JPH10245692A - Electroforming master mold using photolithography method and its formation - Google Patents

Electroforming master mold using photolithography method and its formation

Info

Publication number
JPH10245692A
JPH10245692A JP5286797A JP5286797A JPH10245692A JP H10245692 A JPH10245692 A JP H10245692A JP 5286797 A JP5286797 A JP 5286797A JP 5286797 A JP5286797 A JP 5286797A JP H10245692 A JPH10245692 A JP H10245692A
Authority
JP
Japan
Prior art keywords
electroforming
thickness
pattern
monitor
monitor pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5286797A
Other languages
Japanese (ja)
Inventor
Tomoo Ikeda
池田  智夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP5286797A priority Critical patent/JPH10245692A/en
Publication of JPH10245692A publication Critical patent/JPH10245692A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to stably produce fine parts with high accuracy while checking the thickness of an electroforming member during the electroforming stage by providing a master mold with a pattern for monitor varying in the thickness of part of this mold and checking the degree of coverage of a monitor during the course of the electroforming stage. SOLUTION: The staircase-like monitor pattern 10 is formed by using a resist. The staircase-like monitor pattern 10 and a main pattern 11 are formed on a conductive base plate 40. The monitor and main patterns 10, 11 are nonconductive and the growth of the electroforming member 20 first starts from the surface of the substrate 40 having the electrical conductivity. The thickness of the electroforming member 20 increases and the electroforming part 20 grows so as to conceal the lowest part of the monitor pattern 10 as time passes by. Differences in the way of covering the monitor pattern 10 arises as the thickness of the electroforming member 20 changes. The differences in level of the monitor pattern 10 are finely set, by which the control of the thickness of the electroforming member 20 with the high accuracy is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電鋳法による製造に
用いられる元型及びその形成方法に関し、特にフォトリ
ソグラフィー法をもちいた元型及びその形成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an original die used for manufacturing by electroforming and a method for forming the same, and more particularly, to an original die using photolithography and a method for forming the same.

【0002】[0002]

【従来の技術】従来より、微細部品の製造方法として電
鋳法と呼ばれる製造方法が一般に広く利用されてきた。
この電鋳法と呼ばれる製造方法は、形成しようとする部
材の形状を施した元型に、あらかじめ導電性の材料をコ
ーティングし、その元型を電鋳により形成される材料が
混入した電鋳液に浸し、電鋳液と元型の表面にコーティ
ングされている導電性材料との間に電流を流すことによ
り、導電性材料上に電鋳材料を形成していくという電解
メッキ法の一種である。
2. Description of the Related Art Conventionally, a manufacturing method called an electroforming method has been widely used as a method for manufacturing fine parts.
This manufacturing method called an electroforming method is an electroforming liquid in which a conductive material is coated in advance on an original mold having the shape of a member to be formed, and the material formed by electroforming the original mold is mixed. Is a type of electrolytic plating method that forms an electroformed material on a conductive material by flowing an electric current between the electroforming solution and the conductive material coated on the surface of the original mold. .

【0003】電鋳法は元型の形状を忠実に複写できるた
め、元型を微細、高精度に形成すれば、その後、微細部
品を一括で大量に製造することができ、微細部品の製造
には非常に有効な手法といえる。ただし、電鋳の成長方
向の寸法(電鋳部材の厚み)に関していえば、その厚み
は電鋳工程に要する時間で決まり、それほど高精度のも
のは望めない。
[0003] Since the electroforming method can faithfully copy the shape of the original mold, if the original mold is formed finely and with high precision, then a large number of minute parts can be manufactured at once, making it possible to manufacture minute parts. Is a very effective method. However, as for the dimension in the growth direction of electroforming (the thickness of the electroformed member), the thickness is determined by the time required for the electroforming process, and so high precision cannot be expected.

