JPH11172487A - Production of fine electroformed parts - Google Patents

Production of fine electroformed parts

Info

Publication number
JPH11172487A
JPH11172487A JP33471597A JP33471597A JPH11172487A JP H11172487 A JPH11172487 A JP H11172487A JP 33471597 A JP33471597 A JP 33471597A JP 33471597 A JP33471597 A JP 33471597A JP H11172487 A JPH11172487 A JP H11172487A
Authority
JP
Japan
Prior art keywords
fine
insoluble material
electroforming
transparent substrate
photosensitive insoluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33471597A
Other languages
Japanese (ja)
Inventor
Tomoo Ikeda
池田  智夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP33471597A priority Critical patent/JPH11172487A/en
Publication of JPH11172487A publication Critical patent/JPH11172487A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing fine electroformed parts capable of producing fine parts for which the external shapes, characteristics and accuracy obtainable heretofore only by the electroless plating method are required by an electroforming method. SOLUTION: In the case the fine electroformed parts are produced by patterning opaque conductive films 50 on a transparent substrate, patterning a photosensitive insoluble material 22 applied thereon by exposure from the transparent substrate 30 side and using such material as an electroforming mold, the process has a stroke for forming the opaque film consisting of fine parts forming regions 501 where the fine parts are formed by electroforming on the transparent substrate, electrode regions 502 for taking out of the electrodes at the time of the electroforming and wiring regions 503 for electrical connection of the fine parts forming regions 501 and the electrode regions 502 to each other. In addition, the width of the wiring regions 503 is set at a size in a range from 1/60 to 1/6 the thickness of the photosensitive insoluble material 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電鋳法により成形さ
れる微細部品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a fine component formed by an electroforming method.

【0002】[0002]

【従来の技術】近年、マイクロマシン分野において、微
細で且つ複雑な形状の微細部品の要求が高まっている。
そうした状況の中で、多くの微細部品の製造方法が考案
されている。その中でも特願平8−141841で開示
されている製造方法はフォトリソグラフィー法で元型を
形成し、その元型を用いてメッキ法により微細部品を成
形する製造方法であり、微細形状を高精度で形成できる
ため微細部品の製造方法として有効な方法の一つであ
る。
2. Description of the Related Art In recent years, in the field of micromachines, there has been an increasing demand for fine parts having fine and complicated shapes.
In such a situation, many methods for manufacturing a fine component have been devised. Among them, the manufacturing method disclosed in Japanese Patent Application No. 8-141841 is a manufacturing method in which a master is formed by a photolithography method, and a fine part is formed by a plating method using the master. This is one of the effective methods as a method for manufacturing a fine component because it can be formed by using the method described above.

【0003】以下に、従来のフォトリソグラフィー法と
メッキ法を用いた微細部品の製造方法を説明する。
[0003] Hereinafter, a method for manufacturing a micropart using conventional photolithography and plating will be described.

【0004】図3はフォトリソグラフィー法とメッキ法
を用いた従来の微細部品の製造方法を示した図である。
まず、透光性を有する透明基板30上に光を遮断する不
透明膜40を微細部品の平面形状に形成する(図3
(a))。
FIG. 3 is a view showing a conventional method of manufacturing a fine component using a photolithography method and a plating method.
First, an opaque film 40 for blocking light is formed on a transparent substrate 30 having a light-transmitting property in a planar shape of a fine component (FIG. 3).
(A)).

【0005】次に、不透明膜40上に感光不溶性材料層
20をコーティングした後、透明基板30を介して露光
を行う(図3(b))。この時、透明基板30と感光不
溶性材料層20との間に存在する不透明膜40により、
感光不溶性材料層20は、微細部品の平面形状以外の部
分のみが露光される。このような透明基板30側から露
光する露光法のことを一般にバック露光法と称する。
Next, after coating the photosensitive insoluble material layer 20 on the opaque film 40, exposure is performed through the transparent substrate 30 (FIG. 3B). At this time, the opaque film 40 existing between the transparent substrate 30 and the photosensitive insoluble material layer 20 causes
In the photosensitive insoluble material layer 20, only a portion other than the planar shape of the fine component is exposed. Such an exposure method of exposing from the transparent substrate 30 side is generally called a back exposure method.

