A (en) * 1988-09-26 1990-03-30 Kobe Steel Ltd Concentrator for fluorocarbon-containing gas
JPH0342013A (en) * 1989-07-06 1991-02-22 Kobe Steel Ltd Solvent recovery appratus
JPH0515725A (en) * 1991-07-09 1993-01-26 Kobe Steel Ltd Apparatus for concentrating and recovering solvent
JPH09141053A (en) * 1995-05-10 1997-06-03 Mitsubishi Heavy Ind Ltd Recovering method of organic volatile material
JP2006088102A (en) * 2004-09-27 2006-04-06 Kenji Nakajima Treating apparatus and treating method of organic substance-containing gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350204A (en) * 2011-10-17 2012-02-15 沈阳环境科学研究院 Modular absorbing and purifying device for volatile organic waste gases
CN102350204B (en) * 2011-10-17 2013-07-10 沈阳环境科学研究院 Modular absorbing and purifying device for volatile organic waste gases
CN103521027A (en) * 2013-09-25 2014-01-22 江苏中远环保科技有限公司 Oxygen-removed oil gas recovery method and device

Also Published As

Publication number Publication date
WO2008023659A1 (en) 2008-02-28

Similar Documents

Publication Publication Date Title
US4421532A (en) Process for removing and recovering volatile organic substances from industrial waste gases
US5338450A (en) Spiral-wound adsorber module
KR100266344B1 (en) How to recover volatile organics
JP5820254B2 (en) Carbon dioxide separator
CN106563428A (en) A solid adsorbent regenerating device and an adsorption device applying the regenerating device
JP2016532559A (en) High performance adsorbent media for concentration systems.
CN101362076A (en) Regeneration method of active carbon absorbent
CN202212089U (en) Device for processing high-concentration large-volume organic gas
WO1996014916A1 (en) Pressure and temperature swing adsorption and temperature swing adsorption
TW201620829A (en) CO2 adsorption and recovery system and method
JP5248767B2 (en) Concentrator for volatile organic compounds
JP5240889B2 (en) Volatile organic compound concentration apparatus and concentration method, and volatile organic compound recovery facility and recovery method
JP2008043920A (en) Organic matter-containing gas treatment facility and its treatment method
US20050150379A1 (en) Method and system for desorption and recovery of desorbed compounds
JP2009066530A (en) Voc recovery apparatus
KR101723507B1 (en) System for separating chemical material from exhaust gas
JP3988762B2 (en) Organic substance-containing gas treatment equipment and treatment method
JP2015150519A (en) waste water treatment system
JP5317885B2 (en) Gas processing equipment
CN106540510A (en) It is a kind of can Detachment Activity charcoal fluidised bed adsorption dichloroethanes technique
JP2004243279A (en) Method and device for cleaning gas containing organic contaminant
JP2013132582A (en) Organic solvent-containing gas treatment system
JP4548891B2 (en) Organic solvent recovery method
JP2001137646A (en) Device and method for adsorption treating waste gas
KR100981073B1 (en) Method and apparatus for concentrating a substance having a higher boiling point than water in an exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090818

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121214