【0004】従来、電鋳部材の厚みは、経験により単位
時間当たりに形成される電鋳部材の厚み(以降、これを
電鋳部材の成長速度と称する。)を予測して、それによ
り電鋳工程に要する時間を決定し、コントロールしてい
た。しかし、電鋳部材の成長速度は、電鋳液の温度や成
分、または電鋳時に流す電流の大きさなど、多くの他の
要因によって、大きく変わるため、それらすべての条件
を考慮し、電鋳時間を決定しなければならない。以上の
ように、高精度の電鋳部材の厚みを得ることは非常に難
しく、そのためには電鋳作業の経験が最も重要視されて
いた。
Conventionally, the thickness of an electroformed member is estimated from the thickness of an electroformed member formed per unit time (hereinafter, this is referred to as a growth rate of an electroformed member) based on experience. The time required for the process was determined and controlled. However, the growth rate of an electroformed member varies greatly depending on many other factors, such as the temperature and composition of the electroforming solution or the magnitude of the current flowing during electroforming. Time has to be determined. As described above, it is extremely difficult to obtain a highly accurate thickness of an electroformed member, and for that purpose, experience of electroforming work has been most regarded as important.

【0005】[0005]

【発明が解決しようとする課題】従来の電鋳法による部
品の形成では、形成される電鋳材料の厚みは、その製造
工程の途中では確認することができず、それまでの経験
により、単位時間当たりに形成される電鋳部材の厚みを
予測し、電鋳を行う時間によって、厚みをコントロール
していた。しかしながら、電鋳される厚みは時間だけで
は決まらず、電鋳液の温度や成分、電鋳時に流す電流の
大きさなど、多くの他の要因によって、大きく変わって
しまう。そのため電鋳によって形成される部材の厚みを
精度良く、絶えず安定して形成することは非常に難し
い。
In the formation of parts by the conventional electroforming method, the thickness of the electroformed material formed cannot be confirmed during the manufacturing process. The thickness of the electroformed member formed per hour is predicted, and the thickness is controlled by the time for performing the electroforming. However, the thickness to be electroformed is not determined only by the time, but greatly depends on many other factors such as the temperature and composition of the electroforming solution, the magnitude of the current flowing during electroforming, and the like. Therefore, it is very difficult to accurately and constantly stably form a member formed by electroforming.

【0006】[0006]

【課題を解決するための手段】本発明では上記の課題を
解決するために、元型の一部に厚みの異なるモニター用
のパターン(以降モニターパターンと称する。)を設
け、電鋳工程の途中でもモニターの覆われ具合により、
電鋳部材の厚みを一目で確認できるようにした。
According to the present invention, in order to solve the above-mentioned problems, a pattern for monitoring (hereinafter referred to as a monitor pattern) having a different thickness is provided on a part of an original mold, and the pattern is formed during the electroforming process. But depending on how the monitor is covered,
The thickness of the electroformed member can be checked at a glance.

【0007】前記モニターパターンは、フォトリソグラ
フィー法をもちいて形成される。まず、導電性材料をコ
ーティングした基板上に厚膜の感光性材料(レジスト)
を数回に分けて、毎回、一定の厚みにコーティングす
る。一回コーティングするたびに、毎回異なるパターン
で基板の一部がパターニングされるように露光をおこな
う。何回かレジストをコーティングした後、積層された
レジストすべてを、本来必要とする形状に露光し、最後
に、先に露光したモニターパターンと所望の必要とする
パターンとを同時に現像する。すると、厚みの異なる数
種のモニターパターンと所望の電鋳形状に必要とするパ
ターンとをもつ元型が形成される。その元型を用いて電
鋳をおこなえば、電鋳が進むにつれ、モニターパターン
は少しずつ覆われてゆき、その覆われ具合によって電鋳
部材の厚みが確認できる。
[0007] The monitor pattern is formed using a photolithography method. First, a thick photosensitive material (resist) is placed on a substrate coated with a conductive material.
Is divided into several times and is coated to a constant thickness every time. Each time coating is performed, exposure is performed so that a part of the substrate is patterned with a different pattern each time. After coating the resist several times, all of the laminated resists are exposed to the originally required shape, and finally, the previously exposed monitor pattern and the desired required pattern are simultaneously developed. Then, an original mold having several types of monitor patterns having different thicknesses and a pattern required for a desired electroformed shape is formed. If electroforming is performed using the original mold, as the electroforming proceeds, the monitor pattern is gradually covered, and the thickness of the electroformed member can be confirmed by the covering condition.

