JPH10237459A - Process for converting coal - Google Patents

Process for converting coal

Info

Publication number
JPH10237459A
JPH10237459A JP9043351A JP4335197A JPH10237459A JP H10237459 A JPH10237459 A JP H10237459A JP 9043351 A JP9043351 A JP 9043351A JP 4335197 A JP4335197 A JP 4335197A JP H10237459 A JPH10237459 A JP H10237459A
Authority
JP
Japan
Prior art keywords
coal
reaction
water
slurry
active hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9043351A
Other languages
Japanese (ja)
Other versions
JP3491663B2 (en
Inventor
Kunio Arai
邦夫 新井
Masafumi Ajiri
雅文 阿尻
Kenji Nishimura
建二 西村
Hajime Kawasaki
始 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP04335197A priority Critical patent/JP3491663B2/en
Publication of JPH10237459A publication Critical patent/JPH10237459A/en
Application granted granted Critical
Publication of JP3491663B2 publication Critical patent/JP3491663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process by which coal can be converted into a more volatilizable component, this component can be liquefied by using inexpensive water as the solvent and using active hydrogen which is one generated inside the process and is not one generated outside the process, the residue left after the liquefaction step can be utilized to generate active hydrogen, and by which the heretofore necessary predrying step can be dispensed with to realize the simplification of the process and reduction in production cost. SOLUTION: The coal pulverized in a pretreatment step 11 is mixed with coal and water to prepare a coal slurry desirably having a concentration of 5-60wt.%. The slurry is kept in a supercritical state to concurrently effect the heat decomposition of the coal and the reaction of unreacted coal with active hydrogen to thereby effect the conversion of coal into a more volatilizable component and the liquefaction of the component. In a fractionation step 13, the supercritical water containing the oil produced in the liquefaction step 12 is subjected to pressure reduction and cooling in stages, and the formed oil is fractionated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超臨界状態にするこ
とにより石炭を油その他に転換する方法に関する。更に
詳しくは石炭に活性水素を添加することにより石炭を軽
質化し、燃料用油又は有用な化合物或いは混合物に転換
する方法に関するものである。
The present invention relates to a method for converting coal into oil or the like by bringing it into a supercritical state. More particularly, the present invention relates to a method for lightening coal by adding active hydrogen to the coal and converting the coal into a fuel oil or a useful compound or mixture.

【0002】[0002]

【従来の技術】従来、石炭に水素を添加して液化する方
法としては、Ni,Co,Fe等の触媒の存在下で分子
状水素ガスを石炭に添加して軽質化し、石炭を液化する
方法が知られている。また別の方法として、水素供与性
溶剤の利用により石炭に水素を添加し、石炭を軽質化し
液化する方法が知られている。
2. Description of the Related Art Conventionally, as a method of liquefying coal by adding hydrogen, a method of adding molecular hydrogen gas to coal in the presence of a catalyst such as Ni, Co, Fe or the like to lighten the coal and liquefy the coal is known. It has been known. As another method, a method is known in which hydrogen is added to coal by using a hydrogen-donating solvent to lighten and liquefy the coal.

【0003】[0003]

【発明が解決しようとする課題】これらの技術において
必要となる水素は、重量換算で石炭重量の約5〜約8%
に及んでいる。またこれらの技術では石炭のガス化やメ
タンの改質等により製造した水素を用いることが前提と
されている。そのため石炭の液化コストに占める水素製
造のためのコストが増大し、その結果石炭転換プロセス
としてこれらに代わるコストの安い転換プロセスが望ま
れている。またこれらのプロセスは水の混入は好ましく
ないので、水分除去のための乾燥前処理工程が必要であ
り、この前処理工程のコストも無視できないことが指摘
されている。
The hydrogen required in these technologies is about 5 to about 8% by weight of coal weight.
It extends to. These technologies are based on the assumption that hydrogen produced by coal gasification or methane reforming is used. Therefore, the cost for hydrogen production in the liquefaction cost of coal increases, and as a result, a low cost conversion process is desired as a coal conversion process. In addition, it is pointed out that these processes require a pre-drying step for removing water since the mixing of water is not preferable, and the cost of this pre-processing step cannot be ignored.

