JPH10241686A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH10241686A
JPH10241686A JP9055464A JP5546497A JPH10241686A JP H10241686 A JPH10241686 A JP H10241686A JP 9055464 A JP9055464 A JP 9055464A JP 5546497 A JP5546497 A JP 5546497A JP H10241686 A JPH10241686 A JP H10241686A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
electrolyte secondary
manganese oxide
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9055464A
Other languages
Japanese (ja)
Inventor
Toshio Tsubata
敏男 津端
Fumishige Nishikawa
文茂 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9055464A priority Critical patent/JPH10241686A/en
Publication of JPH10241686A publication Critical patent/JPH10241686A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery in which cycle performances are superior, even at the temperature of a room temperature or more as keeping high capacity having such a structure as lithium containing metal oxide is spinel lithium manganese oxide, an X-ray diffraction peak exists in specified ranges, and the half-value width of the X-ray diffraction peak exists in a specified range. SOLUTION: In a nonaqueous electrolyte secondary battery, lithium-containing metal oxide is spinel lithium manganese oxide which is shown by a general formula Li[Lix Mn2-x ]O4 (where 0.05<=x<=0.18), no X-ray diffraction peak exists in a range of 2.75±0.02Å, at least the X-ray diffraction peaks exist in ranges of 4.74±0.02Å, 2.47±0.02Å, 2.05±0.02Å, and the half-value widths of the X-ray diffraction peak exist in a range of 0.1±0.05 respectively. Therein, the initial capacity is high, no occurrence of Mn elusion does not occur even at the temperature of a room temperature or more, and good cycle performances are maintained. Thereby, using the low-cost lithium manganese oxide, a high- performance nonaqueous electrolytic secondary battery, which is not inferior to the one using high-cost lithium cobalt oxide, can be supplied at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムマンガン
酸化物を正極活物質として利用した非水電解質二次電池
の高温下でのサイクル性能の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of cycle performance at high temperature of a non-aqueous electrolyte secondary battery using lithium manganese oxide as a positive electrode active material.

【0002】[0002]

【従来の技術】近年の電子技術の発展により、移動体通
信機器やポータブルコンピュータなどが広く普及してき
ている。これら携帯機器の電源として高エネルギー密度
の二次電池が要望されており、特に、非水電解質二次電
池は高電圧が期待できることから、機器の更なる小型
化、軽量化が期待できる。しかしながら、リチウム金属
およびリチウム合金を負極材料として用いた非水電解質
二次電池では、充放電の繰り返しにより負極金属上にリ
チウムの樹枝状突起が発生しやすく、その結果サイクル
性能及び高温下での信頼性に問題があり、なかなか実用
化されなかった。
2. Description of the Related Art With the recent development of electronic technology, mobile communication devices and portable computers have become widespread. There is a demand for a high energy density secondary battery as a power source for these portable devices. In particular, since a non-aqueous electrolyte secondary battery can be expected to have a high voltage, further reduction in size and weight of the device can be expected. However, in a non-aqueous electrolyte secondary battery using lithium metal and lithium alloy as the negative electrode material, repetition of charge and discharge tends to cause lithium dendrites on the negative electrode metal, resulting in cycle performance and reliability at high temperatures. There was a problem with the sex, and it was not easily put to practical use.

【0003】これらの問題点を解決する手段として、負
極活物質にリチウムを吸蔵放出可能な炭素材料、正極活
物質にリチウムとコバルトとの複合酸化物を用いた非水
電解質二次電池(特許第1989293号明細書)が開
発され、充電状態で4V以上の電圧を有することから、
移動機器の電源として広く普及するようになった。しか
し、現在の非水電解質二次電池はコバルトを大量に含有
していることから高価であり、このためコバルトを他の
遷移金属で置き換える試みが活発である。遷移金属の中
でも価格の安いマンガンはコバルトを置き換えられるも
のとして期待されている。
As means for solving these problems, a non-aqueous electrolyte secondary battery using a carbon material capable of inserting and extracting lithium as a negative electrode active material and a composite oxide of lithium and cobalt as a positive electrode active material (Japanese Patent No. 1989293) was developed and has a voltage of 4 V or more in a charged state.
It has become widely used as a power source for mobile devices. However, current nonaqueous electrolyte secondary batteries are expensive because they contain a large amount of cobalt, and attempts to replace cobalt with other transition metals are active. Among the transition metals, cheap manganese is expected to replace cobalt.

【0004】しかし、化学量論組成のリチウムマンガン
酸化物はサイクル性能が悪く、これを改善する方法とし
て、例えば特開平5−205744号公報に示されるよ
うにマンガンの一部をリチウムで置換することが提案さ
れている。このようにマンガンの一部をリチウムで置換
したリチウムマンガン酸化物の従来の合成方法はMn原
料とLi原料を所望の割合で混合し、700℃以下の比
較的低温で熱処理することで得るというものであった。
しかし、低温で熱処理されるために結晶性が高くなら
ず、その結果として対リチウム金属の酸化還元電位に対
して約4V付近の可逆容量が低下するという問題点があ
った。また、700℃以上の高温で熱処理を行なうと、
Li2 MnO3 などの副相が生成することで、マンガン
が十分リチウムに置換されないために室温よりも高い温
度で充放電を行なった場合にはマンガンの溶出が起こ
り、高温下でのサイクル性能に問題があった。
However, lithium manganese oxide having a stoichiometric composition has poor cycle performance, and as a method for improving this, for example, as described in JP-A-5-205744, a part of manganese is replaced with lithium. Has been proposed. The conventional method of synthesizing a lithium manganese oxide in which a part of manganese is replaced with lithium is obtained by mixing a Mn raw material and a Li raw material at a desired ratio and performing a heat treatment at a relatively low temperature of 700 ° C. or less. Met.
However, since the heat treatment is performed at a low temperature, the crystallinity does not increase, and as a result, there is a problem that the reversible capacity around about 4 V with respect to the oxidation-reduction potential of lithium metal decreases. Further, when heat treatment is performed at a high temperature of 700 ° C. or more,
When a secondary phase such as Li 2 MnO 3 is generated, manganese is not sufficiently replaced by lithium, so when charging and discharging at a temperature higher than room temperature, manganese is eluted, and the cycle performance at high temperatures is reduced. There was a problem.

【0005】[0005]

【発明が解決しようとする課題】マンガンの一部をリチ
ウムで置き換えたリチウムマンガン酸化物は室温付近で
のサイクル性能を向上させることが可能であったが、温
度が高い、より厳しい状況下では依然としてマンガンの
溶出が起こり、そのサイクル性能が低下するという問題
点を有していた。さらに、結晶性が低く容量も大きく低
下するという問題点を有していた。本発明の課題は、マ
ンガンの一部をリチウムで置換し、かつ、結晶性の良好
なリチウムマンガン酸化物を使用することで、高容量を
保ったまま、特に室温以上の温度でもサイクル性能が良
好な非水電解質二次電池を提供することにある。
Lithium manganese oxide in which part of manganese has been replaced by lithium has been able to improve the cycle performance near room temperature, but still has a high temperature and in more severe conditions. There is a problem that manganese is eluted and the cycle performance is reduced. Further, there is a problem that the crystallinity is low and the capacity is greatly reduced. An object of the present invention is to replace a part of manganese with lithium, and by using a lithium manganese oxide having good crystallinity, while maintaining high capacity, particularly good cycle performance even at room temperature or higher. To provide a nonaqueous electrolyte secondary battery.

【0006】[0006]

【課題を解決するための手段】マンガンの一部をリチウ
ムで置換したスピネル系リチウムマンガン酸化物の熱処
理条件及び置換方法について鋭意検討した結果、高い結
晶性を維持したまま所望の置換量が得られ、該置換体が
非水電解質二次電池の正極材料として好適であることを
見いだし本発明に至った。
As a result of intensive studies on the heat treatment conditions and the replacement method of a spinel lithium manganese oxide in which a part of manganese is replaced by lithium, a desired replacement amount can be obtained while maintaining high crystallinity. The present inventors have found that the substituted product is suitable as a positive electrode material for a non-aqueous electrolyte secondary battery, and have reached the present invention.

【0007】すなわち、本発明は、 (1)リチウムイオンを吸蔵放出することが可能な負極
活物質、リチウムイオン伝導性の非水電解液、及びリチ
ウムイオンを吸蔵放出することが可能なリチウム含有金
属酸化物からなる正極活物質を備えた非水電解質二次電
池において、前記リチウム含有金属酸化物が次の一般式
で示されるスピネル系のリチウムマンガン酸化物であ
り、X線回折ピークを2.75±0.02Åには有せ
ず、かつ、少なくとも4.74±0.02Å、2.47
±0.02Å、2.05±0.02Åに有し、該X線回
折ピークの半価巾が各々0.1±0.05であることを
特徴とする非水電解質二次電池、 Li[Lix Mn2-x ]O4 (ただし、0.05≦x≦
0.18)
That is, the present invention provides: (1) a negative electrode active material capable of inserting and extracting lithium ions, a non-aqueous electrolyte having lithium ion conductivity, and a lithium-containing metal capable of inserting and extracting lithium ions. In a nonaqueous electrolyte secondary battery provided with a cathode active material composed of an oxide, the lithium-containing metal oxide is a spinel-based lithium manganese oxide represented by the following general formula, and has an X-ray diffraction peak of 2.75. ± 0.02 ° and at least 4.74 ± 0.02 °, 2.47
A non-aqueous electrolyte secondary battery, wherein the non-aqueous electrolyte secondary battery has Li ± 2.0% and 2.05 ± 0.02 °, and the X-ray diffraction peaks each have a half width of 0.1 ± 0.05. Li x Mn 2-x ] O 4 (provided that 0.05 ≦ x ≦
0.18)

【0008】(2)一般式Li[Lix Mn2-x ]O4
(ただし、0.05≦x≦0.18) で示されるスピネル系リチウムマンガン酸化物の格子定
数が、8.20Å以上8.24Å以下であることを特徴
とする非水電解質二次電池、 (3)一般式Li[Lix Mn2-x ]O4 (ただし、
0.05≦x≦0.18) で示されるスピネル系リチウムマンガン酸化物が電解二
酸化マンガンと炭酸リチウムの混合物を大気雰囲気中で
700℃以上の温度で熱処理後、700℃以下の温度で
熱処理をして得られることを特徴とする非水電解質二次
電池、である。
(2) General formula Li [Li x Mn 2-x ] O 4
(Provided that the lattice constant of the spinel-based lithium manganese oxide represented by (0.05 ≦ x ≦ 0.18) is not less than 8.20 ° and not more than 8.24 °), 3) General formula Li [Li x Mn 2-x ] O 4 (however,
0.05 ≦ x ≦ 0.18) A spinel-based lithium manganese oxide is heat-treated at a temperature of 700 ° C. or more in a mixture of electrolytic manganese dioxide and lithium carbonate in an air atmosphere, and then heat-treated at a temperature of 700 ° C. or less. A non-aqueous electrolyte secondary battery, characterized by being obtained by:

【0009】以下、本発明について具体的に説明する。
本発明で用いられるリチウムマンガン酸化物のマンガン
原料は、例えば、EMD( Electolytic M
anganese Dioxide) 、CMD(Che
mical Manganese Dioxide)、
γ−MnOOH、MnCO3 を挙げることができるが、
4価のMn含有量の高いEMDが好ましい。また、リチ
ウム原料も、例えば、Li2 CO3 、LiOH、LiC
l、LiNO3 、Li2 SO4 、CH3 COOLiを挙
げることができるが、Li2 CO3 が好ましい。
Hereinafter, the present invention will be described in detail.
The manganese raw material of the lithium manganese oxide used in the present invention is, for example, EMD (Electrolytic M).
angiose Dioxide, CMD (Che
medical Manganise Dioxide),
γ-MnOOH and MnCO 3 can be mentioned,
EMD having a high tetravalent Mn content is preferred. In addition, lithium materials are also used, for example, Li 2 CO 3 , LiOH, LiC
1, LiNO 3 , Li 2 SO 4 , and CH 3 COOLi, but Li 2 CO 3 is preferable.

【0010】本発明に用いられるリチウムマンガン酸化
物は次のようにして作成することが可能である。例え
ば、平均粒径が5〜25μmになるように粉砕したEM
DとLi2 CO3をMn/Li比が0.5になるように
混合した後、大気中800〜900℃で熱処理を行い、
室温付近まで冷却した後、所望のLi量になるようにL
2 CO3を添加、混合し400〜700℃、好ましく
は500〜650℃で熱処理することで得ることができ
る。
[0010] The lithium manganese oxide used in the present invention can be prepared as follows. For example, EM pulverized to have an average particle size of 5 to 25 μm
After mixing D and Li 2 CO 3 so that the Mn / Li ratio becomes 0.5, heat treatment is performed at 800 to 900 ° C. in the air.
After cooling to around room temperature, L is adjusted to a desired Li amount.
added i 2 CO 3, mixed and 400 to 700 ° C., preferably can be obtained by heat treatment at 500 to 650 ° C..

【0011】他の例を挙げれば、粉砕したEMDとLi
2 CO3 をあらかじめ所望のMn/Li比で混合して熱
処理をすることも可能である。熱処理は、まず800〜
900℃で行ない、次いで400〜700℃、好ましく
は500〜650℃で行なうことが必要である。この場
合には400〜700℃で第2の熱処理を行うことが重
要であり、第2の熱処理を行なわないとLi2 MnO3
などのスピネル以外の相が生成するため好ましくない。
LiによるMnの置換量は0.05〜0.18原子%の
範囲が好ましく、更には0.07〜0.16原子%の範
囲が好ましい。0.05原子%未満であるとリチウムで
マンガンを置換した効果が小さく、室温におけるサイク
ル性能が低下する。また、0.18原子%を超えるとと
容量の低下が大きくなり、好ましくはない。
As another example, pulverized EMD and Li
It is also possible to mix 2 CO 3 at a desired Mn / Li ratio in advance and perform heat treatment. Heat treatment is 800 ~
It is necessary to carry out at 900 ° C. and then at 400-700 ° C., preferably 500-650 ° C. In this case, it is important to perform the second heat treatment at 400 to 700 ° C. If the second heat treatment is not performed, Li2 MnO3
Such a phase other than spinel is not preferable.
The substitution amount of Mn by Li is preferably in the range of 0.05 to 0.18 atomic%, and more preferably in the range of 0.07 to 0.16 atomic%. If the content is less than 0.05 atomic%, the effect of replacing manganese with lithium is small, and the cycle performance at room temperature is reduced. On the other hand, if it exceeds 0.18 atomic%, the capacity is greatly reduced, which is not preferable.

【0012】次に本発明におけるX線回折模様の測定手
法について説明をする。X線回折模様の測定は、理学電
気(株)製のRINT2500を用いた。X線線源にC
u−Kα1(波長1.5405Å)を用いて以下の機器
条件で行なった。管電圧と電流は各々50kV、160
mA、発散スリット0.5゜、散乱スリット0.5゜、
受光スリット巾0.15mm、さらにモノクロメータを
使用した。測定は走査速度2゜/分、走査ステップ0.
01゜で走査軸は2θ/θの条件で行なった。また、半
価巾は2θ軸で表記した回折模様の測定値からバックグ
ラウンドを引き、回折ピーク強度(h)の半分の高さ
(h/2)のピークの巾とした。
Next, a method of measuring an X-ray diffraction pattern according to the present invention will be described. The measurement of the X-ray diffraction pattern used RINT2500 manufactured by Rigaku Corporation. C for X-ray source
The measurement was performed using u-Kα1 (wavelength: 1.5405 °) under the following instrument conditions. The tube voltage and current are 50 kV and 160 kV, respectively.
mA, divergence slit 0.5 ゜, scattering slit 0.5 ゜,
The light receiving slit width was 0.15 mm, and a monochromator was used. The measurement was performed at a scanning speed of 2 ° / min.
The scanning was performed under the condition of 2θ / θ at 01 °. Further, the half width was obtained by subtracting the background from the measured value of the diffraction pattern expressed on the 2θ axis, and was defined as the width of the peak at half the height (h / 2) of the diffraction peak intensity (h).

【0013】前述のような手法で合成されたリチウムマ
ンガン酸化物は少なくとも(111)面、(311)
面、(222)面に由来するX線回折ピークを4.74
±0.02Å、2.47±0.02Å、2.05±0.
02Åに有し、かつ、これらの回折ピークの結晶性の指
標となる半価巾が0.1±0.05であることを特徴と
する。半価巾が0.1±0.05以上であるとMnの溶
出が起こりやすく好ましくない。またMn2 3 もしく
はMn3 4 に起因する2.75±0.02Åの回折ピ
ークを有しないことを特徴とする。
The lithium manganese oxide synthesized by the method described above has at least a (111) plane and a (311) plane.
X-ray diffraction peaks derived from the (222) plane
± 0.02 °, 2.47 ± 0.02 °, 2.05 ± 0.
02 °, and the half width as an index of crystallinity of these diffraction peaks is 0.1 ± 0.05. When the half width is 0.1 ± 0.05 or more, Mn is easily eluted, which is not preferable. Further, it is characterized by having no diffraction peak of 2.75 ± 0.02 ° due to Mn 2 O 3 or Mn 3 O 4 .

【0014】従来の化学量論組成であるLiMn2 4
はJCPDS(The JointCommittee
on Power Diffraction Sta
ndards)カード35−782によれば、格子定数
が8.248Åである。本発明のリチウムマンガン酸化
物の格子定数は8.20Å以上8.24Å以下が好まし
い。本発明のリチウムマンガン酸化物の格子定数が小さ
い理由は、結晶単位胞内のMnの一部が、Mnよりイオ
ン半径が小さいLiに置換されたためと考えられる。格
子定数が8.20Å以下では容量が著しく低下する。こ
れはMnの平均価数が4に近すぎるためであると考えら
れる。また8.24Å以上では、Mnの一部をLiで置
換した効果が得られず、Mnの溶出が起こりサイクル性
能が低下する。本発明に用いられる負極材料としては、
リチウムをイオン状態で吸蔵放出できれば特に限定され
ないが、例えば、コークス、天然黒鉛、人造黒鉛、難黒
鉛化炭素などの炭素材料、SiSnO等の金属酸化物、
LiCoN2 等の金属窒化物を挙げることができるが、
好ましくは炭素材料である。
The conventional stoichiometric composition LiMn 2 O 4
Is JCPDS (The Joint Committee)
on Power Diffraction Sta
According to the ndards card 35-782, the lattice constant is 8.248 °. The lattice constant of the lithium manganese oxide of the present invention is preferably from 8.20 ° to 8.24 °. The reason why the lattice constant of the lithium manganese oxide of the present invention is small is considered that a part of Mn in the crystal unit cell was replaced with Li having an ionic radius smaller than Mn. When the lattice constant is 8.20 ° or less, the capacity is significantly reduced. This is probably because the average valence of Mn is too close to 4. On the other hand, at 8.24 ° or more, the effect of substituting a part of Mn with Li cannot be obtained, and Mn is eluted to lower the cycle performance. As the negative electrode material used in the present invention,
There is no particular limitation as long as lithium can be inserted and extracted in an ionic state. For example, carbon materials such as coke, natural graphite, artificial graphite and non-graphitizable carbon, metal oxides such as SiSnO,
Metal nitrides such as LiCoN 2 can be mentioned,
Preferably, it is a carbon material.

【0015】本発明において、活物質を電極化する場合
には、必要に応じて導電剤を添加し、結着剤で集電材に
固定することができる。導電剤としては、例えば、天然
黒鉛、人造黒鉛、カーボンブラック、ケッチェンブラッ
ク、アセチレンブラックを挙げることができるが、黒鉛
もしくは黒鉛とアセチレンブラックの併用が好ましい。
その添加量としては特に限定されないが、1〜20重量
%が好ましく、更に好ましくは3〜10重量%の範囲で
ある。1重量%未満であると導電性が均一にならず、2
0重量%を超えると単位体積あたりの容量が低下する。
また、結着剤には、通常、ポリ4フッ化エチレン、ポリ
フッ化ビニリデン、エチレン−プロピレン−ジエンター
ポリマー、カルボキシメチルセルロース、スチレンブタ
ジエンゴム、フッ素ゴム等が単独もしくは混合されて用
いられるが、特に限定されない。これらの添加量として
は1〜20重量%が好ましく、更に好ましくは1〜10
重量%の範囲である。1重量%未満では結着力が弱く、
20重量%を超えるとLiイオンの移動を阻害し、電池
としての性能が低下する。
In the present invention, when the active material is formed into an electrode, a conductive agent can be added as necessary, and the active material can be fixed to the current collector with a binder. Examples of the conductive agent include natural graphite, artificial graphite, carbon black, Ketjen black, and acetylene black, and graphite or a combination of graphite and acetylene black is preferable.
Although the addition amount is not particularly limited, it is preferably 1 to 20% by weight, and more preferably 3 to 10% by weight. If it is less than 1% by weight, the conductivity will not be uniform,
If it exceeds 0% by weight, the capacity per unit volume will decrease.
As the binder, polytetrafluoroethylene, polyvinylidene fluoride, ethylene-propylene-diene terpolymer, carboxymethylcellulose, styrene-butadiene rubber, fluororubber and the like are usually used alone or in a mixture, but there is no particular limitation. Not done. The amount of these added is preferably 1 to 20% by weight, more preferably 1 to 10% by weight.
% By weight. If it is less than 1% by weight, the binding strength is weak,
If it exceeds 20% by weight, the movement of Li ions is inhibited, and the performance as a battery is reduced.

【0016】電解液としては、リチウム塩を電解質と
し、これを種々の有機溶媒に溶解させた混合物が用いら
れる。電解質としては、特に限定されないが、LiCl
4 、LiBF4 、LiPF6 、LiAsF6 、LiC
3 SO3 などの単独もしくは混合物を使用することが
できる。また有機溶媒としては特に限定されないが、例
えば、プロピレンカーボネート、エチレンカーボネー
ト、γ−ブチロラクトン、ジメチルカーボネート、ジエ
チルカーボネート、メチルエチルカーボネート、1,2
−ジメトキシエタン、テトラヒドロフラン等の単独もし
くは2種類以上の混合溶媒を挙げることができる。
As the electrolytic solution, a mixture obtained by dissolving a lithium salt as an electrolyte in various organic solvents is used. The electrolyte is not particularly limited.
O 4, LiBF 4, LiPF 6 , LiAsF 6, LiC
A single or a mixture such as F 3 SO 3 can be used. The organic solvent is not particularly limited, but, for example, propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2
-Dimethoxyethane, tetrahydrofuran, etc., alone or in combination of two or more.

【0017】[0017]

【作用】本発明によるリチウムマンガン酸化物では、X
線の回折模様において2.75±0.02Åにピークを
有することなく、未反応物や副生成物であるMn2 3
やMn3 4 を含有しないためにMnの溶出を防止でき
る。また、必ず700℃以上の温度で熱処理されてお
り、その為に、X線回折模様におけるピークの半値幅が
0.1±0.05°であることに示されるように結晶性
が非常に高くなり、Mnの溶出を防止できる。したがっ
て、本発明のリチウムマンガン酸化物を使用すれば従来
のリチウムマンガン酸化物ではMnの溶出が起きてサイ
クル性が低下していた高温下であっても、良好なサイク
ル特性が得られる。
In the lithium manganese oxide according to the present invention, X
Mn 2 O 3 which is an unreacted product and a by-product without having a peak at 2.75 ± 0.02 ° in the diffraction pattern of the line.
And Mn 3 O 4 is not contained, so that the elution of Mn can be prevented. Further, heat treatment is always performed at a temperature of 700 ° C. or more, and therefore, the crystallinity is extremely high as shown by the fact that the half width of the peak in the X-ray diffraction pattern is 0.1 ± 0.05 °. And the elution of Mn can be prevented. Therefore, if the lithium manganese oxide of the present invention is used, good cycle characteristics can be obtained even at a high temperature at which the conventional lithium manganese oxide causes leaching of Mn to lower the cyclability.

【0018】[0018]

【実施例】以下、本発明を具体的実施例などを用いて詳
細に説明するが、本発明はこれら実施例などにより何ら
限定されるものではない。 (実施例1)出発原料として平均粒径20μmのEMD
と、Li2 CO3 とをLi/Mn=0.5(原子比)の
組成比で混合し、空気中850℃で20時間熱処理した
のちに室温付近まで冷却した。このリチウムマンガン酸
化物のX線回折模様とJCPDSカードとを比較した結
果から、このリチウムマンガン酸化物がLiMn2 4
であることを確認した。次いで、得られたLiMn2
4 とLi2 CO3 を、Li/Mn=0.6(原子比)の
組成比で混合し、空気中650℃で12時間熱処理する
ことによって本発明のリチウムマンガン酸化物を得た。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to specific examples, but the present invention is not limited to these examples. Example 1 EMD having an average particle size of 20 μm as a starting material
And Li 2 CO 3 were mixed at a composition ratio of Li / Mn = 0.5 (atomic ratio), heat-treated in air at 850 ° C. for 20 hours, and then cooled to around room temperature. From the result of comparing the X-ray diffraction pattern of this lithium manganese oxide with the JCPDS card, this lithium manganese oxide was found to be LiMn 2 O 4
Was confirmed. Then, the obtained LiMn 2 O
4 and Li 2 CO 3 were mixed at a composition ratio of Li / Mn = 0.6 (atomic ratio) and heat-treated in air at 650 ° C. for 12 hours to obtain a lithium manganese oxide of the present invention.

【0019】このリチウムマンガン酸化物のX線回折模
様は図1に示すように(111)面、(311)面、
(222)面に由来する各々の回折ピークを4.738
Å、2.475Å、2.052Åに有し、かつその半価
巾はおのおの0.118、0.106、0.118であ
り、結晶性が高く、Mn2 3 、Mn3 4 (Mn
y)及びLi2 MnO3 など副相の回折ピークを有さ
ないことから単一の立方晶スピネルであることが確認さ
れた。標準物質となるSiを用いて格子定数を正確に求
めたところ8.214Åであった。さらに、元素分析の
結果から、Li[Li0.12Mn1.83]O4 であることを
確認した。このようにして作成されたリチウムマンガン
酸化物の表面を走査型電子顕微鏡で観察した結果、二次
粒子は直径がおおよそ0.3から1.0μmの一次粒子
の集合体により形成されていることが確認できた。
The X-ray diffraction pattern of this lithium manganese oxide has (111) plane, (311) plane,
Each diffraction peak derived from the (222) plane was taken to be 4.738.
{2.475} and 2.052}, and their half-value widths are 0.118, 0.106 and 0.118, respectively, and have high crystallinity, Mn 2 O 3 , Mn 3 O 4 (Mn
O y ) and Li 2 MnO 3 do not have diffraction peaks of sub-phases, so it was confirmed that the spinel was a single cubic spinel. When the lattice constant was accurately determined using Si as a standard material, it was 8.214 °. Further, from the result of elemental analysis, it was confirmed that the substance was Li [Li 0.12 Mn 1.83 ] O 4. As a result of observing the surface of the lithium manganese oxide thus prepared with a scanning electron microscope, it was found that the secondary particles were formed by an aggregate of primary particles having a diameter of about 0.3 to 1.0 μm. It could be confirmed.

【0020】本発明における具体的な電池作成について
説明する。上記で得られたリチウムマンガン酸化物10
0重量部に対して導電剤としてアセチレンブラック3重
量部と鱗状天然黒鉛3重量部を混合した後に、総重量に
対して3重量部の割合でフッ素ゴムを混合し、フッ素ゴ
ムの溶剤である酢酸エチル/エチルセロソルブの混合溶
剤を添加して湿式混合を行ないペーストとした。次いで
このペーストを正極集電体となる厚さ20μmのアルミ
ニウム箔の両面に均一に塗布し、乾燥させた後にローラ
ープレス機によって加圧成形することで帯状の正極を作
成した。次に3000℃で黒鉛化したメソカーボンファ
イバー95重量部と鱗状天然黒鉛5重量部の混合物に対
して、カルボキシメチルセルロース1重量部とスチレン
ブタジエンゴム2重量部、溶剤として精製水を添加して
湿式混合を行ないペーストとした。次いでこのペースト
を負極集電体となる厚さ12μmの銅箔の両面に均一に
塗布し、乾燥させた後にローラープレス機によって加圧
成形することで帯状の負極を作成した。さらに、上記正
極と上記負極の間にセパレーターとして25μm厚みの
ポリエチレン微多孔膜を挟んでロール状に巻くことで捲
廻体とした。
A description will now be given of a specific battery production in the present invention. Lithium manganese oxide 10 obtained above
After mixing 3 parts by weight of acetylene black and 3 parts by weight of scale-like natural graphite as conductive agents with respect to 0 parts by weight, a fluororubber was mixed at a ratio of 3 parts by weight with respect to the total weight, and acetic acid as a solvent of the fluororubber was mixed. A mixed solvent of ethyl / ethyl cellosolve was added to perform wet mixing to obtain a paste. Next, this paste was uniformly applied to both sides of a 20-μm-thick aluminum foil serving as a positive electrode current collector, dried, and then pressure-formed by a roller press to form a belt-shaped positive electrode. Next, 1 part by weight of carboxymethylcellulose, 2 parts by weight of styrene-butadiene rubber, and purified water as a solvent were added to a mixture of 95 parts by weight of mesocarbon fiber graphitized at 3000 ° C. and 5 parts by weight of scale-like natural graphite, followed by wet mixing. To obtain a paste. Next, this paste was uniformly applied to both sides of a copper foil having a thickness of 12 μm as a negative electrode current collector, dried, and then pressed and formed by a roller press to form a strip-shaped negative electrode. Furthermore, a 25-μm-thick polyethylene microporous membrane was sandwiched between the positive electrode and the negative electrode as a separator to form a roll.

【0021】ニッケルメッキを施した鉄製の円筒缶の底
部に絶縁性のフィルムを挿入し、前記捲廻体を挿入し
た。次いで捲廻体より取り出した負極タブを缶底に溶接
し、正極タブをガスケット、防爆ディスク、PTC素子
からなる閉塞蓋体に溶接した。電池缶の中にエチレンカ
ーボネートとジエチルカーボネートの混合溶媒に1モル
/リットルの濃度でLiPF6 を溶解した電解液を注液
して、捲廻体上部に絶縁性のフィルムを挿入した後、前
記閉塞蓋体を入れ、電池缶の端部をかしめることで外形
17mm高さ500mmの円筒型非水電解質二次電池を
作成した。
An insulating film was inserted into the bottom of a nickel-plated iron cylindrical can, and the wound body was inserted. Next, the negative electrode tab taken out from the wound body was welded to the bottom of the can, and the positive electrode tab was welded to a closing lid made of a gasket, an explosion-proof disk, and a PTC element. An electrolyte in which LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate and diethyl carbonate was injected into the battery can, and an insulating film was inserted into the upper part of the wound body. A cylindrical non-aqueous electrolyte secondary battery having an outer shape of 17 mm and a height of 500 mm was prepared by inserting the lid and crimping the end of the battery can.

【0022】(実施例2)リチウムマンガン酸化物の合
成法を以下のように変えた以外は、実施例1と同様にし
て非水電解質二次電池を作成した。出発原料として平均
粒径15μmのEMDと、Li2 CO3 とをLi/Mn
=0.565(原子比)の組成比で混合し、空気中90
0℃で20時間熱処理した後に650℃まで降温して1
2時間熱処理することによって本発明のリチウムマンガ
ン酸化物を得た。
Example 2 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the method of synthesizing lithium manganese oxide was changed as follows. As starting materials, EMD having an average particle size of 15 μm and Li 2 CO 3 were mixed with Li / Mn.
= 0.565 (atomic ratio) in air, 90
After heat treatment at 0 ° C for 20 hours, the temperature was lowered to 650 ° C and
Heat treatment was performed for 2 hours to obtain a lithium manganese oxide of the present invention.

【0023】得られた物質のX線回折模様は少なくとも
(111)面、(311)面、(222)面に由来する
各々の回折ピークを4.741Å、2.479Å、2.
055Åに有し、かつその半価巾はおのおの0.09
4、0.094、0.106であり、結晶性が高く、副
相のピークを有さない単一の立方晶スピネルであった。
標準物質となるSiを用いて格子定数を正確に求めたと
ころ8.229Åであった。さらに、元素分析の結果か
ら、Li[Li0.07Mn1.93]O4 であることを確認し
た。このようにして作成されたリチウムマンガン酸化物
の表面を走査型電子顕微鏡で観察した結果、二次粒子は
直径がおおよそ0.5から1.5μmの一次粒子の集合
体により形成されていることが確認できた。
In the X-ray diffraction pattern of the obtained substance, at least diffraction peaks derived from the (111), (311) and (222) planes were 4.741 °, 2.479 °, and 2.77 °.
055Å and its half-value width is 0.09 each
4, 0.094, and 0.106, indicating a single cubic spinel having high crystallinity and having no subphase peak.
When the lattice constant was accurately determined using Si as a standard material, it was 8.229 °. Furthermore, from the result of elemental analysis, it was confirmed that the substance was Li [Li 0.07 Mn 1.93 ] O 4 . As a result of observing the surface of the lithium manganese oxide thus produced with a scanning electron microscope, it was found that the secondary particles were formed by an aggregate of primary particles having a diameter of about 0.5 to 1.5 μm. It could be confirmed.

【0024】(実施例3)リチウムマンガン酸化物の合
成法を以下のように変え、負極活物質としてメソカーボ
ンファイバーのかわりに2800℃で熱処理したメソカ
ーボンマイクロビーズを用いた以外は、実施例1と同様
にして非水電解質二次電池を作成した。
Example 3 Example 1 was repeated except that the method of synthesizing lithium manganese oxide was changed as follows, and that mesocarbon microbeads heat-treated at 2800 ° C. were used as the negative electrode active material instead of mesocarbon fibers. A non-aqueous electrolyte secondary battery was prepared in the same manner as described above.

【0025】出発原料として平均粒径10μmのEMD
と、Li2 CO3 とをLi/Mn=0.635(原子
比)の組成比で混合し、空気中850℃で12時間熱処
理したのちに600℃まで降温して12時間熱処理する
ことによって本発明のリチウムマンガン酸化物を得た。
得られた物質のX線回折模様は少なくとも(111)
面、(311)面、(222)面に由来する各々の回折
ピークを4.746Å、2.477Å、2.054Åに
有し、かつその半価巾はおのおの0.106、0.10
6、0.129であり、結晶性が高く、副相の回折ピー
クを有さない単一の立方晶スピネルであった。標準物質
となるSiを用いて格子定数を正確に求めたところ8.
212Åであった。さらに、元素分析の結果からLi
[Li0.14Mn1.86]O4 であることを確認した。この
ようにして作成されたリチウムマンガン酸化物の表面を
走査型電子顕微鏡で観察した結果、二次粒子は直径がお
およそ0.3から1.0μmの一次粒子の集合体により
形成されていることを確認することができた。
EMD having an average particle size of 10 μm as a starting material
And Li 2 CO 3 at a composition ratio of Li / Mn = 0.635 (atomic ratio), and heat-treated in air at 850 ° C. for 12 hours, then cooled to 600 ° C. and heat-treated for 12 hours. The lithium manganese oxide of the invention was obtained.
The X-ray diffraction pattern of the obtained substance has at least (111)
Diffraction peaks derived from the (1,311) and (222) planes at 4.746, 2.477, and 2.054, respectively, and their half-value widths are 0.106, 0.10, respectively.
6, a single cubic spinel having a high crystallinity and no diffraction peak of a subphase. 7. The lattice constant was accurately determined using Si as a standard material.
It was 212Å. Furthermore, from the results of elemental analysis, Li
[Li 0.14 Mn 1.86 ] O 4 was confirmed. As a result of observing the surface of the lithium manganese oxide thus prepared with a scanning electron microscope, it was found that the secondary particles were formed by an aggregate of primary particles having a diameter of about 0.3 to 1.0 μm. I was able to confirm.

【0026】(比較例1)リチウムマンガン酸化物の合
成法を以下のように変えた以外は、実施例1と同様にし
て非水電解質二次電池を作成した。出発原料として平均
粒径20μmのEMDと、Li2 CO3 とをLi/Mn
=0.6(原子比)の組成比で混合し、空気中600℃
で12時間熱処理したのちに900℃まで昇温して12
時間熱処理することによってリチウムマンガン酸化物を
得た。得られたリチウムマンガン酸化物のX線回折模様
は図2に示すように(111)面、(311)面、(2
22)面に由来する各々の回折ピークを4.741Å、
2.483Å、2.059Åに有し、かつその半価巾は
おのおの0.129、0.129、0.118であり、
結晶性は高いが2.761ÅにMn23 もしくはMn
3 4 (MnOy )に起因すると考えられる回折ピーク
およびLi2 MnO3 に起因すると考えられる回折ピー
クが存在した。さらに標準物質となるSiを用いて格子
定数を正確に求めたところ8.249Åであった。この
結果より、LiMn2 4 及びMn2 3 、Mn3 4
及びLi2 MnO3 の混合物であり均一な立方晶スピネ
ル単相ではないと考えられた。
Comparative Example 1 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, except that the method of synthesizing lithium manganese oxide was changed as follows. As starting materials, EMD having an average particle size of 20 μm and Li 2 CO 3 were converted into Li / Mn.
= 0.6 (atomic ratio) in air at 600 ° C
And heat up to 900 ° C for 12 hours.
Heat treatment was performed for a period of time to obtain a lithium manganese oxide. The X-ray diffraction pattern of the obtained lithium manganese oxide has (111) plane, (311) plane, (2
22) each diffraction peak derived from the plane at 4.741 °;
2.483Å, 2.059Å and their half-value widths are 0.129, 0.129, 0.118, respectively.
Although the crystallinity is high, Mn 2 O 3 or Mn
There were a diffraction peak attributed to 3 O 4 (MnO y ) and a diffraction peak attributed to Li 2 MnO 3 . Further, when the lattice constant was accurately determined using Si as a standard substance, it was 8.249 °. From these results, LiMn 2 O 4 and Mn 2 O 3 , Mn 3 O 4
And a mixture of Li 2 MnO 3 and a uniform cubic spinel single phase.

【0027】(比較例2)リチウムマンガン酸化物の合
成法を以下のように変えた以外は、実施例1と同様にし
て非水電解質二次電池を作成した。出発原料として平均
粒径10μmのEMDと、Li2 CO3 とをLi/Mn
=0.635(原子比)の組成比で混合し、空気中65
0℃で12時間熱処理することによってリチウムマンガ
ン酸化物(E)を得た。得られた物質のX線回折模様は
(111)面、(311)面、(222)面に由来する
各々の回折ピークを4.743Å、2.475Å、2.
051Åに有したが、その半価巾はおのおの0.15
2、0.160、0.152であり、結晶性は低いが副
相の回折ピークが無かったことから立方晶スピネル単相
であることを確認した。
Comparative Example 2 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the method of synthesizing lithium manganese oxide was changed as follows. As a starting material, EMD having an average particle size of 10 μm and Li 2 CO 3 were mixed with Li / Mn.
= 0.635 (atomic ratio) in air and 65
Heat treatment was performed at 0 ° C. for 12 hours to obtain lithium manganese oxide (E). In the X-ray diffraction pattern of the obtained substance, the diffraction peaks derived from the (111) plane, the (311) plane, and the (222) plane were 4.7434, 2.475Å, and 2.
051Å, but its half-value width is 0.15 each.
2, 0.160 and 0.152, which were low in crystallinity but did not include a diffraction peak of a subphase, and thus it was confirmed that the single phase was a cubic spinel.

【0028】〔試験結果〕上記実施例1〜3、及び比較
例1、2で作成した電池はいずれも電池内部の安定化を
目的に24時間のエージング期間を経過した後に、充電
電圧を4.2Vに設定して5時間で充電を行なった。つ
いで500mAの一定電流で2.7Vまで放電を行な
い、それぞれの電池の初期容量を測定し、電池内の単位
正極活物質あたりの容量を求めた。
[Test Results] The batteries prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were all charged for 24 hours after the aging period of 24 hours for the purpose of stabilizing the inside of the batteries. Charging was performed in 5 hours at 2 V. Next, the battery was discharged at a constant current of 500 mA to 2.7 V, the initial capacity of each battery was measured, and the capacity per unit positive electrode active material in the battery was determined.

【0029】次いで、電池を60℃に調整された恒温槽
にいれ、充電電圧を4.2Vに設定して3時間で充電
し、1Aの一定電流で2.7Vまで放電を繰り返し行な
うサイクル試験を行ない、50サイクル目の放電容量を
測定し、電池内の単位正極活物質あたりの容量を求め
た。さらに、これらの結果に基づいて初期容量(X)に
対する50サイクル目の放電容量(Y)の劣化率を次式
に従って算出した。 劣化率(%)=〔(X−Y)/X〕×100
Next, a cycle test was performed in which the battery was placed in a constant temperature bath adjusted to 60 ° C., the charging voltage was set to 4.2 V, the battery was charged in 3 hours, and the battery was repeatedly discharged at a constant current of 1 A to 2.7 V. The discharge capacity at the 50th cycle was measured, and the capacity per unit positive electrode active material in the battery was determined. Further, based on these results, the deterioration rate of the discharge capacity (Y) at the 50th cycle with respect to the initial capacity (X) was calculated according to the following equation. Deterioration rate (%) = [(XY) / X] × 100