【0008】また、前記モニターパターンの確認を容易
にするため、モニターパターンの厚みに応じて平面形状
を異なるものにした。特に、より認識しやすくするため
に、モニターパターンの厚み寸法を平面形状に表すよう
にした。
Further, in order to facilitate confirmation of the monitor pattern, the planar shape is changed according to the thickness of the monitor pattern. In particular, in order to make it easier to recognize, the thickness dimension of the monitor pattern is expressed in a planar shape.

【0009】[0009]

【発明の実施の形態】図1は本発明のフォトリソグラフ
ィー法を用いた電鋳元型の形成方法を示した図である。
まず、それ自身が導電性を有するか、もしくは導電性を
有する材料が表面にコーティングされている基板40上
に感光性樹脂材料(以下レジスト12と称する。)を任
意の厚さでコーティングする。コーティング方法は塗布
法、ローラー法、スピンコート法等どのような方法でも
かまわない。ただし、あらかじめコーティング条件を設
定し、レジスト12の厚さを把握しておく必要がある。
FIG. 1 is a diagram showing a method of forming an electroforming mold using a photolithography method according to the present invention.
First, a photosensitive resin material (hereinafter, referred to as a resist 12) is coated with an arbitrary thickness on a substrate 40 which itself has conductivity or has a surface coated with a material having conductivity. The coating method may be any method such as a coating method, a roller method, and a spin coating method. However, it is necessary to set the coating conditions in advance and grasp the thickness of the resist 12.

【0010】レジスト12がコーティングされた後、所
望のパターン形状が施された第1のマスク31を用い、
第1の露光を行う(図1(a))。第1のマスク31に
施されたパターン形状は、本来、電鋳部材の元型形状と
して必要とされるパターンではないので、基板40の一
部に配置されているだけでかまわない。
After the resist 12 is coated, using a first mask 31 having a desired pattern shape,
First exposure is performed (FIG. 1A). Since the pattern shape applied to the first mask 31 is not a pattern originally required as the original shape of the electroformed member, it may be merely arranged on a part of the substrate 40.

【0011】図1では露光された部分が現像後残るタイ
プのネガレジストタイプで表示されているが、露光され
た部分が現像されるポジレジストタイプでも本発明には
何ら支障はない(ただし、ポジレジストタイプを使用し
た場合にはマスクのパターンは図1とは異なる。)。
Although FIG. 1 shows a negative resist type in which the exposed portion remains after development, a positive resist type in which the exposed portion is developed does not hinder the present invention (however, the positive resist type does not hinder the present invention). When the resist type is used, the pattern of the mask is different from that of FIG.

【0012】次に、図1(b)に示すように、すでに第
1の露光工程で所望のパターンに露光されている一層目
のレジスト12上に、新しく同様にレジスト12をコー
ティングし、第1の露光工程で使用したものとは別の形
状が施された第2のマスク32によって、第2の露光を
行う。
Next, as shown in FIG. 1B, a new resist 12 is similarly coated on the first resist 12 already exposed to a desired pattern in the first exposure step. The second exposure is performed by the second mask 32 having a shape different from that used in the exposure step.

【0013】第2の露光工程で使用される第2のマスク
32には本来電鋳部材の形状として必要とされる形状が
描画されている。
On the second mask 32 used in the second exposure step, a shape originally required as the shape of the electroformed member is drawn.

【0014】最後に、図1(c)に示すように、一層
目、二層目のレジスト12を同時に現像を行い、階段状
のモニターパターン10と電鋳元型形状として使用され
る本パターン11とが形成される。
Finally, as shown in FIG. 1C, the first and second resist layers 12 are simultaneously developed to form a stepped monitor pattern 10 and a main pattern 11 to be used as an electroforming mold. Are formed.