【0004】本発明の目的は、安価な水を溶媒として用
い、しかもプロセス外からでなくプロセス内で水から生
成される活性な水素を用いて石炭を軽質化し液化する石
炭の転換方法を提供することにある。本発明の別の目的
は、液化工程の残渣を活性水素を生成するために利用し
得る石炭の転換方法を提供することにある。本発明の更
に別の目的は、従来法の乾燥前処理工程を不要としプロ
セスを簡素化し製造コストを低減する石炭の転換方法を
提供することにある。
[0004] It is an object of the present invention to provide a method for converting coal, which uses inexpensive water as a solvent and lightens and liquefies coal using active hydrogen generated from water in the process, not from outside the process. It is in. Another object of the present invention is to provide a method for converting coal in which the residue of the liquefaction step can be used to generate active hydrogen. Still another object of the present invention is to provide a method for converting coal which does not require a conventional drying pretreatment step, simplifies the process and reduces production costs.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、微粉化した石炭と水を混合して石炭
のスラリーを調製する前処理工程11と;このスラリー
を超臨界状態に維持して、石炭の加水分解反応と、石炭
の熱分解反応と、未反応の石炭と活性水素との反応とを
併発して複合的に起こさせることにより上記未反応石炭
を軽質化して液化する石炭液化工程12と、この液化工
程12で生じた油を含む超臨界水を段階的に減圧及び冷
却して上記生成した油を分留する分留工程13と含むこ
とを特徴とする石炭の転換方法である。
The invention according to claim 1 is
As shown in FIG. 1, a pretreatment step 11 of preparing a slurry of coal by mixing finely divided coal and water; maintaining the slurry in a supercritical state to cause a hydrolysis reaction of the coal and a heat treatment of the coal. A coal liquefaction step 12 for lightening and liquefying the unreacted coal by simultaneously causing a decomposition reaction and a reaction between unreacted coal and active hydrogen in a complex manner, and an oil generated in the liquefaction step 12 And a step of distilling the produced oil by decompressing and cooling the supercritical water containing stepwise in a stepwise manner.

【0006】この石炭液化工程12における反応形態に
ついて以下に述べる。先ず超臨界水中の石炭の軽質化反
応として、石炭の加水分解反応、石炭の熱分解反応
及び水素添加反応が考えられる。高温水中では、石炭
中の水素結合等の非共有性の結合が解離し、石炭が膨張
する。これにより石炭の分解液化反応がより有効に進行
する。石炭の加水分解反応では、石炭のベンゼン環を
つないでいるヘテロ元素部分にH2OのOH-及びH+
付加され、石炭が低分子化される。石炭の熱分解反応
では、石炭が単純に熱分解し低分子化する。更に水素
添加反応では、上記の反応中に生成したラジカルにH
が付加し、これにより熱分解種が安定する。また熱分解
しない安定な分子と水素との反応も生じる。ここで加水
分解により生成した水酸基、カルボン酸基にも水素添加
反応が起こり得るが、上記ラジカルへの水素反応の方が
優位に起こる。上記〜の反応は個別的に行われず、
互いに併発して複合的に行われ、石炭の軽質化が進行す
る。
The reaction mode in the coal liquefaction step 12 will be described below. First, a coal hydrolysis reaction, a coal thermal decomposition reaction, and a hydrogenation reaction are considered as lightening reactions of coal in supercritical water. In high-temperature water, non-covalent bonds such as hydrogen bonds in coal are dissociated, and the coal expands. Thereby, the decomposition and liquefaction reaction of coal proceeds more effectively. In the coal hydrolysis reaction, OH and H + of H 2 O are added to a hetero element portion connecting the benzene ring of the coal, and the coal is reduced in molecular weight. In the thermal decomposition reaction of coal, the coal is simply pyrolyzed and decomposed. Further, in the hydrogenation reaction, radicals generated during the above reaction are added to H
Is added, which stabilizes the pyrolyzed species. In addition, a reaction between hydrogen and stable molecules that does not thermally decompose occurs. Here, a hydrogenation reaction can also occur in the hydroxyl group and the carboxylic acid group generated by the hydrolysis, but the hydrogen reaction to the above-mentioned radical occurs more predominantly. The above reactions are not performed individually,
It is performed concurrently and complexly, and lightening of coal progresses.