【0006】その後、感光不溶性材料層20を現像する
ことによって、未露光部分は溶解し、図3(c)に示す
ようにパターニングされる。このようにして、感光不溶
性材料層20、不透明膜40、透明基板30からなる元
型が完成する。最後に、不透明膜40上にメッキ法によ
りメッキ層10を形成し、最終的にメッキ層10からな
る微細部品が形成される(図3(d))。その後、メッ
キ層10より、元型である感光不溶性材料層20、不透
明膜40、および透明基板30を除去して、メッキ層1
0からなる微細部品が完成する。
Thereafter, by developing the photosensitive insoluble material layer 20, the unexposed portion is dissolved and patterned as shown in FIG. 3 (c). In this way, a master including the photosensitive insoluble material layer 20, the opaque film 40, and the transparent substrate 30 is completed. Finally, a plating layer 10 is formed on the opaque film 40 by a plating method, and finally a fine component made of the plating layer 10 is formed (FIG. 3D). Thereafter, the original photosensitive insoluble material layer 20, the opaque film 40, and the transparent substrate 30 are removed from the plating layer 10, and the plating layer 1 is removed.
Thus, a fine part made of zero is completed.

【0007】[0007]

【発明が解決しようとする課題】上記のようなフォトリ
ソグラフィー法とメッキ法を用いた製造方法において、
メッキ速度が速くメッキ厚を厚くすることができるとい
う理由から、メッキ法として電鋳法を用いるのが有効で
ある。しかしながら、電鋳法は電解メッキ法の一種であ
るため、電極の取り出しが必要となる。
SUMMARY OF THE INVENTION In a manufacturing method using the photolithography method and the plating method as described above,
It is effective to use the electroforming method as the plating method because the plating rate is high and the plating thickness can be increased. However, since the electroforming method is a kind of the electrolytic plating method, it is necessary to take out the electrodes.

【0008】図4は微細歯車を上記の方法で形成する例
を示した図である。透明基板30上に歯車の平面形状で
パターニングされている不透明膜41が成膜されてお
り、不透明膜41上には微細歯車となるメッキ層11
が、不透明膜41の無い透明基板30上には感光不溶性
材料層21が形成されている。微細歯車のような外形形
状に微細な形状と精度が要求される部品の場合、図4か
らも明らかなように電極の取り出しをすることはできな
い。そのため従来は、無電解メッキ法を用いて微細部品
である微細歯車を形成するしか方法はなかった。無電解
メッキ法の場合、メッキ速度が遅いため生産性が悪く、
厚みのある微細部品を形成するには向いていない。
FIG. 4 is a view showing an example of forming a fine gear by the above method. An opaque film 41 patterned in a plane shape of a gear is formed on a transparent substrate 30. On the opaque film 41, a plating layer 11 serving as a fine gear is formed.
However, the photosensitive insoluble material layer 21 is formed on the transparent substrate 30 without the opaque film 41. In the case of a component requiring a fine shape and precision in the external shape such as a fine gear, the electrode cannot be taken out as is clear from FIG. Therefore, conventionally, there has been no other method but to form a fine gear, which is a fine part, using an electroless plating method. In the case of the electroless plating method, productivity is poor due to a low plating speed,
It is not suitable for forming thick fine parts.

【0009】そこで、本発明における製造方法は、従来
無電解メッキ法でしか形成できなかった微細部品を、電
鋳法で形成することによって生産性を向上させることを
目的としている。
Therefore, the manufacturing method of the present invention aims at improving the productivity by forming a fine component, which could only be formed by the electroless plating method in the past, by the electroforming method.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明による微細電鋳部品の製造方法は、導電性
を有し所定の形状を施した不透明膜が形成された透明基
板上に、感光不溶性材料を成膜し、前記感光不溶性材料
を前記透明基板側から前記不透明膜を介して露光し現像
することによってパターニング化し、前記不透明膜上に
電鋳法を用いて微細部品形成する微細電鋳部品の製造方
法において、前記透明基板上に微細部品が電鋳形成され
る微細部品形成領域と電鋳時の電極取り出しの為の電極
領域と前記微細部品形成領域及び前記電極領域間の電気
的接続をする為の配線領域とからなる不透明膜を形成す
る行程を有し、かつ前記配線領域の幅が前記感光不溶性
材料の厚みの1/60から1/6の範囲の寸法に設定さ
れていることを特徴とする。
In order to solve the above-mentioned problems, a method of manufacturing a micro electroformed component according to the present invention is to provide a method for manufacturing a fine electroformed part on a transparent substrate on which an opaque film having a predetermined shape is formed. Next, a photosensitive insoluble material is formed into a film, and the photosensitive insoluble material is patterned by exposing and developing the photosensitive insoluble material from the transparent substrate side through the opaque film, and forming a fine component on the opaque film using an electroforming method. In the method for manufacturing a fine electroformed component, a fine component forming region in which a fine component is electroformed on the transparent substrate, an electrode region for taking out an electrode during electroforming, and a space between the fine component forming region and the electrode region A step of forming an opaque film including a wiring region for electrical connection, and wherein the width of the wiring region is set to a size in the range of 1/60 to 1/6 of the thickness of the photosensitive insoluble material. Specially To.

【0011】[0011]

【発明の実施の形態】まず、本発明による微細電鋳部品
の製造方法の概略を説明する。図1は本発明による微細
電鋳部品の製造方法の概略図である。図1では六角形の
形状をもつ微細電鋳部品の製造の場合を例に挙げた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an outline of a method for manufacturing a fine electroformed part according to the present invention will be described. FIG. 1 is a schematic view of a method for producing a fine electroformed part according to the present invention. FIG. 1 shows an example of the case of manufacturing a fine electroformed part having a hexagonal shape.

【0012】図1において、透明基板30上には不透明
導電性膜50が所望の形状にパターニングされている。
該不透明導電性膜50は以下の3つの領域で構成されて
いる。微細部品が電鋳形成される微細部品形成領域50
1と、電鋳時に電極の取り出し部となる電極領域502
と、微細部品形成領域501と電極領域502の電気的
接続を行う線幅の細い配線領域503である。
In FIG. 1, an opaque conductive film 50 is patterned on a transparent substrate 30 into a desired shape.
The opaque conductive film 50 is composed of the following three regions. Fine part forming region 50 in which fine parts are formed by electroforming.
1 and an electrode region 502 to be an electrode extraction portion during electroforming.
And a wiring region 503 having a small line width for electrically connecting the fine component forming region 501 and the electrode region 502.

【0013】透明基板30と不透明導電性膜50の上に
成膜された感光不溶性材料層22は、透明基板30側か
ら不透明導電性膜50を介して露光する事によって、不
透明導電性膜50が存在しない部分のみ露光される。
The photosensitive insoluble material layer 22 formed on the transparent substrate 30 and the opaque conductive film 50 is exposed from the transparent substrate 30 side through the opaque conductive film 50 so that the opaque conductive film 50 is exposed. Only the non-existing portions are exposed.

【0014】通常、この後現像を行うわけであるが、本
実施の形態では、感光不溶性材料層22の厚みを100
μmにしたのに対して、不透明導電性膜50の配線領域
503の線幅を10μmにしたことで、図1に示すよう
に、微細部品形成領域501と電極領域502の上感光
不溶性材料のみを現像することができた。
Usually, development is performed after this. In the present embodiment, the thickness of the photosensitive insoluble material layer 22 is set to 100%.
By setting the line width of the wiring region 503 of the opaque conductive film 50 to 10 μm, the photosensitive insoluble material only on the fine component forming region 501 and the electrode region 502 is reduced as shown in FIG. It could be developed.

【0015】その後、電極領域502と外部電源とを接
続して電鋳を行うことによって、微細部品形成領域50
1上に六角形の形状をした微細電鋳部品が形成される。
Thereafter, the electrode region 502 is connected to an external power source and electroforming is performed to form the fine component forming region 50.
A microelectroformed part having a hexagonal shape is formed on 1.

【0016】以下に本実施の形態を詳しく説明する。透
明基板30はガラス基板からなっており、まず透明基板
30上に銅(Cu)からなる不透明導電性膜50をスパ
ッタリング法によって約0.2μmの厚みで成膜した。
その後、不透明導電性膜50のパターニングにはウェッ
トエッチング法を用いた。このパターニングによって前
述の通り、配線領域503の線幅は約10μm幅で形成
された。なお、微細部品領域501、電極領域502は
十分現像される程度の大きさで形成されている。
Hereinafter, this embodiment will be described in detail. The transparent substrate 30 is made of a glass substrate. First, an opaque conductive film 50 made of copper (Cu) is formed on the transparent substrate 30 to a thickness of about 0.2 μm by a sputtering method.
After that, the opaque conductive film 50 was patterned by a wet etching method. As described above, the line width of the wiring region 503 was formed to be about 10 μm by this patterning. Note that the fine component region 501 and the electrode region 502 are formed in a size enough to be sufficiently developed.

【0017】次に、透明基板30の不透明導電性膜50
がパターニングされた一方の面に感光不溶性材料層22
をスピンコート法を用いて塗布形成した。感光不溶性材
料層22には日本合成ゴム社製レジスト(商品名THB
−30)を使用した。このレジストは1000rpmの
回転数で10秒間スピンコートすることで約50μmの
厚みに塗布することができるレジストである。本実施の
形態では上記の条件で2回塗りを行い、感光不溶性材料
層22を100μmの厚みにすることができた。
Next, the opaque conductive film 50 on the transparent substrate 30
The photosensitive insoluble material layer 22 is formed on one surface where
Was formed by spin coating. The photosensitive insoluble material layer 22 has a resist (trade name: THB) manufactured by Nippon Synthetic Rubber Co., Ltd.
-30) was used. This resist is a resist that can be applied to a thickness of about 50 μm by spin coating at 1000 rpm for 10 seconds. In the present embodiment, the coating was performed twice under the above conditions, and the photosensitive insoluble material layer 22 was able to have a thickness of 100 μm.

【0018】さらに、透明基板30上の全面に塗布され
ている感光不溶性材料層22を透明基板30側から不透
明導電性膜50を介して、600mJ/cm2の露光量
で露光した。
Further, the photosensitive insoluble material layer 22 applied on the entire surface of the transparent substrate 30 was exposed from the transparent substrate 30 side through the opaque conductive film 50 at an exposure amount of 600 mJ / cm 2.

【0019】その後、専用の現像液を用い、約5分間現
像することによって、図1に示すような微細部品領域5
01と電極領域502のみを現像することができた。
Thereafter, development is performed for about 5 minutes using a dedicated developing solution, so that the fine component region 5 shown in FIG.
01 and the electrode region 502 could be developed.

【0020】さらに、その後、電極領域502から外部
電源に配線を行い、ニッケル(Ni)電鋳法によって微
細部品領域501上にNi電鋳部品を形成した。本実施
の形態で形成したNi電鋳部品の厚みは60μmであっ
た。
Thereafter, wiring was performed from the electrode region 502 to an external power supply, and a Ni (Ni) electroformed component was formed on the fine component region 501 by a nickel (Ni) electroforming method. The thickness of the Ni electroformed part formed in the present embodiment was 60 μm.

【0021】最後に、Niからなる微細電鋳部品を透明
基板から分離する必要があるが、本実施の形態では、C
uからなる不透明導電性膜50をエッチング法によって
溶解させることによって分離を行った。このようにし
て、ほぼ設計通りの六角形の微細電鋳部品を製造するこ
とができた。
Finally, it is necessary to separate the fine electroformed part made of Ni from the transparent substrate.
Separation was performed by dissolving the opaque conductive film 50 made of u by an etching method. In this way, a hexagonal fine electroformed part almost as designed could be manufactured.

【0022】本実施の形態で60μm厚の微細電鋳部品
を形成するのにかかった電鋳時間は3時間であった。こ
れは、同じ大きさの微細部品を無電解メッキ法で形成し
た場合にメッキにかかる時間の約1/4の時間である。
このことからも、本発明の製造方法によって生産性が向
上していることがわかる。
In the present embodiment, the electroforming time required to form a micro electroformed part having a thickness of 60 μm was 3 hours. This is about one-fourth of the time required for plating when microparts of the same size are formed by electroless plating.
This also shows that the productivity is improved by the production method of the present invention.

【0023】次に不透明導電性膜の配線領域の線幅につ
いて説明する。本発明者らが実験によって得た結果によ
ると、感光不溶性材料層の厚みtに対する不透明導電性
膜の線幅bの比を変えることによって、現像状態が異な
ることが明らかになった。図2は感光不溶性材料層の厚
みtに対するの不透明導電性膜の線幅bの比を変化させ
たときの現像状態の違いを示した図である。
Next, the line width of the wiring region of the opaque conductive film will be described. According to the results obtained by experiments by the present inventors, it has been clarified that the development state is different by changing the ratio of the line width b of the opaque conductive film to the thickness t of the photosensitive insoluble material layer. FIG. 2 is a diagram showing a difference in the development state when the ratio of the line width b of the opaque conductive film to the thickness t of the photosensitive insoluble material layer is changed.

【0024】図2(a)は、感光不溶性材料層22aの
厚みに対する不透明導電性膜50aの線幅の比をb/t
=1/2とした場合の現像状態である。現像された感光
不溶性材料層22aの壁面は、透明基板30の平面に対
してほぼ垂直に切り立っている。このような断面形状の
場合、電鋳時に電鋳液が容易に現像された部分に入り込
めるため、安定した電鋳成長が行われる。
FIG. 2A shows the ratio of the line width of the opaque conductive film 50a to the thickness of the photosensitive insoluble material layer 22a in b / t.
= Development state when = 1/2. The wall surface of the developed photosensitive insoluble material layer 22 a stands up substantially perpendicularly to the plane of the transparent substrate 30. In the case of such a cross-sectional shape, the electroforming solution can easily enter the developed portion during the electroforming, so that stable electroforming growth is performed.

【0025】図2(b)は、感光不溶性材料層22bの
厚みに対する不透明導電性膜50bの線幅の比をb/t
=1/5とした場合の現像状態である。この場合、未露
光部(すなわち現像されるべき部分)の幅が狭いため現
像不足傾向になり、その結果図2(a)に比べて感光不
溶性材料層22bの現像があまり進んでいない。不透明
導電性膜50b付近で逆テーパー形状が生じるのは、露
光時に不透明導電性膜50bのエッジで光の回折が起こ
っているためで、現像不足であるためにその影響がはっ
きりとあらわれている。ただし、不透明導電性膜50b
上の感光不溶性材料層22bは十分に現像されており、
この状態においては不透明導電性膜22b上に電鋳成長
が行われてしまう。
FIG. 2B shows the ratio of the line width of the opaque conductive film 50b to the thickness of the photosensitive insoluble material layer 22b in b / t.
= 1/5. In this case, the width of the unexposed portion (that is, the portion to be developed) is narrow, so that the development tends to be insufficient. As a result, the development of the photosensitive insoluble material layer 22b is less advanced than that in FIG. The reason why the inversely tapered shape occurs near the opaque conductive film 50b is that light diffraction occurs at the edge of the opaque conductive film 50b during exposure, and the effect is clearly apparent due to insufficient development. However, the opaque conductive film 50b
The upper photosensitive insoluble material layer 22b is sufficiently developed,
In this state, electroforming is performed on the opaque conductive film 22b.

【0026】図2(c)は、感光不溶性材料層22cの
厚みに対する不透明導電性膜50cの線幅の比をb/t
=1/6とした場合の現像状態である。この場合、図2
(b)に比べてさらに現像不足になるため、感光不溶性
材料層22cの表面付近は多少現像されるが、不透明導
電性膜50c付近まで現像が進むことは無い。この場
合、電鋳を行っても、不透明導電性膜50c上には電鋳
成長は起こらない。
FIG. 2C shows the ratio of the line width of the opaque conductive film 50c to the thickness of the photosensitive insoluble material layer 22c in b / t.
= 1/6 in a developed state. In this case, FIG.
Since the development is further insufficient compared with (b), the development is slightly performed near the surface of the photosensitive insoluble material layer 22c, but the development does not progress to the vicinity of the opaque conductive film 50c. In this case, even if electroforming is performed, electroforming does not occur on the opaque conductive film 50c.

【0027】図2(d)は、感光不溶性材料層22dの
厚みに対する不透明導電性膜50dの線幅の比をb/t
=1/10とした場合の現像状態である。この場合、感
光不溶性材料層22dを透明基板30側から露光して
も、光の散乱現象によって感光不溶性材料層22dの表
面付近では全体が露光されてしまう。その結果、現像は
ほとんど行われない。
FIG. 2D shows the ratio of the line width of the opaque conductive film 50d to the thickness of the photosensitive insoluble material layer 22d in b / t.
= 1/10 is a developed state. In this case, even if the photosensitive insoluble material layer 22d is exposed from the transparent substrate 30 side, the entire surface is exposed near the surface of the photosensitive insoluble material layer 22d due to the light scattering phenomenon. As a result, little development occurs.

【0028】以上の結果により、不透明導電性層の配線
領域の線幅を感光不溶性材料層の厚みの1/6以下にす
ることによって、配線領域上には電鋳がなされないとい
うことがわかる。
From the above results, it can be understood that electroforming is not performed on the wiring region by setting the line width of the wiring region of the opaque conductive layer to 1/6 or less of the thickness of the photosensitive insoluble material layer.

【0029】一方、配線領域の幅を狭くすればする程良
いというわけでもない。配線領域の役目である電流を流
すという目的を達成するためには、電流が流れるための
十分な幅が必要である。我々の考察によると、配線領域
の幅は5μm以上あれば電鋳を行うことは可能であると
いう結論に達した。
On the other hand, it is not always better to reduce the width of the wiring region. In order to achieve the purpose of flowing a current serving as a wiring region, a sufficient width for the current to flow is required. According to our consideration, it was concluded that electroforming can be performed if the width of the wiring region is 5 μm or more.

【0030】それに対して感光不溶性材料層の厚みにつ
いてであるが、一度の露光で微細で精度の良いパターニ
ングを行うためには、300μm以下の厚みにすること
が望ましいことも、また我々は実験により見い出してい
る。
On the other hand, regarding the thickness of the photosensitive insoluble material layer, it is desirable that the thickness be less than 300 μm in order to perform fine and accurate patterning by one exposure, I have found it.

【0031】以上の感光不溶性材料層の厚みの制限(3
00μm厚以下)と配線領域の幅の制限(5μm幅以
上)により、不透明導電性層の配線領域の線幅は感光不
溶性材料層の厚みの1/60以上にしなくてはならない
ということがわかった。
The above limitation of the thickness of the photosensitive insoluble material layer (3)
It was found that the line width of the wiring region of the opaque conductive layer had to be at least 1/60 of the thickness of the photosensitive insoluble material layer due to the limitation of the width of the wiring region (at least 5 μm width). .

【0032】以上、本発明者らは実験した結果をもと
に、本発明の微細電鋳部品の製造方法において、配線領
域の線幅は感光不溶性材料層の厚みの1/60以上1/
6以下にすることが重要であるということを見い出すに
至った。
As described above, based on the results of the experiments, the present inventors, in the method of manufacturing a micro electroformed component of the present invention, the line width of the wiring region is 1/60 or more 1 / th of the thickness of the photosensitive insoluble material layer.
It has been found that it is important to make it 6 or less.

【0033】上記、実施の形態では、一つの微細部品形
成領域に対して一つの配線領域をもつ場合について説明
したが、前記の配線領域の線幅条件を満たしていれば、
一つの微細部品形成領域に複数の配線領域を接続しても
かまわない。複数の配線領域を均一に配置することによ
って、電鋳時において電流密度の均一化がはかれるため
に、電鋳成長を安定に進ませることができる。
In the above embodiment, the case where one wiring region is provided for one fine component formation region has been described. However, if the line width condition of the wiring region is satisfied,
A plurality of wiring regions may be connected to one fine component formation region. By uniformly arranging the plurality of wiring regions, the current density can be made uniform at the time of electroforming, so that the electroforming growth can be progressed stably.

【0034】[0034]

【発明の効果】以上述べたように、本発明の微細電鋳部
品の製造方法によれば、従来のフォトリソグラフィー法
とメッキ法を用いた製造方法では、電鋳(電解メッキ)
形成することができなかった外形形状に特徴と精度が要
求される微細部品、例えば微細歯車部品、を電鋳法によ
って形成できるようになった。そのため、メッキ速度が
速く、メッキ厚の厚い部品にも対応することができ、生
産性が格段に向上した。
As described above, according to the method of manufacturing a fine electroformed part of the present invention, the electroforming (electrolytic plating) is not performed by the conventional manufacturing method using the photolithography method and the plating method.
Fine parts, such as fine gear parts, which could not be formed and whose characteristics and accuracy are required in the outer shape can be formed by electroforming. Therefore, the plating speed is high, and it is possible to cope with a component having a large plating thickness, and productivity is remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による微細電鋳部品の製造方法の概要を
示した図である。
FIG. 1 is a diagram showing an outline of a method for manufacturing a micro electroformed part according to the present invention.

【図2】感光不溶性材料層の厚みに対するの不透明導電
性膜の線幅bの比を変化させたときの現像状態の違いを
示した図である。
FIG. 2 is a diagram showing a difference in a development state when a ratio of a line width b of an opaque conductive film to a thickness of a photosensitive insoluble material layer is changed.

【図3】従来のフォトリソグラフィー法と電鋳法を用い
た微細部品の製造方法を示した図である。
FIG. 3 is a view showing a conventional method of manufacturing a fine component using a photolithography method and an electroforming method.

【図4】従来の方法による微細歯車を製造方法の概略を
示した図である。
FIG. 4 is a view schematically showing a method for manufacturing a fine gear by a conventional method.

【符号の説明】[Explanation of symbols]

10 メッキ層 11 メッキ層 20 感光不溶性材料層 21 感光不溶性材料層 22 感光不溶性材料層 22a 感光不溶性材料層 22b 感光不溶性材料層 22c 感光不溶性材料層 22d 感光不溶性材料層 30 透明基板 40 不透明膜 41 不透明膜 50 不透明導電性膜 50a 不透明導電性膜 50b 不透明導電性膜 50c 不透明導電性膜 50d 不透明導電性膜 501 微細部品形成領域 502 電極領域 503 配線領域 Reference Signs List 10 plating layer 11 plating layer 20 photosensitive insoluble material layer 21 photosensitive insoluble material layer 22 photosensitive insoluble material layer 22a photosensitive insoluble material layer 22b photosensitive insoluble material layer 22c photosensitive insoluble material layer 22d photosensitive insoluble material layer 30 transparent substrate 40 opaque film 41 opaque film Reference Signs List 50 opaque conductive film 50a opaque conductive film 50b opaque conductive film 50c opaque conductive film 50d opaque conductive film 501 micro component forming region 502 electrode region 503 wiring region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性を有し所定の形状を施した不透明
膜が形成された透明基板上に、感光不溶性材料を成膜
し、前記感光不溶性材料を前記透明基板側から前記不透
明膜を介して露光し現像することによってパターニング
化し、前記不透明膜上に電鋳法を用いて微細部品形成す
る微細電鋳部品の製造方法において、 前記透明基板上に微細部品が電鋳形成される微細部品形
成領域と電鋳時の電極取り出しの為の電極領域と前記微
細部品形成領域及び前記電極領域間の電気的接続をする
為の配線領域とからなる不透明膜を形成する行程を有
し、かつ前記配線領域の幅が前記感光不溶性材料の厚み
の1/60から1/6の範囲の寸法に設定されているこ
とを特徴とする微細電鋳部品の製造方法。
1. A photosensitive insoluble material is formed on a transparent substrate on which an opaque film having a predetermined shape and having conductivity is formed, and the photosensitive insoluble material is applied from the transparent substrate side through the opaque film. A fine component formed on the opaque film by electroforming using an electroforming method, wherein the fine component is electroformed on the transparent substrate. A step of forming an opaque film including a region, an electrode region for taking out an electrode at the time of electroforming, and a wiring region for making an electrical connection between the fine component forming region and the electrode region; A method for manufacturing a fine electroformed part, wherein the width of the region is set to a size in the range of 1/60 to 1/6 of the thickness of the photosensitive insoluble material.
JP33471597A 1997-12-05 1997-12-05 Production of fine electroformed parts Pending JPH11172487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33471597A JPH11172487A (en) 1997-12-05 1997-12-05 Production of fine electroformed parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33471597A JPH11172487A (en) 1997-12-05 1997-12-05 Production of fine electroformed parts

Publications (1)

Publication Number Publication Date
JPH11172487A true JPH11172487A (en) 1999-06-29

Family

ID=18280414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33471597A Pending JPH11172487A (en) 1997-12-05 1997-12-05 Production of fine electroformed parts

Country Status (1)

Country Link
JP (1) JPH11172487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071065A1 (en) * 2000-03-22 2001-09-27 Citizen Watch Co., Ltd. Hole structure and production method for hole structure
WO2002027073A1 (en) * 2000-09-26 2002-04-04 Eastman Kodak Company Method for producing metal mask and metal mask

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071065A1 (en) * 2000-03-22 2001-09-27 Citizen Watch Co., Ltd. Hole structure and production method for hole structure
CN1298893C (en) * 2000-03-22 2007-02-07 西铁城时计株式会社 Hole structure and production method for hole structure
JP4497779B2 (en) * 2000-03-22 2010-07-07 シチズンホールディングス株式会社 Hole structure and method for manufacturing hole structure
WO2002027073A1 (en) * 2000-09-26 2002-04-04 Eastman Kodak Company Method for producing metal mask and metal mask
KR100803455B1 (en) 2000-09-26 2008-02-14 이스트맨 코닥 캄파니 Method for producing metal mask and metal mask

Similar Documents

Publication Publication Date Title
US4033831A (en) Method of making a bi-metal screen for thick film fabrication
CA1268728A (en) Photoelectroforming mandrel
CN105858591B (en) A kind of metal micro structure and preparation method thereof
JPH11172487A (en) Production of fine electroformed parts
JPH1034870A (en) Production of electroforming product
CN110493964A (en) A kind of production method in the non-metallic hole without etching ring
JP3934558B2 (en) Stamper manufacturing method
GB2150596A (en) Mesh structures especially for use in television camera tubes
JP2001347529A (en) Stamper for manufacturing circuit board and method for manufacturing stamper
JPH10245692A (en) Electroforming master mold using photolithography method and its formation
JPH09300573A (en) Electrocast thin metal plate and manufacture thereof
JPH02251195A (en) Manufacture of printed wiring board
KR100275372B1 (en) Method of manufacturing circuit board
KR100249317B1 (en) Liga process for manufacturing microstructures
JPH06938A (en) Metal mask production thereof
JP2002008522A (en) Manufacturing method and device of electron emitting element and electron emitting element forming negagive plate, electron emitting element forming negative plate and field emission display
TW200524820A (en) Method of fabricating a stamper with microstructure patterns
JPH11236694A (en) Production of injection molding die for fine parts
JP2005047250A (en) Method for manufacturing resin formed article, method for manufacturing flow path member for fuel cells, method for manufacturing stamper used for them, and flow path member for fuel cell and fuel cell
US4565616A (en) Method for producing a photoelectroforming mandrel
JPH05131457A (en) Manufacture of stamper
TW594225B (en) Manufacturing method of light guiding micro structure
KR100367960B1 (en) A method of manufacturing mold for barrier ribs replication of PDP rear panel by a new forming technology and fabrication
JP2004218033A (en) Etching product and etching method
JPH07113193A (en) Production of metal mold for molding diffraction grating