【0015】図2は本発明による電鋳用元型の一例を示
す図である。図2では図1で説明した第2の露光工程の
後に、さらに第3の露光工程を付け加え、その後現像し
ている。そのため、基板40上に形成されたモニターパ
ターン10は3段階の厚さに形成されている。なお、本
パターン11の露光は第3の露光工程(最後の露光工
程)の時に行っている。このように露光工程を増やすこ
とによってモニターパターン11の段差は任意に増やす
ことが可能である。
FIG. 2 is a view showing an example of an electroforming master according to the present invention. In FIG. 2, a third exposure step is further added after the second exposure step described in FIG. 1, and development is performed thereafter. Therefore, the monitor pattern 10 formed on the substrate 40 is formed in three levels of thickness. The exposure of the pattern 11 is performed at the time of the third exposure step (final exposure step). By thus increasing the number of exposure steps, the level difference of the monitor pattern 11 can be arbitrarily increased.

【0016】図3は本発明の元型を用いた電鋳過程を示
した断面図である。導電性を有する基板40上に図1で
示した方法によって、階段状のモニターパターン10及
び本パターン11が形成されている。図3では本発明の
内容をよりわかりやすく説明するため、モニターパター
ン10のそれぞれの段差を10μm、3層で30μmの
厚みに形成されているものとする。
FIG. 3 is a sectional view showing an electroforming process using the original mold of the present invention. A stepwise monitor pattern 10 and a main pattern 11 are formed on a conductive substrate 40 by the method shown in FIG. In FIG. 3, in order to explain the contents of the present invention more clearly, it is assumed that each step of the monitor pattern 10 is formed to have a thickness of 10 μm and three layers of 30 μm.

【0017】レジストで形成されたモニターパターン1
0及び本パターン11は非導電性であるため、まず導電
性を有する基板40上から電鋳部材20の成長が始まる
(図3の過程1の状態)。時間が経つにつれ、電鋳部材
20は厚みを増してゆき、電鋳部材20の厚さが10μ
mを越えるとモニターパターン10の最も低い部分を覆
い隠すように電鋳部材20は成長していく(図3の過程
2の状態)。
Monitor pattern 1 formed of resist
Since the pattern 0 and the pattern 11 are non-conductive, the growth of the electroformed member 20 starts first on the conductive substrate 40 (the state of step 1 in FIG. 3). Over time, the thickness of the electroformed member 20 increases, and the thickness of the electroformed member 20 becomes 10 μm.
When the distance exceeds m, the electroformed member 20 grows so as to cover the lowest part of the monitor pattern 10 (the state of the process 2 in FIG. 3).

【0018】さらに電鋳時間を長くすると、図3の過程
3の状態に示されるように、モニターパターン10の中
段(高さ20μmの段)をも覆い隠してしまう。
If the electroforming time is further lengthened, as shown in the state of the step 3 in FIG. 3, the middle stage (the stage having a height of 20 μm) of the monitor pattern 10 is covered.

【0019】このように、電鋳部材20の厚さが変わる
につれ、モニターパターン10の覆われかたに違いが生
じ、過程1では電鋳部材20の厚みは0〜10μm、過
程2では10〜20μm、過程3では20〜30μmの
厚みであることが平面上で確認できるのである。
As described above, as the thickness of the electroformed member 20 changes, a difference occurs in how the monitor pattern 10 is covered. In step 1, the thickness of the electroformed member 20 is 0 to 10 μm, and in step 2, it is 10 to 10 μm. It can be confirmed on a plane that the thickness is 20 μm and the thickness in Step 3 is 20 to 30 μm.

【0020】図3ではモニターパターン10のそれぞれ
の段差を10μmに設定したが、この段差をより細かく
設定することによって、より高精度に電鋳部材20の厚
みをコントロールすることができる。
In FIG. 3, each step of the monitor pattern 10 is set to 10 μm. However, by setting these steps finer, the thickness of the electroformed member 20 can be controlled with higher precision.

【0021】また、前記でも記述したように、図3では
モニターパターン10の段差を3段に設定したが、別に
この段数に限られるわけでなく、必要に応じ段数を多く
したり、少なくしてもかまわない。
Further, as described above, in FIG. 3, the steps of the monitor pattern 10 are set to three steps. However, the number of steps is not limited to this, and the number of steps may be increased or decreased as necessary. It doesn't matter.