【0007】請求項2に係る発明は、請求項1に係る発
明であって、石炭のスラリー濃度が5〜60重量%であ
る石炭の転換方法である。石炭のスラリー濃度が5重量
%未満では液化効率が劣り、60重量%を越えるとスラ
リーが流動性に欠け取扱いにくくなる。この濃度は40
〜55重量%がより好ましい。
[0007] The invention according to claim 2 is the invention according to claim 1, which is a method for converting coal in which the slurry concentration of coal is 5 to 60% by weight. When the slurry concentration of coal is less than 5% by weight, the liquefaction efficiency is poor, and when it exceeds 60% by weight, the slurry lacks fluidity and becomes difficult to handle. This concentration is 40
~ 55 wt% is more preferred.

【0008】請求項3に係る発明は、請求項1又は2に
係る発明であって、石炭液化工程12で残渣として生成
したチャーを含むスラリーに超臨界状態を維持したまま
酸素又は空気を加えることにより、このチャーの炭素を
一酸化炭素に部分酸化する部分酸化工程12aを含み、
この部分酸化工程12aで生成した一酸化炭素と水によ
り活性水素を生成して、この活性水素を未反応の石炭と
の反応に使用する石炭の転換方法である。この部分酸化
では、次の式(1)に示す反応を生じる。 2C + O2 → 2CO …… (1) 式(1)に示すように、石炭液化で生じた残渣であるチ
ャーを部分酸化して一酸化炭素にし、次の式(2)に示
す水性ガスシフト反応を起こさせて活性水素を生成す
る。式(2)の水性ガスシフト反応では部分酸化で生成
したCOは速やかにH2Oと反応させられる。ここでチ
ャーとは上記石炭の加水分解反応及び石炭の熱分解
反応で、それぞれ分解しきれなかったもの又は熱分解種
が再重合したものである。 CO + H2O → CO2 + H2 …… (2) 上記式(2)で生じた活性水素を上述した水素添加反
応に使用する。この結果、石炭液化工程の残渣を有効利
用し、本発明の方法による廃液の処理を容易にする。
[0008] The invention according to claim 3 is the invention according to claim 1 or 2, wherein oxygen or air is added to the slurry containing char produced as a residue in the coal liquefaction step 12 while maintaining the supercritical state. Includes a partial oxidation step 12a for partially oxidizing the carbon of the char to carbon monoxide,
This is a method for converting coal in which active hydrogen is generated from carbon monoxide and water generated in the partial oxidation step 12a, and this active hydrogen is used for reaction with unreacted coal. In this partial oxidation, a reaction represented by the following equation (1) occurs. 2C + O 2 → 2CO (1) As shown in the equation (1), the char which is a residue produced by coal liquefaction is partially oxidized to carbon monoxide, and a water gas shift reaction shown in the following equation (2) To generate active hydrogen. In the water gas shift reaction of the formula (2), CO generated by partial oxidation is immediately reacted with H 2 O. Here, the char is the one that has not been completely decomposed or the one that has been re-polymerized by the pyrolysis reaction of the coal and the pyrolysis reaction of the coal. CO + H 2 O → CO 2 + H 2 (2) The active hydrogen generated by the above formula (2) is used in the above-mentioned hydrogenation reaction. As a result, the residue of the coal liquefaction step is effectively used, and the treatment of the waste liquid by the method of the present invention is facilitated.