【0030】表1に、初期放電量、50サイクル後の放
電量、およびこれらから算出された単位正極活物質あた
りの劣化率を示す。表1に示すように、実施例1から3
の電池は比較例1と比べると初期放電容量は低いが、5
0サイクル後での劣化率が小さい。また、比較例2と比
べると初期放電容量が高く、50サイクル後での劣化率
も小さい。これは700℃以上で熱処理されているため
に結晶性が高い均一なスピネルが作成できるとともに、
副相が無くなることで、仕込んだリチウム量に応じてマ
ンガンの一部を正確に置換できているためであると考え
られる。
Table 1 shows the initial discharge amount, the discharge amount after 50 cycles, and the deterioration rate per unit positive electrode active material calculated from these. As shown in Table 1, Examples 1 to 3
The battery of Comparative Example 1 has a lower initial discharge capacity than that of Comparative Example 1,
The deterioration rate after 0 cycles is small. In addition, compared to Comparative Example 2, the initial discharge capacity is higher, and the deterioration rate after 50 cycles is smaller. This is because heat treatment is performed at 700 ° C. or more, so that a uniform spinel with high crystallinity can be formed,
It is considered that the elimination of the subphase allows a part of manganese to be accurately replaced according to the amount of lithium charged.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】以上説明してきたように、本発明のX線
回折ピークを少なくとも2.75±0.02Åには有せ
ず、4.74±0.02Å、2.47±0.02Å、
2.05±0.02Åに有し、その半価巾が各々0.1
±0.05であるLi[Lix Mn2-x ]O4 で示され
るスピネル系のリチウムマンガン酸化物を使用した非水
電解質二次電池では、初期容量が高く、かつ、室温以上
の温度下でもMnの溶出が起こらなくなり良好なサイク
ル性能が維持される。また、高価な他の元素を添加する
必要がない。その結果、安価な材料のリチウムマンガン
酸化物を使用して、高価なリチウムコバルト酸化物を使
用した場合と遜色のない非水電解質二次電池を提供でき
る。高性能な非水電解質二次電池が安価で供給できるよ
うになり、その工業的価値は大きい。
As described above, the X-ray diffraction peak of the present invention is not present at least at 2.75 ± 0.02 ° but at 4.74 ± 0.02 °, 2.47 ± 0.02 °,
2.05 ± 0.02Å, the half width of each is 0.1
A non-aqueous electrolyte secondary battery using a spinel lithium manganese oxide represented by Li [Li x Mn 2-x ] O 4 of ± 0.05 has a high initial capacity and a temperature above room temperature. However, Mn does not elute and good cycle performance is maintained. Also, there is no need to add expensive other elements. As a result, it is possible to provide a non-aqueous electrolyte secondary battery using lithium manganese oxide, which is an inexpensive material, which is comparable to the case using expensive lithium cobalt oxide. A high-performance nonaqueous electrolyte secondary battery can be supplied at low cost, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1のX線回折模様である。FIG. 1 is an X-ray diffraction pattern of Example 1 of the present invention.

【図2】本発明の比較例1のX線回折模様である。FIG. 2 is an X-ray diffraction pattern of Comparative Example 1 of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵放出することが可
能な負極活物質、リチウムイオン伝導性の非水電解液、
及びリチウムイオンを吸蔵放出することが可能なリチウ
ム含有金属酸化物からなる正極活物質を備えた非水電解
質二次電池において、前記リチウム含有金属酸化物が次
の一般式で示されるスピネル系のリチウムマンガン酸化
物であり、X線回折ピークを2.75±0.02Åには
有せず、かつ、少なくとも4.74±0.02Å、2.
47±0.02Å、2.05±0.02Åに有し、該X
線回折ピークの半価巾が各々0.1±0.05であるこ
とをすることを特徴とする非水電解質二次電池。 Li[Lix Mn2-x ]O4 (ただし、0.05≦x≦
0.18)
1. A negative electrode active material capable of inserting and extracting lithium ions, a lithium ion conductive non-aqueous electrolyte,
And a non-aqueous electrolyte secondary battery comprising a positive electrode active material comprising a lithium-containing metal oxide capable of inserting and extracting lithium ions, wherein the lithium-containing metal oxide is represented by the following general formula: A manganese oxide, having no X-ray diffraction peak at 2.75 ± 0.02 ° and at least 4.74 ± 0.02 °;
47 ± 0.02 °, 2.05 ± 0.02 °,
A non-aqueous electrolyte secondary battery, wherein the half-widths of the line diffraction peaks are each 0.1 ± 0.05. Li [Li x Mn 2-x ] O4 (provided that 0.05 ≦ x ≦
0.18)
【請求項2】 一般式Li[Lix Mn2-x ]O4 (た
だし、0.05≦x≦0.18)で示されるスピネル系
リチウムマンガン酸化物の格子定数が8.20Å以上
8.24Å以下であることを特徴とする請求項1記載の
非水電解質二次電池。
2. The spinel-based lithium manganese oxide represented by the general formula Li [Li x Mn 2-x ] O 4 (where 0.05 ≦ x ≦ 0.18) has a lattice constant of at least 8.20 °. 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the angle is 24 [deg.] Or less.
【請求項3】 一般式Li[Lix Mn2-x ]O4 (た
だし、0.05≦x≦0.18)で示されるスピネル系
リチウムマンガン酸化物が、電解二酸化マンガンと炭酸
リチウムの混合物を大気雰囲気中で700℃以上の温度
で熱処理後、再度700℃以下の温度で熱処理をして得
られることを特徴とする請求項1または請求項2記載の
非水電解質二次電池。
3. A spinel lithium manganese oxide represented by the general formula Li [Li x Mn 2-x ] O 4 (where 0.05 ≦ x ≦ 0.18) is a mixture of electrolytic manganese dioxide and lithium carbonate. 3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is obtained by heat-treating at a temperature of 700 ° C. or more in an air atmosphere and then heat-treating again at a temperature of 700 ° C. or less.
JP9055464A 1997-02-25 1997-02-25 Nonaqueous electrolyte secondary battery Withdrawn JPH10241686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9055464A JPH10241686A (en) 1997-02-25 1997-02-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9055464A JPH10241686A (en) 1997-02-25 1997-02-25 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10241686A true JPH10241686A (en) 1998-09-11

Family

ID=12999341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9055464A Withdrawn JPH10241686A (en) 1997-02-25 1997-02-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10241686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151070A (en) * 2000-11-06 2002-05-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151070A (en) * 2000-11-06 2002-05-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US7666551B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery using the same
JP4061668B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP4171848B2 (en) Lithium ion non-aqueous electrolyte secondary battery
US6582852B1 (en) Metal oxide containing multiple dopants and method of preparing same
US7799458B2 (en) Nonaqueous electrolytic secondary battery and method of manufacturing the same
JP3813001B2 (en) Non-aqueous secondary battery
JP3982658B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
KR20160030878A (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
JP2000077071A (en) Nonaqueous electrolyte secondary battery
KR20010040161A (en) Active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP2001196063A (en) Active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP4235702B2 (en) Positive electrode active material, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
JPH10321227A (en) Nonaqueous electrolyte secondary battery
JP3007859B2 (en) Method for preparing high capacity LiMn2O4 secondary battery anode compound
KR100515598B1 (en) Anode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries comprising the same
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
JP2996234B1 (en) Non-aqueous electrolyte secondary battery
JP2001122626A (en) Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP3856517B2 (en) Method for producing lithium manganese oxide
JP3856518B2 (en) Nonaqueous electrolyte secondary battery
JP3497420B2 (en) Lithium secondary battery
JPH06267539A (en) Lithium secondary battery
Zhang et al. Cobalt doped chromium oxides as cathode materials for secondary lithium batteries
JPH11154512A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511