【0022】図4はコントロールしたい電鋳部材の厚さ
近傍にのみ段差を設けたモニターパターンの断面図であ
る。レジストを、一層目を厚く、二層目及び三層目を薄
くコーティングすることにより、図4に示すようなモニ
ターパターン10が形成される。図4のようなモニター
パターンは、たとえば200μmの厚みで精度が±5μ
mのような、電鋳部材の厚さを厚く、かつ高精度にコン
トロールしたい場合に非常に有効である。なお、図4で
は本説明をわかりやすくするために各部の寸法を誇張し
て表している。
FIG. 4 is a sectional view of a monitor pattern having a step only in the vicinity of the thickness of the electroformed member to be controlled. The monitor pattern 10 as shown in FIG. 4 is formed by coating the resist thicker on the first layer and thinner on the second and third layers. The monitor pattern shown in FIG. 4 has a thickness of 200 μm and an accuracy of ± 5 μm, for example.
This is very effective when it is desired to control the thickness of the electroformed member, such as m, thickly and with high precision. In FIG. 4, the dimensions of each part are exaggerated for easy understanding of the description.

【0023】図5はモニターパターンの表示をわかりや
すくした一例を示した図である。図1から図4ではモニ
ターマスクを階段状に形成したものを示してきたが、別
に一つのパターンにまとめる必要はなく、厚みの違う別
々のモニターパターンを用意してもかまわない。その場
合においても、モニターパターンの形成方法は図1に示
した方法と基本的に何ら変わることはなく、マスクを変
更するだけでよい。
FIG. 5 is a diagram showing an example in which the display of the monitor pattern is made easy to understand. Although FIGS. 1 to 4 show the case where the monitor mask is formed in a step shape, it is not necessary to combine them into one pattern, and separate monitor patterns having different thicknesses may be prepared. Even in such a case, the method of forming the monitor pattern is basically the same as the method shown in FIG. 1, and only the mask needs to be changed.

【0024】図5ではモニターパターンを平面上で確認
しやすくするために、モニターパターン10の厚みに応
じて平面形状を変えている。特に図5では厚み寸法を平
面形状として表示するようにしている。このようにする
ことによって、電鋳部材の厚みがモニターパターン10
の厚みを越えるにしたがい、モニターパターン10で表
示される数値が消えてゆき、電鋳部材の厚みが即座に確
認できる。
In FIG. 5, the planar shape is changed according to the thickness of the monitor pattern 10 so that the monitor pattern can be easily viewed on a plane. In particular, in FIG. 5, the thickness dimension is displayed as a planar shape. By doing so, the thickness of the electroformed member is reduced by the monitor pattern 10.
As the thickness of the electroformed member exceeds the thickness of the electroformed member, the numerical value displayed on the monitor pattern 10 disappears.

【0025】[0025]

【発明の効果】本発明では、電鋳用の元型として、フォ
トリソグラフィー法を用いて電鋳部材の成長方向に数種
類の厚みをもつモニターパターンを設けている。電鋳が
進むにつれ、電鋳部材の厚みは徐々に厚くなる。そし
て、モニターパターンの厚みを越えるとモニターパター
ンを覆い隠しモニターパターンを見えなくしてしまう。
モニターパターンには前記で述べたように数種類の厚み
のものを設けており、電鋳部材の厚みが厚くなるごとに
モニターパターンが一つづつ隠れていく。このようにす
ることにより、電鋳工程の途中であっても、電鋳部材の
厚さが確認でき、厚さのコントロールが容易となる。ま
た、これまでは厚みの管理には経験が重要視されていた
が、本発明によれば、誰でもが同じように厚みを管理す
ることができる。
According to the present invention, a monitor pattern having several kinds of thicknesses in the growth direction of an electroformed member is provided by photolithography as a master for electroforming. As the electroforming proceeds, the thickness of the electroformed member gradually increases. When the thickness of the monitor pattern is exceeded, the monitor pattern is covered and becomes invisible.
As described above, the monitor patterns are provided in several thicknesses, and the monitor patterns are hidden one by one as the thickness of the electroformed member increases. By doing so, the thickness of the electroformed member can be confirmed even during the electroforming step, and the thickness can be easily controlled. Until now, experience has been regarded as important in managing the thickness, but according to the present invention, anyone can manage the thickness in the same manner.