【0009】請求項4に係る発明は、請求項1ないし3
いずれかに係る発明であって、超臨界状態が温度374
〜800℃で密度0.05〜0.9g/cm3である石
炭の転換方法である。上記温度範囲及び密度範囲の下限
値未満では反応が遅く転換効率が良くない。また上記温
度範囲及び密度範囲の上限値を越えると反応器に負荷が
かかり過ぎこれも効率的でない。この温度は400〜6
00℃がより好ましく、密度は0.1〜0.6g/cm
3がより好ましい。
The invention according to claim 4 is the invention according to claims 1 to 3
The invention according to any one of the above, wherein the supercritical state has a temperature of 374.
This is a method for converting coal having a density of 0.05 to 0.9 g / cm 3 at 800800 ° C. Below the lower limit of the above temperature range and density range, the reaction is slow and conversion efficiency is not good. If the temperature range and the density range exceed the upper limits, the reactor is overloaded, which is not efficient. This temperature is 400-6
00 ° C. is more preferable, and the density is 0.1 to 0.6 g / cm.
3 is more preferred.

【0010】請求項5に係る発明は、請求項1ないし4
いずれかに係る発明であって、石炭が草炭、褐炭、亜歴
青炭又は歴青炭である石炭の転換方法である。石炭であ
れば、本発明は成立する。この石炭には無煙炭も含む。
特に上記に挙げた石炭が液化効率が良く好ましい。また
埋蔵量が比較的多い上記石炭種を有効利用でき、自然環
境に適合したプロセスとなる。
[0010] The invention according to claim 5 is the invention according to claims 1 to 4.
An invention according to any one of the above, wherein the coal is a coal, which is grass coal, lignite, sub-bituminous coal, or bituminous coal. If it is coal, the present invention holds. This coal also includes anthracite.
In particular, the above-mentioned coals are preferable because of their high liquefaction efficiency. In addition, the above-mentioned coal types with relatively large reserves can be effectively used, and the process is adapted to the natural environment.

【0011】[0011]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、本発明の前処理
工程11では、石炭を数mm以下の粒径に微粉砕して、
これと水を混合してスラリーを調製する。好ましくは、
ポンプの能力に応じて300μm以下の粒径の石炭の微
粉末を用いる。水は石炭のスラリー濃度が5〜60重量
%になるように添加する。後述するように、石炭の転換
(液化)を促進するために本発明で生成された重質油の
一部を一緒に混合してもよい。混合する場合は、スラリ
ーの5〜10重量%の範囲で混合する。ここでは重質油
をスラリーの10重量%混合する。本発明の石炭として
は、草炭、褐炭、亜歴青炭、歴青炭等を挙げることがで
きる。
Embodiments of the present invention will now be described with reference to the drawings. As shown in FIG. 1, in the pretreatment step 11 of the present invention, coal is finely pulverized to a particle size of several mm or less,
This is mixed with water to prepare a slurry. Preferably,
Fine coal powder having a particle size of 300 μm or less is used depending on the capacity of the pump. Water is added so that the coal slurry concentration is 5 to 60% by weight. As described below, a portion of the heavy oil produced in the present invention may be mixed together to promote coal conversion (liquefaction). When mixing, mix in the range of 5 to 10% by weight of the slurry. Here, heavy oil is mixed at 10% by weight of the slurry. Examples of the coal of the present invention include peat coal, lignite, sub-bituminous coal, bituminous coal, and the like.

