JPH10245230A - Lithium magnesium oxide for anode of lithium secondary battery - Google Patents

Lithium magnesium oxide for anode of lithium secondary battery

Info

Publication number
JPH10245230A
JPH10245230A JP9092689A JP9268997A JPH10245230A JP H10245230 A JPH10245230 A JP H10245230A JP 9092689 A JP9092689 A JP 9092689A JP 9268997 A JP9268997 A JP 9268997A JP H10245230 A JPH10245230 A JP H10245230A
Authority
JP
Japan
Prior art keywords
lithium
compound
lithium carbonate
spinel
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9092689A
Other languages
Japanese (ja)
Other versions
JP3038648B2 (en
Inventor
Hideyuki Noguchi
英行 野口
Hiroyuki Tabata
博幸 田畑
Noriko Anami
典子 阿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU CERAMICS KOGYO KK
Original Assignee
KYUSHU CERAMICS KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14061469&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10245230(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KYUSHU CERAMICS KOGYO KK filed Critical KYUSHU CERAMICS KOGYO KK
Priority to JP9092689A priority Critical patent/JP3038648B2/en
Priority to TW086112056A priority patent/TW404078B/en
Publication of JPH10245230A publication Critical patent/JPH10245230A/en
Application granted granted Critical
Publication of JP3038648B2 publication Critical patent/JP3038648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a spinel structure Lix Mn2 O4 compound specified in a Li/Mn atomic ratio, used for secondary battery, and enabling a large increase in the discharge capacity of the lithium battery using the spinel structure Lix Mn2 O4 as an active anode substance by twice calcining manganese dioxide and lithium carbonate having specific particle diameters, respectively. SOLUTION: Electrolytic magnesium dioxide and lithium carbonate having particle diameters, respectively, are calcined in a lithium/manganese molar ratio of 0.51-0.53 at a temperature (600-650 deg.C) above the melting decomposition temperature of the lithium carbonate, cooled, ground and again calcined at a high temperature of 700-750 deg.C to obtain the spinel structure Li2 Mn2 O4 more improved in the homogeneity of Li-Mn distribution than that when the raw materials are mixed. The reaction is a solid-liquid reaction, and the spinel compound is produced within 10hr. The operability is also improved. Although the first produced spinel compound is a compound exhibiting a single phase by an X-ray diffraction method (XRD), having a cubic system lattice constant of <=8.2Å, rich in oxygen and small in a discharge capacity, the compound is again calcined for ensuring the elimination of Mn2 O3 and Li2 MnO3 phases to obtain the objective product.