【0026】また、本発明によれば、モニターパターン
の厚みの違いを微少に設定することにより、これまでの
ように電鋳時間で厚み管理をしていた場合よりも、より
高精度に電鋳部材の厚みを管理することができる。その
ため、微細部品の形成に有利である。
Further, according to the present invention, by setting the difference in the thickness of the monitor pattern to a very small value, the electroforming can be performed with higher precision than when the thickness is controlled by the electroforming time as before. The thickness of the member can be controlled. Therefore, it is advantageous for forming a fine component.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のフォトリソグラフィー法を用いた電鋳
元型の形成方法を示した図である。
FIG. 1 is a view showing a method of forming an electroforming mold using a photolithography method of the present invention.

【図2】本発明による電鋳用元型の一例を示す図であ
る。
FIG. 2 is a view showing an example of an electroforming master according to the present invention.

【図3】本発明の元型を用いた電鋳過程を示した断面図
である。
FIG. 3 is a cross-sectional view showing an electroforming process using the original mold of the present invention.

【図4】本発明を用い、コントロールしたい電鋳部材の
厚さ近傍にのみ段差を設けたモニターパターンの断面図
である。
FIG. 4 is a cross-sectional view of a monitor pattern provided with a step only in the vicinity of the thickness of an electroformed member to be controlled using the present invention.

【図5】本発明を用い、モニターパターンの表示をわか
りやすくした一例を示した図である。
FIG. 5 is a diagram showing an example in which display of a monitor pattern is made easy to understand using the present invention.

【符号の説明】[Explanation of symbols]

10 モニターパターン 11 本パターン 12 レジスト 20 電鋳部材 31 第1のマスク 32 第2のマスク 40 基板 REFERENCE SIGNS LIST 10 monitor pattern 11 main pattern 12 resist 20 electroformed member 31 first mask 32 second mask 40 substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面に導電性を有する基板上に感光性樹
脂をパターン化した電鋳用の元型において、 元型の一部に感光性樹脂からなる厚みの異なるパターン
を有していることを特徴とする電鋳元型。
1. An electroforming mold in which a photosensitive resin is patterned on a substrate having a conductive surface, wherein a part of the mold has a pattern made of a photosensitive resin having a different thickness. An electroforming mold.
【請求項2】 表面に導電性を有する基板上に感光性樹
脂をパターン化した電鋳用の元型の形成方法において、 前記基板上に感光性樹脂をコーティングし、所望のパタ
ーンに露光を行う第1の露光工程と、 第1の露光工程で所望のパターンに露光された感光性樹
脂上に、感光性樹脂をコーティングし、第1の露光工程
とは別のパターンに露光を行う第2の露光工程と、 最後に前記感光性樹脂を現像し、感光性樹脂をパターン
化する工程とを含む電鋳元型の形成方法。
2. A method of forming a mold for electroforming in which a photosensitive resin is patterned on a substrate having a conductive surface, wherein the substrate is coated with the photosensitive resin and exposed to a desired pattern. A first exposure step, and a second step of coating the photosensitive resin exposed to a desired pattern in the first exposure step with a photosensitive resin and exposing the photosensitive resin to a pattern different from the first exposure step. A method for forming an electroforming mold, comprising: an exposure step; and finally, a step of developing the photosensitive resin and patterning the photosensitive resin.
【請求項3】 厚みの寸法を平面形状で示したパターン
を有していることを特徴とする請求項1記載の電鋳元
型。
3. The electroforming mold according to claim 1, wherein the pattern has a pattern in which a thickness dimension is indicated by a planar shape.
JP5286797A 1997-03-07 1997-03-07 Electroforming master mold using photolithography method and its formation Pending JPH10245692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5286797A JPH10245692A (en) 1997-03-07 1997-03-07 Electroforming master mold using photolithography method and its formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5286797A JPH10245692A (en) 1997-03-07 1997-03-07 Electroforming master mold using photolithography method and its formation

Publications (1)

Publication Number Publication Date
JPH10245692A true JPH10245692A (en) 1998-09-14

Family

ID=12926833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5286797A Pending JPH10245692A (en) 1997-03-07 1997-03-07 Electroforming master mold using photolithography method and its formation

Country Status (1)

Country Link
JP (1) JPH10245692A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081781A1 (en) * 2001-03-30 2002-10-17 Worlock Co., Ltd. Electrocast article and method for producing the same, electrocast sheet and electrocast product
WO2005076335A1 (en) * 2004-02-07 2005-08-18 Grapion Technologies Korea Co., Ltd. Composite shape electro-forming member, its electro-forming master and method for manufacturing the same
WO2005076334A1 (en) * 2004-02-07 2005-08-18 Graphion Technologies Korea Co., Ltd. Electro-forming master and the same-master-manufacturing method, and metal minute pattern made by the master
WO2008018261A1 (en) 2006-08-07 2008-02-14 Seiko Instruments Inc. Method for manufacturing electroformed mold, electroformed mold, and method for manufacturing electroformed parts
US7887995B2 (en) * 2005-01-14 2011-02-15 Seiko Instruments Inc. Electroforming mold and method for manufacturing the same, and method for manufacturing electroformed component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081781A1 (en) * 2001-03-30 2002-10-17 Worlock Co., Ltd. Electrocast article and method for producing the same, electrocast sheet and electrocast product
WO2005076335A1 (en) * 2004-02-07 2005-08-18 Grapion Technologies Korea Co., Ltd. Composite shape electro-forming member, its electro-forming master and method for manufacturing the same
WO2005076334A1 (en) * 2004-02-07 2005-08-18 Graphion Technologies Korea Co., Ltd. Electro-forming master and the same-master-manufacturing method, and metal minute pattern made by the master
US7887995B2 (en) * 2005-01-14 2011-02-15 Seiko Instruments Inc. Electroforming mold and method for manufacturing the same, and method for manufacturing electroformed component
WO2008018261A1 (en) 2006-08-07 2008-02-14 Seiko Instruments Inc. Method for manufacturing electroformed mold, electroformed mold, and method for manufacturing electroformed parts
US8518632B2 (en) 2006-08-07 2013-08-27 Seiko Instruments Inc. Method of manufacturing electroforming mold, electroforming mold, and method of manufacturing electroformed component
US8852491B2 (en) 2006-08-07 2014-10-07 Seiko Instruments Inc. Method manufacturing electroforming mold

Similar Documents

Publication Publication Date Title
KR20110075041A (en) Heterogenous liga method
US6350360B1 (en) Method of fabricating a 3-dimensional tool master
US3449221A (en) Method of making a monometallic mask
US3703450A (en) Method of making precision conductive mesh patterns
JPH10245692A (en) Electroforming master mold using photolithography method and its formation
US5512161A (en) Process for galvanically forming structured plate-shaped bodies
JP2002115089A (en) Mandrel, and orifice plate for electroforming using the mandrel
JPS5812315A (en) Manufacture of thin film coil
US4645734A (en) Composite having conductive layer on resin layer and method of manufacturing
US6383357B1 (en) Production of bevelled galvanic structures
US3728231A (en) Method of forming an ultrafine aperture mask
KR100980217B1 (en) Master of Electro-forming
JPH11172487A (en) Production of fine electroformed parts
JP4674735B2 (en) Method for producing electroformed metal
EP0713929A1 (en) Thin film pegless permanent orifice plate mandrel
KR20190006661A (en) Method of manufacturing mold core using electro-forming
JPH0795509B2 (en) Method of forming resist pattern
KR20220118447A (en) Jeonju process
JP3187630B2 (en) Electroforming
KR100248517B1 (en) Micro coil manufacturing method
JPH02251195A (en) Manufacture of printed wiring board
KR100928476B1 (en) Method for manufacturing precision pole pole workpiece using uniform growth phenomenon of pole pole workpiece and pole pole workpiece by the method
JP2002055461A (en) Method for producing metallic mask
JPH03232990A (en) Production of mesh
JPS63166226A (en) Manufacture of x-ray exposure mask