【0012】前処理工程11で調製されたスラリーは高
圧ポンプ11aにより石炭液化工程12に圧送され、そ
こで更に昇圧・昇温され超臨界状態になる。この石炭液
化工程12では、平均温度420℃、平均密度0.4g
/cm3の超臨界状態にスラリーを維持して、前述した
〜の反応を互いに併発して複合的に生じさせる。超
臨界状態の水は、水素イオンと水酸基イオンへの解離が
通常の水よりも大きくまた高温であるので石炭の加水分
解反応は促進される。この加水分解は石炭のみならず一
次分解物の重質液化油等についても行われる。 上述し
た式(2)の水性ガスシフト反応は、高密度の水中では
活性化エネルギが通常の1/3程度にまで減少すると言
われており、従って超臨界水中では水性ガスシフト反応
の速度が速くなり、活性水素(H2)による石炭の軽質
化反応を促進する方向に寄与する。石炭の液化物は重質
油、中・軽質油であり、液化し切れなかったスラリーは
残渣となる。この石炭液化工程12では、上述した複数
の反応が相互に関連して行われるため石炭の軽質化が促
進される。また脱硫、脱窒素の効果を持たせることも可
能である。更に超臨界状態の水は誘電率が小さいために
石炭を膨張し、石炭そのもの或いは重質油に対してある
程度溶解力を持ち、またガスとも均一に混合し得る。こ
れらのことも軽質化の促進に寄与する。
The slurry prepared in the pretreatment step 11 is pumped to a coal liquefaction step 12 by a high pressure pump 11a, where it is further pressurized and heated to a supercritical state. In this coal liquefaction step 12, the average temperature is 420 ° C. and the average density is 0.4 g.
While maintaining the slurry in a supercritical state of / cm 3 , the above-mentioned reactions (1) to (4) are caused simultaneously to form a complex. Water in a supercritical state has a higher degree of dissociation into hydrogen ions and hydroxyl ions than normal water and has a higher temperature, so that the hydrolysis reaction of coal is promoted. This hydrolysis is carried out not only for coal but also for heavy liquefied oil as a primary decomposition product. In the water gas shift reaction of the above formula (2), it is said that the activation energy is reduced to about 1/3 of the ordinary energy in high-density water, and therefore the speed of the water gas shift reaction in supercritical water is increased, It contributes to promote the lightening reaction of coal by active hydrogen (H 2 ). The liquefied coal is heavy oil, medium and light oil, and the slurry that has not been completely liquefied becomes a residue. In the coal liquefaction step 12, the plurality of reactions described above are performed in association with each other, so that coal lightening is promoted. It is also possible to have desulfurization and denitrification effects. Further, water in a supercritical state expands coal due to its low dielectric constant, has a certain degree of solubility in coal itself or heavy oil, and can be uniformly mixed with gas. These also contribute to the promotion of lightening.

【0013】部分酸化工程12aでは、石炭液化工程1
2で残渣として生成したチャーを含むスラリーに超臨界
状態を維持したまま酸素又は空気を加えることにより、
前記式(1)に示すように、このチャーを一酸化炭素に
部分酸化する。上述した式(1)の反応でも、高密度の
水中では活性化エネルギが通常の1/3程度にまで減少
することによって、チャーの熱分解により生成するCO
を迅速に反応させることにも寄与する。部分酸化工程の
残渣としての灰分は別途処分される。また石炭液化工程
12における反応に必要な熱は、チャーの燃焼熱により
まかなうことができ外部から特にエネルギを供給する必
要はない。なお、式(1)及び式(2)の反応におい
て、CoMo/Al23,NiW/Al23,NiW/
ゼオライトのような触媒を使用し、軽質化或いは転換油
の脱硫や脱窒素を促進させることも可能である。また硫
黄分や窒素分は反応温度が低いので、転換プロセスから
はNOx,SOxを発生せず水中にトラップされるた
め、脱硫や脱窒素のような後工程を設ける必要がなく、
プロセスが簡単となるメリットも有する。
In the partial oxidation step 12a, the coal liquefaction step 1
By adding oxygen or air to the slurry containing the char formed as a residue in step 2 while maintaining the supercritical state,
This char is partially oxidized to carbon monoxide as shown in the above formula (1). Even in the reaction of the above-mentioned formula (1), the activation energy is reduced to about 1/3 of the ordinary energy in high-density water, so that CO generated by the thermal decomposition of char is generated.
Also promptly reacts. Ash as a residue of the partial oxidation step is disposed separately. The heat required for the reaction in the coal liquefaction step 12 can be supplied by the combustion heat of the char, and there is no need to supply energy from the outside. Note that, in the reactions of the formulas (1) and (2), CoMo / Al 2 O 3 , NiW / Al 2 O 3 , NiW /
It is also possible to use a catalyst such as zeolite to promote lightening or desulfurization or denitrification of the converted oil. Also, since the reaction temperature of sulfur and nitrogen is low, NOx and SOx are not generated from the conversion process and trapped in water, so there is no need to provide a post-process such as desulfurization or denitrification.
It also has the advantage of simplifying the process.