Description

【発明の詳細な説明】 【産業上の利用分野】本発明は、金属リチウムあるいは
リチウム−グラファイト(リチウム−カーボン)などの
インターカレーション化合物を負極活物質とするリチウ
ム二次電池において、正極活物質に用いられるスピネル
構造のLiMnの製造方法に関する。 【0003】 【従来の技術および問題点】スピネル構造のLiMn
の主な製造方法としては炭酸リチウムとMn
あるいはMnとを所定のモル比なるよう混合し
た後、600−650℃で加熱処理してリチウム塩を分
解させ、更に800−900℃で加熱処理する方法(H
unter,J.Solid StateChem.,
39,142(1981))が一般的である。 【0004】しかしながら、このようにして得られるス
ピネル構造のLiMnを正極活物質として用い
た場合、得られるリチウム二次電池の放電容量が小さ
く、且つサイクル特性も悪いという問題があった。Ma
nevらは(J.Power Sources,41,
305(1993))Mnを原料とし600℃以
上で焼成すると焼結が進み比表面積の小さいスピネル化
合物が生成するため得られたLiMnのリチウ
ム電池特性が悪くなることを示し、原料としては電解二
酸化マンガンあるいは化学合成二酸化マンガンが適する
ことを明らかにしている。現在高性能のLiMn
を製造する方法を挙げると次の二つになる。一つはT
arasconら(J.Electrochem.So
c.,139,937(1992))による合成法で、
この方法ではマンガン原料を電解二酸化マンガンとしリ
チウム塩に炭酸リチウムあるいはリチウムを用い、80
0℃での焼成、徐冷、粉砕というプロセスを3回繰り返
し、電池特性の優れたスピネル構造のLiMn
を製造している。しかし、この方法は製造に長時間を要
するのみならず製造コストも高くなる難点を有する。も
う一つは芳尾ら(J.Power Sources,5
4,483(1995))による溶融含浸法と呼ばれる
合成法である。この合成法ではリチウム塩に硝酸リチウ
ムや水酸化リチウムを用い、電池特性の優れたスピネル
構造のLiMnを1回の焼成プロセスで製造で
きる。しかしながら、硝酸リチウムは吸湿性が強く、リ
チウムとマンガンを所定のモル比に保つことは困難であ
るばかりでなく、焼成時発生する環境汚染物質のNOx
を発生する問題点も有する。水酸化リチウムも空気中の
炭酸ガスを吸収して炭酸リチウムを生成するため、原料
の保存、管理に細心の注意が必要であり、工業的な生産
には不向きである。 【0005】 【発明が解決しようとする課題】本発明は、かかる従来
技術の有する課題に鑑みてなされたものであり、スピネ
ル構造のLiMnを正極活物質とするリチウム
二次電池の放電容量の大幅な増大を可能とするリチウム
二次電池用スピネル構造LiMnの製造方法を
提供することを目的とするものである。 【0006】 【問題を解決するための手段】本発明は、かかる従来技
術の課題に鑑みなされたもので、原料電解二酸化マンガ
ンの粒径を10μm以下とし、リチウムとマンガンのモ
ル比を0.51−0.53とし、炭酸リチウムの溶融分
解温度で焼成した後、冷却後粉砕してさらに高温の70
0−750℃で焼成することにより達成された。 【0007】すなわち、本発明はマンガン原料に焼結の
進みにくい二酸化マンガンを選択し、粒径を小さくする
ことにより焼結が進んでも表面積の低下を抑制すること
を目指したものである。二酸化マンガン粒子の粒径が1
0μm以下としているため通常のアルカリ電池用電解二
酸化マンガン(平均粒径約40μm)を用いた場合より
も炭酸リチウムと二酸化マンガンの混合時の均一分布性
が著しく増加する。この為局所的なLi/Mn比の違い
がなくなり電気化学的に不活性なMnやLi
nOの生成が防止できる。粒径の大きな電解二酸化マ
ンガンを用いると局所的なLi/Mn比の違いが生じH
やLiMnOが生成するため、Taras
conらのように粉砕混合、再焼成というプロセスを経
なければ電池特性の優れたスピネル構造LiMn
は合成できない。炭酸リチウムと二酸化マンガンは4
00℃で反応し、酸素リッチなスピネル化合物が生成す
るばかりでなく、合成にも長時間を要する。合成温度を
炭酸リチウムの溶融温度以上にする(600−650
℃)と炭酸リチウムが液体状となって表面を覆うためL
iとMnの分布の均一性は混合時よりも更に向上するこ
とになる。反応も固液反応となり、スピネル化合物も1
0時間以内で生成し、操業性も向上する。この時点で生
成するスピネル化合物はX線回折(XRD)的には単一
相であり、立方晶系格子定数が8.2Å以下の酸素リッ
チな放電容量の小さい化合物である。XRD的には不純
物相の生成は認められないが、MnやLiMn
相の消失をより確実なものとするため粉砕を行った
後、700−750℃で焼成して目的とするスピネル構
造のLiMnを合成した。 【0008】 【作用】本発明により得られたスピネル構造LiMn
従来の炭酸リチウムを用いる方法で合成したスピ
ネル構造LiMnよりも顕著な効果を奏するの
は、原料マンガン酸化物の粒径が小さいため、炭酸リチ
ウムとマンガン酸化物の分布が均一になること、および
炭酸リチウムの溶融温度まで温度をあげるので炭酸リチ
ウムが溶融してマンガン酸化物と反応するのでマンガン
酸化物とリチウムの反応が速やかに且つ均一に進行する
ためである。この為、本発明の合成法では不純物のMn
やLiMnOが生成することがない。このこ
とがリチウム二次電池正極活物質として用いた場合に放
電容量が大きくなる原因である。 【0009】 【実施例】以下、実施例等に基づいて本発明を具体的に
説明する。 【実施例1】電解二酸化マンガン20gと炭酸リチウム
4.2434g(Li/Mn比:0.524)を粉砕混
合し、アルミナ容器に入れる。この試料容器を電気炉に
いれ、室温から600℃まで6時間で昇温し、600℃
で10時間保持した。1時間で室温まで冷却し、試料を
取り出した。この試料のXRD図にはMnやLi
MnOのピークは存在せず、LiMnのみ
の回折ピークが認められた。回折ピークより格子定数を
計算すると8.19Åであり、酸素リッチのスピネル化
合物が生成している。酸素含量を減少させるためこの試
料を750℃で24時間焼成すると格子定数の値は8.
22Åまで増加した。この試料を正極活物質として以下
に示すリチウム二次電池を構成した。なお、リチウム二
次電池には内径18mmの充放電用電池を用い、構成作
業はアルゴンは雰囲気下のドライボックス中で行った。
図1中、1は負極端子、2は絶縁物、3は負極集電板、
4は金属リチウム、5はセパレーター、6はガラスフィ
ルター濾紙、7は正極合剤、8は正極端子を示す。正極
合剤としては得られたLiMnの25mgに導
電性バインダー10mgを加え、フィルム状とした後1
8φmmとしてステンレス製集電板に圧着した。電解液
としては炭酸エチレンと炭酸ジメチルの1:2混合溶媒
にLiPF(1mole/l)を溶解したものを用い
て1mAの電流で4.5−3.5Vの範囲の電圧で充放
電を繰り返した。図2にこの電池のサイクル特性を示
す。1サイクル目の放電容量は129mAh/gであ
り、50サイクル目でも122mAh/gの放電容量を
示す。 【比較例1】マンガン原料に平均粒径約40μmの電解
二酸化マンガンを用い、実施例1と同じ条件で合成を行
った。最終生成物のXRD測定を行うと(311)面の
ピークより低角側にMnのピークが認められる。
この試料の1回目の放電容量は90mAh/gにすぎ
ず、実施例と比べ40mAh/gも低い。この試料を粉
砕と750℃で24時間の再焼成を2回施すとXRD図
からMnのピークが消失した。また、放電容量も
120mAh/gまで増加した。 【比較例2】リチウムとマンガンのモル比を0.50あ
るいは0.54として実施例1の方法に従い、Li
の合成を行った。モル比0.50ではMn
が副生し、一方モル比0.54ではLiMnO
副生することがXRDから確認できた。モル比0.50
でMnが副生するのは原料電解二酸化マンガンが
硫酸根を1wt%含むためであろう。モル比0.51お
よび0.53では単一相のLiMnが生成する
ことから本合成法が適用できるのはリチウムとマンガン
のモル比が0.51−0.53の範囲である。 【0010】 【実施例2】電解二酸化マンガン20gと炭酸リチウム
4.2434g(Li/Mn比:0.524)を粉砕混
合し、アルミナ容器に入れる。この試料容器を電気炉に
いれ、室温から600℃まで6時間で昇温し、600℃
で10時間保持した。さらに1時間で750℃まで昇温
し、750℃で24時間焼成した。生成物は単一相のL
Mnであり格子定数は8.22Åと実施例1
と同じ値であった。図3に充放電曲線を示す。放電曲線
の形状は実施例1の試料と同じであり、1サイクル目の
放電容量は124mAh/gで実施例1よりもわずかに
小さくなった。 【0011】 【発明の効果】以上説明したように10μm以下の電解
二酸化マンガンと炭酸リチウムを600−650℃で焼
成し、酸素リッチのスピネル化合物とした後、最終的に
700−750℃で焼成することにより放電容量が大き
く、サイクル特性の優れたLiMnが得られ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery using an intercalation compound such as metallic lithium or lithium-graphite (lithium-carbon) as a negative electrode active material. The present invention relates to a method for producing Li x Mn 2 O 4 having a spinel structure used in the present invention. [0003] 2. Description of the Related Art [0004] Li x Mn having a spinel structure
The main methods for producing 2 O 4 include lithium carbonate and Mn 2 O.
3 or Mn 3 O 4 at a predetermined molar ratio, then heat-treated at 600-650 ° C. to decompose the lithium salt, and further heat-treated at 800-900 ° C. (H
unter, J .; Solid StateChem. ,
39, 142 (1981)). However, when the thus obtained Li x Mn 2 O 4 having a spinel structure is used as a positive electrode active material, there is a problem that the resulting lithium secondary battery has a small discharge capacity and poor cycle characteristics. Was. Ma
nev et al. (J. Power Sources, 41,
305 (1993)) When sintering is performed at 600 ° C. or more using Mn 2 O 3 as a raw material, sintering proceeds and a spinel compound having a small specific surface area is formed, and thus the obtained Li x Mn 2 O 4 has poor lithium battery characteristics. It shows that electrolytic manganese dioxide or chemically synthesized manganese dioxide is suitable as a raw material. Currently high performance Li x Mn 2 O
The following two methods can be used to produce the No. 4 . One is T
arascon et al. (J. Electrochem. So
c. , 139, 937 (1992)).
In this method, manganese raw material is used as electrolytic manganese dioxide, and lithium carbonate or lithium carbonate is used as a lithium salt.
The process of baking at 0 ° C., slow cooling, and pulverization is repeated three times to obtain a spinel-structured Li x Mn 2 O 4 having excellent battery characteristics.
Has been manufactured. However, this method has a drawback that not only requires a long time for production but also increases production cost. The other is Yoshio et al. (J. Power Sources, 5
4,483 (1995)). In this synthesis method, lithium nitrate or lithium hydroxide is used as a lithium salt, and Li x Mn 2 O 4 having a spinel structure with excellent battery characteristics can be produced by a single firing process. However, lithium nitrate has a strong hygroscopic property, and it is not only difficult to maintain a predetermined molar ratio of lithium and manganese, but also NOx, which is an environmental pollutant generated during firing.
Also has the problem of generating Lithium hydroxide also absorbs carbon dioxide in the air to produce lithium carbonate, so that careful preservation and management of the raw materials are required, making it unsuitable for industrial production. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has a lithium secondary battery using Li x Mn 2 O 4 having a spinel structure as a positive electrode active material. It is an object of the present invention to provide a method for producing a spinel structure Li x Mn 2 O 4 for a lithium secondary battery, which enables a large increase in the discharge capacity of a lithium secondary battery. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has a raw material electrolytic manganese dioxide having a particle diameter of 10 μm or less and a molar ratio of lithium to manganese of 0.51. -0.53, calcined at the melting and decomposing temperature of lithium carbonate, then cooled and pulverized to a higher temperature of 70%.
This was achieved by firing at 0-750 ° C. That is, the present invention aims to select a manganese dioxide, which does not easily proceed to sintering, as a manganese raw material, and suppress a decrease in surface area even when sintering proceeds by reducing the particle size. Manganese dioxide particle size is 1
Since the thickness is set to 0 μm or less, the uniform distribution when mixing lithium carbonate and manganese dioxide is remarkably increased as compared with the case of using ordinary electrolytic manganese dioxide for alkaline batteries (average particle size: about 40 μm). Therefore, there is no local difference in Li / Mn ratio, and Mn 2 O 3 or Li 2 M which is electrochemically inactive
Generation of nO 3 can be prevented. When electrolytic manganese dioxide having a large particle size is used, a local difference in Li / Mn ratio occurs and H
Since n 2 O 3 and Li 2 MnO 3 are generated, Taras
The spinel structure Li x Mn 2 O with excellent battery characteristics unless it undergoes the process of pulverization, mixing and refiring as in Con et al.
4 cannot be synthesized. Lithium carbonate and manganese dioxide are 4
The reaction takes place at 00 ° C., not only to produce an oxygen-rich spinel compound, but also it takes a long time to synthesize. Make the synthesis temperature equal to or higher than the melting temperature of lithium carbonate (600-650).
° C) and lithium carbonate becomes liquid and covers the surface.
The uniformity of the distribution of i and Mn is further improved than at the time of mixing. The reaction is also a solid-liquid reaction, and the spinel compound is 1
It is generated within 0 hours, and operability is also improved. The spinel compound formed at this time is a single phase in X-ray diffraction (XRD), and is a compound having a cubic lattice constant of 8.2 ° or less and a small oxygen-rich discharge capacity. No generation of an impurity phase is recognized by XRD, but Mn 2 O 3 or Li 2 Mn
After the pulverization was performed to make the disappearance of the O 3 phase more reliable, firing was performed at 700 to 750 ° C. to synthesize Li x Mn 2 O 4 having a desired spinel structure. The spinel structure Li x Mn obtained according to the present invention
2 O 4 The spinel structure Li x Mn 2 O 4 synthesized by the conventional method using lithium carbonate has a remarkable effect because the particle size of the raw material manganese oxide is small, and the distribution of lithium carbonate and manganese oxide is large. Is increased, and since the temperature is raised to the melting temperature of lithium carbonate, lithium carbonate melts and reacts with manganese oxide, so that the reaction between manganese oxide and lithium proceeds quickly and uniformly. Therefore, in the synthesis method of the present invention, the impurity Mn
2 O 3 and Li 2 MnO 3 are not generated. This is the reason why the discharge capacity is increased when used as a positive electrode active material of a lithium secondary battery. Hereinafter, the present invention will be specifically described based on examples and the like. EXAMPLE 1 20 g of electrolytic manganese dioxide and 4.2434 g of lithium carbonate (Li / Mn ratio: 0.524) were pulverized and mixed, and placed in an alumina container. This sample container was placed in an electric furnace, and the temperature was raised from room temperature to 600 ° C. in 6 hours.
For 10 hours. The sample was cooled to room temperature for 1 hour, and a sample was taken out. The XRD diagram of this sample shows Mn 2 O 3 and Li
No peak of 2 MnO 3 was present, and a diffraction peak of only Li x Mn 2 O 4 was observed. The lattice constant calculated from the diffraction peak was 8.19 °, indicating that an oxygen-rich spinel compound was generated. When this sample was calcined at 750 ° C. for 24 hours to reduce the oxygen content, the value of the lattice constant was 8.
It increased to 22. Using this sample as a positive electrode active material, the following lithium secondary battery was constructed. Note that a charge / discharge battery having an inner diameter of 18 mm was used as the lithium secondary battery, and the construction was performed in a dry box under argon atmosphere.
In FIG. 1, 1 is a negative electrode terminal, 2 is an insulator, 3 is a negative electrode current collector,
4 is metallic lithium, 5 is a separator, 6 is a glass filter paper, 7 is a positive electrode mixture, and 8 is a positive electrode terminal. As a positive electrode mixture, 10 mg of a conductive binder was added to 25 mg of the obtained Li x Mn 2 O 4 to form a film.
It was pressure-bonded to a stainless steel current collector plate with a diameter of 8 mm. As an electrolytic solution, a solution of LiPF 6 (1 mole / l) dissolved in a 1: 2 mixed solvent of ethylene carbonate and dimethyl carbonate is used, and charging and discharging are repeated at a current of 1 mA at a voltage in the range of 4.5 to 3.5 V. Was. FIG. 2 shows the cycle characteristics of this battery. The discharge capacity at the first cycle is 129 mAh / g, and the discharge capacity at the 50th cycle is 122 mAh / g. Comparative Example 1 Synthesis was performed under the same conditions as in Example 1 except that electrolytic manganese dioxide having an average particle size of about 40 μm was used as a manganese raw material. When the XRD measurement of the final product is performed, a peak of Mn 2 O 3 is recognized at a lower angle side than the peak of the (311) plane.
The first discharge capacity of this sample was only 90 mAh / g, which was lower by 40 mAh / g as compared with the example. When this sample was pulverized and refired twice at 750 ° C. for 24 hours, the peak of Mn 2 O 3 disappeared from the XRD diagram. The discharge capacity also increased to 120 mAh / g. Comparative Example 2 Li x M was prepared according to the method of Example 1 except that the molar ratio of lithium to manganese was 0.50 or 0.54.
Synthesis of n 2 O 4 was performed. At a molar ratio of 0.50, Mn 2 O
3-produced, whereas the molar ratio 0.54 in Li 2 MnO 3 was confirmed since it is XRD by-produced. 0.50 molar ratio
The reason why Mn 2 O 3 is by-produced is probably that the raw material electrolytic manganese dioxide contains 1 wt% of sulfate. At a molar ratio of 0.51 and 0.53, a single-phase Li x Mn 2 O 4 is formed, so that this synthesis method can be applied only when the molar ratio of lithium to manganese is in the range of 0.51 to 0.53. is there. Example 2 20 g of electrolytic manganese dioxide and 4.2434 g of lithium carbonate (Li / Mn ratio: 0.524) are pulverized and mixed and placed in an alumina container. This sample container was placed in an electric furnace, and the temperature was raised from room temperature to 600 ° C. in 6 hours.
For 10 hours. The temperature was further increased to 750 ° C. in one hour, and baked at 750 ° C. for 24 hours. The product is a single-phase L
i x Mn 2 O 4 a is the lattice constant and 8.22Å Example 1
It was the same value as. FIG. 3 shows a charge / discharge curve. The shape of the discharge curve was the same as that of the sample of Example 1, and the discharge capacity at the first cycle was 124 mAh / g, which was slightly smaller than that of Example 1. As described above, electrolytic manganese dioxide and lithium carbonate of 10 μm or less are fired at 600-650 ° C. to form an oxygen-rich spinel compound, and finally fired at 700-750 ° C. As a result, Li x Mn 2 O 4 having a large discharge capacity and excellent cycle characteristics can be obtained.

【図面の簡単な説明】 【図1】本発明に係わるリチウム二次電池の構造を示す
断面図である。 【図2】本発明により得られたLiMnのサイ
クル数と放電容量の関係を示す図である。 【図3】実施例2より得られたLiMnの充電
および放電曲線である。 【符号の説明】 1 負極端子 2 絶縁物 3 負極集電板 4 金属リチウム 5 セパレーター 6 ガラスフィルター濾紙 7 正極合剤 8 正極端子 9 充電曲線 10 放電曲線
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a structure of a lithium secondary battery according to the present invention. FIG. 2 is a diagram showing the relationship between the number of cycles of Li x Mn 2 O 4 obtained according to the present invention and the discharge capacity. FIG. 3 is a charge and discharge curve of Li x Mn 2 O 4 obtained from Example 2. [Description of Signs] 1 Negative electrode terminal 2 Insulator 3 Negative current collector 4 Metal lithium 5 Separator 6 Glass filter paper 7 Positive electrode mixture 8 Positive electrode terminal 9 Charge curve 10 Discharge curve

Claims (1)

【0001】 【特許請求の範囲】 1.粒径10μm以下の二酸化マンガンと炭酸リチウム
を600−650℃で焼成し、再び700−800℃で
焼成するLi/Mn原子比0.51−0.53のスピネ
ル化合物の製造方法。 2.前述のスピネル化合物を正極活物質とするリチウム
二次電池用正極。 【0002】
[Claims] 1. A method for producing a spinel compound having a Li / Mn atomic ratio of 0.51 to 0.53, in which manganese dioxide and lithium carbonate having a particle size of 10 μm or less are fired at 600 to 650 ° C. and fired again at 700 to 800 ° C. 2. A positive electrode for a lithium secondary battery using the above-mentioned spinel compound as a positive electrode active material. [0002]
JP9092689A 1997-03-05 1997-03-05 Method for producing manganese spinel compound Expired - Lifetime JP3038648B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9092689A JP3038648B2 (en) 1997-03-05 1997-03-05 Method for producing manganese spinel compound
TW086112056A TW404078B (en) 1997-03-05 1997-08-22 Spinel compounds as cathodes for lithium batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9092689A JP3038648B2 (en) 1997-03-05 1997-03-05 Method for producing manganese spinel compound

Publications (2)

Publication Number Publication Date
JPH10245230A true JPH10245230A (en) 1998-09-14
JP3038648B2 JP3038648B2 (en) 2000-05-08

Family

ID=14061469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9092689A Expired - Lifetime JP3038648B2 (en) 1997-03-05 1997-03-05 Method for producing manganese spinel compound

Country Status (2)

Country Link
JP (1) JP3038648B2 (en)
TW (1) TW404078B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163622A (en) * 1999-10-01 2001-06-19 Tosoh Corp Lithium manganese oxide, its production process and secondary cell using the same oxide
JP2002308625A (en) * 2001-04-10 2002-10-23 Mitsui Mining & Smelting Co Ltd Method for manufacturing spinel type lithium manganage
US6764790B2 (en) 1999-02-05 2004-07-20 Ngk Insulators, Ltd. Lithium secondary battery
KR100811967B1 (en) 2005-09-14 2008-03-10 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
JP2011155003A (en) * 2011-01-07 2011-08-11 Hitachi Metals Ltd Cathode active material for nonaqueous lithium secondary battery and producing method therefor
US8367245B2 (en) 2005-09-14 2013-02-05 Panasonic Corporation Non-aqueous electrolyte secondary battery
CN116143200A (en) * 2023-04-23 2023-05-23 宜宾锂宝新材料有限公司 High-compaction micron monocrystal lithium-rich manganese-based positive electrode material, preparation method and lithium battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764790B2 (en) 1999-02-05 2004-07-20 Ngk Insulators, Ltd. Lithium secondary battery
JP2001163622A (en) * 1999-10-01 2001-06-19 Tosoh Corp Lithium manganese oxide, its production process and secondary cell using the same oxide
JP2002308625A (en) * 2001-04-10 2002-10-23 Mitsui Mining & Smelting Co Ltd Method for manufacturing spinel type lithium manganage
KR100811967B1 (en) 2005-09-14 2008-03-10 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
US8367245B2 (en) 2005-09-14 2013-02-05 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2011155003A (en) * 2011-01-07 2011-08-11 Hitachi Metals Ltd Cathode active material for nonaqueous lithium secondary battery and producing method therefor
CN116143200A (en) * 2023-04-23 2023-05-23 宜宾锂宝新材料有限公司 High-compaction micron monocrystal lithium-rich manganese-based positive electrode material, preparation method and lithium battery

Also Published As

Publication number Publication date
JP3038648B2 (en) 2000-05-08
TW404078B (en) 2000-09-01

Similar Documents

Publication Publication Date Title
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
JP3691279B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4998753B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4153125B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
WO1999033128A1 (en) Lithium manganate, method of producing the same, and lithium cell produced by the method
US6268085B1 (en) Composite manganese oxide cathodes for rechargeable lithium batteries
JP2001307726A (en) Electrode material and battery using the same
KR20010056565A (en) Method for preparing lithium manganese spinel oxide having improved electrochemical performance
JP3446639B2 (en) Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery
EP1026765B1 (en) Positive active material for lithium secondary battery and method of manufacturing the same
JPH1072219A (en) Multiple oxide of lithium, its production and active material of positive electrode for lithium secondary battery
JP3396076B2 (en) Method for producing lithium cobaltate-based positive electrode active material for lithium secondary battery
KR101196948B1 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
US5807532A (en) Method of producing spinel type limn204
JP3038648B2 (en) Method for producing manganese spinel compound
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JPH06275276A (en) Manufacture of spinel limn2o4 with high surface area and its application to nonaqueous battery
KR100358799B1 (en) Method of preparing positive active material for lithium secondary battery
CA2298095C (en) Lithium secondary battery
JP2002075366A (en) Lithium - manganese oxide for lithium secondary battery positive electrode and manufacturing method for the oxide
JP4305613B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JPH11307098A (en) Lithium-manganese oxide for positive electrode of lithium secondary battery and its manufacture
JPH10241689A (en) Electrode active material for nonaqueous battery