【0014】分留工程13では、背圧弁13a,13
b,13cとガス冷却器13d,13e,13fと油分
離器13g,13hを有する。ガス冷却器13d,13
e,13fの各前段には背圧弁13a,13b,13c
が設けられ、ガス冷却器13d,13eの各後段には油
分離器13g,13hが設けられる。石炭液化工程12
から圧送される流体を背圧弁13aで所定圧力に減圧
し、ガス冷却器13dで所定の温度まで降温した後、初
めに重質油を油分離器13gより抽出する。重質油の大
部分は所期の目的のために貯蔵され、その一部分は前処
理工程11におけるスラリーに混合される。次いで油分
離器13gより圧送される流体を背圧弁13bで所定圧
力に減圧し、ガス冷却器13eで所定の温度まで降温し
た後、中・軽質油を油分離器13hより抽出する。更に
油分離器13hから排出された流体は背圧弁13cで大
気圧に降圧され、ガス冷却器13fで水とガス(C
2)に分離される。CO2は大気に排出され、水は前処
理工程11で再利用するか、或いは廃水として処分され
る。このように、得られた油は超臨界水とともに反応器
より流出し、圧力及び温度を段階的に低下させるのみ
で、転換油の分留も可能となり、従来プロセスにおいて
必要であった蒸留工程が簡略化或は省略され、プロセス
が簡素化されるメリットも有する。
In the fractionation step 13, the back pressure valves 13a, 13
b, 13c, gas coolers 13d, 13e, 13f and oil separators 13g, 13h. Gas coolers 13d, 13
back pressure valves 13a, 13b, 13c
Are provided, and oil separators 13g, 13h are provided downstream of the gas coolers 13d, 13e. Coal liquefaction process 12
Is reduced to a predetermined pressure by a back pressure valve 13a and cooled to a predetermined temperature by a gas cooler 13d, and then heavy oil is extracted from an oil separator 13g. Most of the heavy oil is stored for the intended purpose, a portion of which is mixed with the slurry in the pretreatment step 11. Next, the pressure of the fluid sent from the oil separator 13g is reduced to a predetermined pressure by the back pressure valve 13b, and the temperature of the fluid is reduced to a predetermined temperature by the gas cooler 13e. Then, medium / light oil is extracted from the oil separator 13h. Further, the fluid discharged from the oil separator 13h is reduced in pressure to atmospheric pressure by the back pressure valve 13c, and water and gas (C
O 2 ). The CO 2 is emitted to the atmosphere, and the water is reused in the pretreatment step 11 or is disposed of as wastewater. As described above, the obtained oil flows out of the reactor together with the supercritical water, and only the pressure and temperature are reduced stepwise, so that the converted oil can be fractionated, and the distillation step required in the conventional process can be performed. There is also an advantage that the process is simplified or omitted, and the process is simplified.

【0015】[0015]

【発明の効果】以上述べたように、本発明は次の優れた
効果を有する。 (1) 水素添加反応に必要な水素は、水から発生する活性
水素によりまかなわれるので、外部からの高価な水素の
供給は必要ない。 (2) 超臨界状態では、水、ガス、転換油等が均一相で作
用するため、石炭軽質化を効率よく行える。特に水その
ものが生成物の重合反応を抑止する効果もある。 (3) 石炭を液化する際に超臨界水中での燃焼を利用する
のでプロセス全体の熱効率が極めて高い。 (4) 加熱に必要なエネルギとしてチャーの燃焼熱を利用
すれば、外部からエネルギを供給しなくてすむ。 (5) 水分除去の前処理工程が不要となり、また液化油の
分留も減圧操作のみで可能であるため液化油の蒸留分離
工程等が簡素化する。従って、従来の転換プロセスに比
べてプロセスが簡素化する。 (6) 燃焼温度が低く、また硫黄や窒素分は水中に捕集さ
れ、NOxの発生もないので従来法に見られる大型な脱
硫、脱窒素工程を必要としない。
As described above, the present invention has the following excellent effects. (1) Since the hydrogen required for the hydrogenation reaction is covered by active hydrogen generated from water, there is no need to supply expensive hydrogen from outside. (2) In the supercritical state, water, gas, converted oil, etc. act in a uniform phase, so that coal can be lightened efficiently. In particular, water itself has an effect of suppressing the polymerization reaction of the product. (3) The thermal efficiency of the whole process is extremely high because combustion in supercritical water is used when liquefying coal. (4) If the combustion heat of the char is used as the energy required for heating, there is no need to supply energy from outside. (5) A pretreatment step for removing water is not required, and fractionation of the liquefied oil can be performed only by a reduced pressure operation, so that the distillation and separation step of the liquefied oil is simplified. Therefore, the process is simplified as compared to the conventional conversion process. (6) Since the combustion temperature is low, and sulfur and nitrogen are trapped in water and NOx is not generated, the large desulfurization and denitrification steps required in the conventional method are not required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の石炭の転換方法を示す工程図。FIG. 1 is a process chart showing a coal conversion method of the present invention.

【符号の説明】[Explanation of symbols]

11 前処理工程 12 石炭液化工程 12a 部分酸化工程 13 分留工程 11 Pretreatment step 12 Coal liquefaction step 12a Partial oxidation step 13 Fractionation step

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川崎 始 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社那珂エ ネルギー研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hajime Kawasaki 1002, 6-head, Mukaiyama, Naka-machi, Naka-gun, Naka-gun, Ibaraki Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 微粉化した石炭と水を混合して石炭のス
ラリーを調製する前処理工程(11)と;前記スラリーを超
臨界状態に維持して、石炭の加水分解反応と、石炭の熱
分解反応と、未反応の石炭と活性水素との反応とを併発
して複合的に起こさせることにより前記未反応石炭を軽
質化して液化する石炭液化工程(12)と;前記液化工程(1
2)で生じた油を含む超臨界水を段階的に減圧及び冷却し
て前記生成した油を分留する分留工程(13)とを含むこと
を特徴とする石炭の転換方法。
1. A pretreatment step (11) for preparing a slurry of coal by mixing finely divided coal and water; maintaining the slurry in a supercritical state to effect a hydrolysis reaction of the coal; A coal liquefaction step (12) of lightening and liquefying the unreacted coal by simultaneously causing a decomposition reaction and a reaction between unreacted coal and active hydrogen to occur in a complex manner;
A method for converting coal, comprising: a step (13) of stepwise depressurizing and cooling the supercritical water containing the oil produced in 2) to fractionate the produced oil.
【請求項2】 石炭のスラリー濃度が5〜60重量%で
ある請求項1記載の石炭の転換方法。
2. The method for converting coal according to claim 1, wherein the coal slurry concentration is 5 to 60% by weight.
【請求項3】 石炭液化工程(12)で残渣として生成した
チャーを含むスラリーを超臨界状態を維持したまま酸素
又は空気を加えることにより前記チャーの炭素を一酸化
炭素に部分酸化する部分酸化工程(12a)を含み、 前記部分酸化工程(12a)で生成した一酸化炭素と水によ
り活性水素を生成して、この活性水素を未反応の石炭と
の反応に使用する請求項1又は2記載の石炭の転換方
法。
3. A partial oxidation step of partially oxidizing carbon of the char to carbon monoxide by adding oxygen or air while maintaining a supercritical state of a slurry containing char produced as a residue in the coal liquefaction step (12). 3. The method according to claim 1, wherein the active hydrogen is generated by using carbon monoxide and water generated in the partial oxidation step (12a), and the active hydrogen is used for reaction with unreacted coal. How to convert coal.
【請求項4】 超臨界状態が温度374〜800℃で密
度0.05〜0.9g/cm3である請求項1ないし3
いずれか記載の石炭の転換方法。
4. It supercritical state claims 1 to density 0.05~0.9g / cm 3 at a temperature three hundred seventy-four to eight hundred ° C. 3
The method for converting coal according to any one of the above.
【請求項5】 石炭が草炭、褐炭、亜歴青炭又は歴青炭
である請求項1ないし4いずれか記載の石炭の転換方
法。
5. The method for converting coal according to claim 1, wherein the coal is grass coal, lignite, sub-bituminous coal or bituminous coal.
JP04335197A 1997-02-27 1997-02-27 Coal conversion method Expired - Fee Related JP3491663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04335197A JP3491663B2 (en) 1997-02-27 1997-02-27 Coal conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04335197A JP3491663B2 (en) 1997-02-27 1997-02-27 Coal conversion method

Publications (2)

Publication Number Publication Date
JPH10237459A true JPH10237459A (en) 1998-09-08
JP3491663B2 JP3491663B2 (en) 2004-01-26

Family

ID=12661439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04335197A Expired - Fee Related JP3491663B2 (en) 1997-02-27 1997-02-27 Coal conversion method

Country Status (1)

Country Link
JP (1) JP3491663B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016210A1 (en) * 2001-08-21 2003-02-27 Mitsubishi Materials Corporation Method and apparatus for recycling hydrocarbon resource
CN113416589A (en) * 2021-06-08 2021-09-21 太原理工大学 Process for passivating and partially desulfurizing lignite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016210A1 (en) * 2001-08-21 2003-02-27 Mitsubishi Materials Corporation Method and apparatus for recycling hydrocarbon resource
CN113416589A (en) * 2021-06-08 2021-09-21 太原理工大学 Process for passivating and partially desulfurizing lignite
CN113416589B (en) * 2021-06-08 2022-10-11 太原理工大学 Process for passivating and partially desulfurizing lignite

Also Published As

Publication number Publication date
JP3491663B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
US20080098654A1 (en) Synthetic fuel production methods and apparatuses
KR101599374B1 (en) Process and system for conversion carbon dioxide to carbon monoxide
TWI291988B (en)
EP0574633A1 (en) Dry, sulfur-free, methane-enriched synthesis or fuel gas
US20030083391A1 (en) Making fischer-tropsch liquids and power
US20080103220A1 (en) Synthetic fuel production using coal and nuclear energy
JP6960930B2 (en) Systems and methods for electricity production, including methanogenesis
KR20040032946A (en) Combustion turbine fuel inlet temperature management for maximum power output
JPH11140521A (en) Gasifying method for direct reducing reactor and device thereof
KR20080031380A (en) System and method for producing synthesis gas
US5255504A (en) Electrical power generation
CN100396662C (en) Integrated urea manufacturing equipment and method
RU2459860C2 (en) Method for obtaining fuels from waste
JP3489478B2 (en) Conversion method of hydrocarbon resources using supercritical water
JP4030846B2 (en) Methanol production method and apparatus
EP1017654B1 (en) Process for the production of liquid hydrocarbons
JPH10237459A (en) Process for converting coal
JP3491664B2 (en) Conversion method of coal using supercritical water
EP0009524B1 (en) Process for the production of gas mixtures containing co and h2 by the partial oxidation of hydrocarbonaceous fuel with generation of power by expansion in a turbine
GB2263314A (en) Power generation process.
JPH10251655A (en) Continuous conversion method for coal with supercritical water
JPH11246876A (en) Method for generating flammable gas, its device and hybrid power generator using the same gas
JP3417452B2 (en) Conversion method of coal by supercritical water
CN105505465A (en) Method for using carbon-containing raw material to produce synthesis gas
JP2001164270A (en) Method of manufacturing gas and equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees