JP3491663B2 - Coal conversion method - Google Patents

Coal conversion method

Info

Publication number
JP3491663B2
JP3491663B2 JP04335197A JP4335197A JP3491663B2 JP 3491663 B2 JP3491663 B2 JP 3491663B2 JP 04335197 A JP04335197 A JP 04335197A JP 4335197 A JP4335197 A JP 4335197A JP 3491663 B2 JP3491663 B2 JP 3491663B2
Authority
JP
Japan
Prior art keywords
coal
slurry
liquefaction
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04335197A
Other languages
Japanese (ja)
Other versions
JPH10237459A (en
Inventor
邦夫 新井
雅文 阿尻
建二 西村
始 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP04335197A priority Critical patent/JP3491663B2/en
Publication of JPH10237459A publication Critical patent/JPH10237459A/en
Application granted granted Critical
Publication of JP3491663B2 publication Critical patent/JP3491663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は超臨界状態にするこ
とにより石炭を油その他に転換する方法に関する。更に
詳しくは石炭に活性水素を添加することにより石炭を軽
質化し、燃料用油又は有用な化合物或いは混合物に転換
する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for converting coal into oil or the like by bringing it into a supercritical state. More specifically, it relates to a method for lightening coal by adding active hydrogen to the coal and converting it into a fuel oil or a useful compound or mixture.

【0002】[0002]

【従来の技術】従来、石炭に水素を添加して液化する方
法としては、Ni,Co,Fe等の触媒の存在下で分子
状水素ガスを石炭に添加して軽質化し、石炭を液化する
方法が知られている。また別の方法として、水素供与性
溶剤の利用により石炭に水素を添加し、石炭を軽質化し
液化する方法が知られている。
2. Description of the Related Art Conventionally, as a method for adding hydrogen to coal to liquefy, coal is liquefied by adding molecular hydrogen gas to coal in the presence of a catalyst such as Ni, Co, Fe to lighten it. It has been known. As another method, there is known a method of adding hydrogen to coal by using a hydrogen donating solvent to lighten and liquefy coal.

【0003】[0003]

【発明が解決しようとする課題】これらの技術において
必要となる水素は、重量換算で石炭重量の約5〜約8%
に及んでいる。またこれらの技術では石炭のガス化やメ
タンの改質等により製造した水素を用いることが前提と
されている。そのため石炭の液化コストに占める水素製
造のためのコストが増大し、その結果石炭転換プロセス
としてこれらに代わるコストの安い転換プロセスが望ま
れている。またこれらのプロセスは水の混入は好ましく
ないので、水分除去のための乾燥前処理工程が必要であ
り、この前処理工程のコストも無視できないことが指摘
されている。
The hydrogen required in these technologies is about 5 to about 8% of the weight of coal in terms of weight.
It extends to. Further, these technologies are premised on using hydrogen produced by gasification of coal, reforming of methane, and the like. Therefore, the cost for hydrogen production in the liquefaction cost of coal increases, and as a result, a low-cost conversion process to replace them is desired as a coal conversion process. In addition, it is pointed out that since the mixing of water is not preferable in these processes, a dry pretreatment step for removing water is required, and the cost of this pretreatment step cannot be ignored.

【0004】本発明の目的は、安価な水を溶媒として用
い、しかもプロセス外からでなくプロセス内で水から生
成される活性な水素を用いて石炭を軽質化し液化する石
炭の転換方法を提供することにある。本発明の別の目的
は、液化工程の残渣を活性水素を生成するために利用し
得る石炭の転換方法を提供することにある。本発明の更
に別の目的は、従来法の乾燥前処理工程を不要としプロ
セスを簡素化し製造コストを低減する石炭の転換方法を
提供することにある。
It is an object of the present invention to provide a coal conversion process which uses cheap water as a solvent and uses active hydrogen produced from water in the process rather than from outside the process to lighten and liquefy coal. Especially. Another object of the present invention is to provide a method for converting coal in which the residue of the liquefaction process can be utilized to produce active hydrogen. Still another object of the present invention is to provide a coal conversion method which simplifies the process and reduces the manufacturing cost by eliminating the conventional drying pretreatment step.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、微粉化した石炭と水を混合してスラ
リー濃度が5〜60重量%になるように石炭のスラリー
を調製する前処理工程11と;このスラリーを温度37
4〜800℃で密度0.05〜0.9g/cm 3 超臨
界状態に維持して、石炭を液化する石炭液化工程12
と;この液化工程12で生じた油を含む超臨界水を段階
的に減圧及び冷却して上記生成した油を分留する分留工
程13とを含む石炭の転換方法であって、液化工程12
は、液化工程で未反応の石炭を含むスラリーを超臨界状
態を維持したまま酸素又は空気を加えることにより未反
応の石炭の炭素を一酸化炭素に部分酸化する部分酸化工
程12aを含み、液化工程12において、次の〜の
3つの反応を併発して複合的に起こさせることにより未
反応石炭を軽質化して液化することを特徴とする石炭の
転換方法である。石炭の加水分解反応、石炭の熱分
解反応、及び上記及びの反応で未反応の石炭と
の反応で生成した活性水素及び部分酸化工程12aで生
成した一酸化炭素と水により生成した活性水素又はその
双方との反応
The invention according to claim 1 is
As shown in Fig. 1, pulverized coal and water are mixed to form a slurry.
A pre-processing step 11 in which Li concentration to prepare a slurry of coal to be 5 to 60 wt%; temperature the slurry 37
4-800 maintained in a supercritical state density 0.05~0.9g / cm 3 at ° C., coal liquefaction process 12 to liquefy the coal
And a fractionation step 13 for fractionally distilling the produced oil by stepwise depressurizing and cooling the supercritical water containing the oil generated in the liquefaction step 12, which is a liquefaction step 12
Is a supercritical slurry containing unreacted coal in the liquefaction process.
By adding oxygen or air while maintaining the state
Partial oxidizer that partially oxidizes the carbon of the available coal to carbon monoxide
In the liquefaction process 12, the process of
Not possible by causing three reactions to occur in parallel
It is a coal conversion method characterized by lightening and liquefying reactive coal . Hydrolysis reaction of coal, heat content of coal
With the unreacted coal in the reaction
Of active hydrogen generated in the reaction of and the partial oxidation step 12a
Active hydrogen generated by carbon monoxide and water
Reaction with both

【0006】 この石炭液化工程12における反応形態に
ついて以下に述べる。先ず超臨界水中の石炭の軽質化反
応として、石炭の加水分解反応、石炭の熱分解反応
及び水素添加反応が考えられる。高温水中では、石炭
中の水素結合等の非共有性の結合が解離し、石炭が膨張
する。これにより石炭の分解液化反応がより有効に進行
する。石炭の加水分解反応では、石炭のベンゼン環を
つないでいるヘテロ元素部分が加水分解され、石炭が低
分子化される。石炭の熱分解反応では、石炭が単純に
熱分解し低分子化する。更に水素添加反応では、上記
の反応中に生成したラジカルにHが付加し、これによ
り熱分解種が安定する。また及びの反応で加水分解
熱分解しない安定な分子と水素との反応も生じる。こ
こで加水分解により生成した水酸基、カルボン酸基にも
水素添加反応が起こり得るが、上記ラジカルへの水素反
応の方が優位に起こる。上記〜の反応は個別的に行
われず、互いに併発して複合的に行われ、石炭の軽質化
が進行する。
[0006] described below for the reaction form in the coal liquefaction process 12. First, as a lightening reaction of coal in supercritical water, a hydrolysis reaction of coal, a thermal decomposition reaction of coal, and a hydrogenation reaction are considered. In high-temperature water, non-covalent bonds such as hydrogen bonds in coal are dissociated and the coal expands. Thereby, the decomposition and liquefaction reaction of coal proceeds more effectively. In the hydrolysis reaction of coal, the hetero element part connecting the benzene ring of coal is hydrolyzed , and coal is made into low molecular weight. In the thermal decomposition reaction of coal, the coal is simply thermally decomposed into low molecular weight compounds. Further, in the hydrogenation reaction, H is added to the radicals generated during the above reaction, which stabilizes the thermally decomposed species. Hydrolysis by the reaction of and
Also it occurs reaction between and thermally decomposed not stable molecule and hydrogen. Here, a hydrogenation reaction may occur also in a hydroxyl group and a carboxylic acid group generated by hydrolysis, but the hydrogen reaction to the above radical occurs predominantly. The above-mentioned reactions (1) to (5) are not carried out individually, but are carried out in combination with each other, and the lightening of coal proceeds.

【0007】前処理工程11において調製される石炭の
スラリー濃度は5〜60重量%である。 石炭のスラリー
濃度が5重量%未満では液化効率が劣り、60重量%を
越えるとスラリーが流動性に欠け取扱いにくくなる。こ
の濃度は40〜55重量%がより好ましい。
Of the coal prepared in the pretreatment step 11
The slurry concentration is 5 to 60% by weight. If the slurry concentration of coal is less than 5% by weight, the liquefaction efficiency is poor, and if it exceeds 60% by weight, the slurry lacks fluidity and becomes difficult to handle. This concentration is more preferably 40 to 55% by weight.

【0008】部分酸化工程12aでは、石炭液化工程1
2で未反応の石炭を含むスラリーを超臨界状態を維持し
たまま酸素又は空気を加えることにより未反応の石炭の
炭素を一酸化炭素に部分酸化する。 この部分酸化では、
次の式(1)に示す反応を生じる。 2C + O2 → 2CO …… (1) 式(1)に示すように、石炭液化で生じた残渣である
反応の石炭を部分酸化して一酸化炭素にし、次の式
(2)に示す水性ガスシフト反応を起こさせて活性水素
を生成する。式(2)の水性ガスシフト反応では部分酸
化で生成したCOは速やかにH2Oと反応させられる。
ここで未反応の石炭とは上記石炭の加水分解反応及び
石炭の熱分解反応で、それぞれ分解しきれなかったも
の又は熱分解種が再重合したものである。 CO + H2O → CO2 + H2 …… (2) 上記式(2)で生じた活性水素を上述した水素添加反
応に使用する。この結果、石炭液化工程の残渣を有効利
用し、本発明の方法による廃液の処理を容易にする。
In the partial oxidation step 12a, the coal liquefaction step 1
2 keep the slurry containing unreacted coal in a supercritical state
Of unreacted coal by adding oxygen or air
Partially oxidize carbon to carbon monoxide. In this partial oxidation,
The reaction shown in the following formula (1) occurs. 2C + O 2 → 2CO ...... As shown in (1) (1), un is the residue produced in coal liquefaction
The reaction coal is partially oxidized to carbon monoxide, and a water gas shift reaction represented by the following formula (2) is caused to generate active hydrogen. In the water gas shift reaction of the formula (2), CO produced by partial oxidation is promptly reacted with H 2 O.
Here, the unreacted coal is the above-mentioned coal hydrolysis reaction and coal thermal decomposition reaction, which have not been completely decomposed or those in which thermal decomposition species have been re-polymerized. CO + H 2 O → CO 2 + H 2 (2) The active hydrogen generated by the above formula (2) is used in the above hydrogenation reaction. As a result, the residue of the coal liquefaction process is effectively used and the treatment of the waste liquid by the method of the present invention is facilitated.

【0009】前処理工程11で調製された石炭スラリー
は、石炭液化工程12において、温度374〜800℃
で密度0.05〜0.9g/cm 3 の超臨界状態に維持
される。 上記温度範囲及び密度範囲の下限値未満では反
応が遅く転換効率が良くない。また上記温度範囲及び密
度範囲の上限値を越えると反応器に負荷がかかり過ぎこ
れも効率的でない。この温度は400〜600℃がより
好ましく、密度は0.1〜0.6g/cm3がより好ま
しい。
Coal slurry prepared in pretreatment step 11
Is a temperature of 374 to 800 ° C. in the coal liquefaction process 12
In maintaining a supercritical state density 0.05~0.9g / cm 3
To be done. Below the lower limits of the above temperature range and density range, the reaction is slow and the conversion efficiency is poor. On the other hand, if the upper limits of the temperature range and the density range are exceeded, the reactor is overloaded, which is also inefficient. The temperature is more preferably 400 to 600 ° C., and the density is more preferably 0.1 to 0.6 g / cm 3 .

【0010】請求項2に係る発明は、請求項1に係る発
明であって、石炭液化工程12において、CoMo/A
2 3 ,NiW/Al 2 3 ,又はNiW/ゼオライトを
触媒として使用する石炭の転換方法である。石炭液化工
程12において、触媒を使用することにより、軽質化或
いは転換油の脱硫や脱窒素を促進させる。請求項3に係
る発明は、請求項1に係る発明であって、分留工程13
で分留された重質油の一部を前処理工程11における石
炭のスラリーと混合する石炭の転換方法である。 請求項
に係る発明は、請求項1ないしいずれかに係る発明
であって、石炭が草炭、褐炭、亜歴青炭又は歴青炭であ
る石炭の転換方法である。石炭であれば、本発明は成立
する。この石炭には無煙炭も含む。特に上記に挙げた石
炭が液化効率が良く好ましい。また埋蔵量が比較的多い
上記石炭種を有効利用でき、自然環境に適合したプロセ
スとなる。
The invention according to claim 2 is the invention according to claim 1.
It is clear that CoMo / A
l 2 O 3 , NiW / Al 2 O 3 , or NiW / zeolite
This is a conversion method of coal used as a catalyst. Coal liquefaction
In step 12, by using a catalyst, lightening or
Or promotes desulfurization and denitrification of converted oil. Claim 3
The invention according to claim 1 is the invention according to claim 1, wherein the fractionation step 13
Part of the heavy oil fractionated in
It is a conversion method of coal mixed with a slurry of charcoal. Claim
The invention according to claim 4 is the invention according to any one of claims 1 to 3 , which is a method for converting coal in which the coal is grass coal, lignite, subbituminous coal, or bituminous coal. The present invention is applicable to coal. This coal includes anthracite. In particular, the coals listed above are preferable because of their high liquefaction efficiency. In addition, the above coal species with relatively large reserves can be effectively used, and the process is suitable for the natural environment.

【0011】[0011]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、本発明の前処理
工程11では、石炭を数mm以下の粒径に微粉砕して、
これと水を混合してスラリーを調製する。好ましくは、
ポンプの能力に応じて300μm以下の粒径の石炭の微
粉末を用いる。水は石炭のスラリー濃度が5〜60重量
%になるように添加する。後述するように、石炭の転換
(液化)を促進するために本発明で生成された重質油の
一部を一緒に混合してもよい。混合する場合は、スラリ
ーの5〜10重量%の範囲で混合する。ここでは重質油
をスラリーの10重量%混合する。本発明の石炭として
は、草炭、褐炭、亜歴青炭、歴青炭等を挙げることがで
きる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, in the pretreatment step 11 of the present invention, coal is pulverized to a particle size of several mm or less,
A slurry is prepared by mixing this with water. Preferably,
Fine coal powder having a particle size of 300 μm or less is used depending on the pump capacity. Water is added so that the slurry concentration of coal is 5 to 60% by weight. As described below, some of the heavy oil produced by the present invention may be mixed together to facilitate coal conversion (liquefaction). When mixing, it mixes in the range of 5-10 wt% of the slurry. Here, heavy oil is mixed with 10% by weight of the slurry. Examples of the coal of the present invention include grass coal, brown coal, subbituminous coal, bituminous coal and the like.

【0012】前処理工程11で調製されたスラリーは高
圧ポンプ11aにより石炭液化工程12に圧送され、そ
こで更に昇圧・昇温され超臨界状態になる。この石炭液
化工程12では、平均温度420℃、平均密度0.4g
/cm3の超臨界状態にスラリーを維持して、前述した
〜の反応を互いに併発して複合的に生じさせる。超
臨界状態の水は、水素イオンと水酸基イオンへの解離が
通常の水よりも大きくまた高温であるので石炭の加水分
解反応は促進される。この加水分解は石炭のみならず一
次分解物の重質液化油等についても行われる。 上述し
た式(2)の水性ガスシフト反応は、高密度の水中では
活性化エネルギが通常の1/3程度にまで減少すると言
われており、従って超臨界水中では水性ガスシフト反応
の速度が速くなり、活性水素(H2)による石炭の軽質
化反応を促進する方向に寄与する。石炭の液化物は重質
油、中・軽質油であり、液化し切れなかったスラリーは
残渣となる。この石炭液化工程12では、上述した複数
の反応が相互に関連して行われるため石炭の軽質化が促
進される。また脱硫、脱窒素の効果を持たせることも可
能である。更に超臨界状態の水は誘電率が小さいために
石炭を膨張し、石炭そのもの或いは重質油に対してある
程度溶解力を持ち、またガスとも均一に混合し得る。こ
れらのことも軽質化の促進に寄与する。
The slurry prepared in the pretreatment step 11 is pressure-fed to the coal liquefaction step 12 by the high-pressure pump 11a, where the pressure is further raised and the temperature is raised to a supercritical state. In this coal liquefaction process 12, an average temperature of 420 ° C. and an average density of 0.4 g
While maintaining the slurry in a supercritical state of / cm 3 , the above-mentioned reactions (1)-(3) occur in parallel with each other to form a composite. Water in the supercritical state has a higher dissociation into hydrogen ions and hydroxyl ions than ordinary water and is at a high temperature, so that the hydrolysis reaction of coal is accelerated. This hydrolysis is performed not only on coal but also on heavy liquefied oil of primary decomposition products. In the water gas shift reaction of the above-mentioned formula (2), it is said that the activation energy is reduced to about 1/3 of the normal in high density water, and therefore the speed of the water gas shift reaction is increased in supercritical water, It contributes to the promotion of the lightening reaction of coal by active hydrogen (H 2 ). Liquefaction of coal is heavy oil and medium / light oil, and the slurry that is not completely liquefied becomes a residue. In the coal liquefaction process 12, since the plurality of reactions described above are performed in association with each other, the lightening of coal is promoted. It is also possible to have the effect of desulfurization and denitrification. Further, since water in a supercritical state has a low dielectric constant, it expands coal, has a dissolving power to the coal itself or heavy oil to some extent, and can be uniformly mixed with gas. These also contribute to the promotion of lightening.

【0013】 部分酸化工程12aでは、石炭液化工程1
2で残渣として残った未反応の石炭を含むスラリーに超
臨界状態を維持したまま酸素又は空気を加えることによ
り、前記式(1)に示すように、この未反応の石炭を一
酸化炭素に部分酸化する。部分酸化工程の残渣としての
灰分は別途処分される。また石炭液化工程12における
反応に必要な熱は、未反応の石炭の燃焼熱によりまかな
うことができ外部から特にエネルギを供給する必要はな
い。なお、式(1)及び式(2)の反応において、Co
Mo/Al23,NiW/Al23,NiW/ゼオライ
トのような触媒を使用し、軽質化或いは転換油の脱硫や
脱窒素を促進させることも可能である。また硫黄分や窒
素分は反応温度が低いので、転換プロセスは還元雰囲気
(水素雰囲気)下であるので、硫黄分や窒素分はH 2
やNH 3 となり、水中にトラップされるため、脱硫や脱
窒素のような後工程を設ける必要がなく、プロセスが簡
単となるメリットも有する。
In the partial oxidation step 12a, the coal liquefaction step 1
By adding oxygen or air to the slurry containing unreacted coal remaining as a residue in 2 while maintaining the supercritical state, the unreacted coal is partially converted into carbon monoxide as shown in the above formula (1). Oxidize . Ash as residue parts partial oxidation step is separately disposed of. Further, the heat required for the reaction in the coal liquefaction process 12 can be covered by the combustion heat of unreacted coal , and it is not necessary to particularly supply energy from the outside. In the reactions of the formulas (1) and (2), Co
It is also possible to use catalysts such as Mo / Al 2 O 3 , NiW / Al 2 O 3 and NiW / zeolite to accelerate lightening or desulfurization or denitrification of converted oil. Since The sulfur and nitrogen content is low reaction temperature, the conversion process is a reducing atmosphere
Since it is under (hydrogen atmosphere), sulfur content and nitrogen content are H 2 S.
Next or NH 3, to be trapped in the water, there is no need to provide a step after such as desulfurization and denitrogenation has a merit that the process can be simplified.

【0014】分留工程13では、背圧弁13a,13
b,13cとガス冷却器13d,13e,13fと油分
離器13g,13hを有する。ガス冷却器13d,13
e,13fの各前段には背圧弁13a,13b,13c
が設けられ、ガス冷却器13d,13eの各後段には油
分離器13g,13hが設けられる。石炭液化工程12
から圧送される流体を背圧弁13aで所定圧力に減圧
し、ガス冷却器13dで所定の温度まで降温した後、初
めに重質油を油分離器13gより抽出する。重質油の大
部分は所期の目的のために貯蔵され、その一部分は前処
理工程11におけるスラリーに混合される。次いで油分
離器13gより圧送される流体を背圧弁13bで所定圧
力に減圧し、ガス冷却器13eで所定の温度まで降温し
た後、中・軽質油を油分離器13hより抽出する。更に
油分離器13hから排出された流体は背圧弁13cで大
気圧に降圧され、ガス冷却器13fで水とガス(C
2)に分離される。CO2は大気に排出され、水は前処
理工程11で再利用するか、或いは廃水として処分され
る。このように、得られた油は超臨界水とともに反応器
より流出し、圧力及び温度を段階的に低下させるのみ
で、転換油の分留も可能となり、従来プロセスにおいて
必要であった蒸留工程が簡略化或は省略され、プロセス
が簡素化されるメリットも有する。
In the fractionation step 13, back pressure valves 13a, 13
b, 13c, gas coolers 13d, 13e, 13f and oil separators 13g, 13h. Gas coolers 13d, 13
Back pressure valves 13a, 13b, 13c are provided in front of e and 13f.
Is provided, and oil separators 13g and 13h are provided at the subsequent stages of the gas coolers 13d and 13e, respectively. Coal liquefaction process 12
The fluid pressure-fed from is reduced to a predetermined pressure by the back pressure valve 13a and cooled to a predetermined temperature by the gas cooler 13d, and then the heavy oil is first extracted from the oil separator 13g. Most of the heavy oil is stored for its intended purpose and a portion is mixed with the slurry in pretreatment step 11. Then, the fluid pressure-fed from the oil separator 13g is decompressed to a predetermined pressure by the back pressure valve 13b and cooled to a predetermined temperature by the gas cooler 13e, and then the medium / light oil is extracted from the oil separator 13h. Further, the fluid discharged from the oil separator 13h is reduced in pressure to atmospheric pressure by the back pressure valve 13c, and water and gas (C
O 2 ). CO 2 is discharged to the atmosphere and the water is reused in the pretreatment step 11 or disposed of as waste water. In this way, the obtained oil flows out of the reactor together with supercritical water, and it is possible to fractionally distill the converted oil by simply reducing the pressure and temperature stepwise, and the distillation step required in the conventional process can be performed. There is also an advantage that the process is simplified or omitted.

【0015】[0015]

【発明の効果】以上述べたように、本発明は次の優れた
効果を有する。 (1) 水素添加反応に必要な水素は、水から発生する活性
水素によりまかなわれるので、外部からの高価な水素の
供給は必要ない。 (2) 超臨界状態では、水、ガス、転換油等が均一相で作
用し易いため、石炭軽質化を効率よく行える。特に水そ
のものが生成物の重合反応を抑止する効果もある。 (3) 石炭を液化する際に超臨界水中での燃焼を利用する
のでプロセス全体の熱効率が極めて高い。 (4) 加熱に必要なエネルギとして未反応の石炭の燃焼熱
を利用すれば、外部からエネルギを供給しなくてすむ。 (5) 水分除去の前処理工程が不要となり、また液化油の
分留も減圧操作のみで可能であるため液化油の蒸留分離
工程等が簡素化する。従って、従来の転換プロセスに比
べてプロセスが簡素化する。 (6) 反応温度が低く、また硫黄や窒素分は水中に捕集さ
れ、NOxの発生もないので従来法に見られる大型な脱
硫、脱窒素工程を必要としない。
As described above, the present invention has the following excellent effects. (1) Since hydrogen required for the hydrogenation reaction is covered by active hydrogen generated from water, it is not necessary to supply expensive hydrogen from the outside. (2) In the supercritical state, water, gas, converted oil and the like are likely to act in a uniform phase, so that coal lightening can be efficiently performed. In particular, water itself also has the effect of suppressing the polymerization reaction of the product. (3) Since the combustion in supercritical water is used when liquefying coal, the thermal efficiency of the entire process is extremely high. (4) If the combustion heat of unreacted coal is used as the energy required for heating, it is not necessary to supply energy from outside. (5) The pretreatment process for removing water is not necessary, and the liquefied oil can be fractionally distilled only by depressurizing operation, which simplifies the liquefied oil distillation separation process. Therefore, the process is simplified as compared with the conventional conversion process. (6) The reaction temperature is low, and sulfur and nitrogen are not collected in water.
Since no NOx is generated, the large-scale desulfurization and denitrification steps found in the conventional method are not required.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の石炭の転換方法を示す工程図。FIG. 1 is a process diagram showing a coal conversion method of the present invention.

【符号の説明】[Explanation of symbols]

11 前処理工程 12 石炭液化工程 12a 部分酸化工程 13 分留工程 11 Pretreatment process 12 Coal liquefaction process 12a Partial oxidation step 13 fractionation process

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川崎 始 茨城県那珂郡那珂町大字向山字六人頭 1002番地の14 三菱マテリアル株式会社 那珂エネルギー研究所内 (56)参考文献 特開 昭51−2702(JP,A) 特開 平5−331466(JP,A) 特開 平5−240061(JP,A) 特開 昭52−117904(JP,A) 特表 昭56−501205(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10G 1/00 - 1/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hajime Kawasaki 14 Nakamura-cho, Naka-gun, Naka-gun, Ibaraki Prefecture 1002 No. 1002 14 Mitsubishi Materials Corporation Naka Energy Research Institute (56) Reference JP-A-51-2702 ( JP, A) JP 5-331466 (JP, A) JP 5-240061 (JP, A) JP 52-117904 (JP, A) Special table Sho 56-501205 (JP, A) (58) ) Fields surveyed (Int.Cl. 7 , DB name) C10G 1/00-1/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 微粉化した石炭と水を混合してスラリー
濃度が5〜60重量%になるように石炭のスラリーを調
製する前処理工程(11)と; 前記スラリーを温度374〜800℃で密度0.05〜
0.9g/cm 3 超臨界状態に維持して、石炭を液化
する石炭液化工程(12)と; 前記液化工程(12)で生じた油を含む超臨界水を段階的に
減圧及び冷却して前記生成した油を分留する分留工程(1
3)とを含む石炭の転換方法であって、 前記液化工程(12)は、前記液化工程(12)で未反応の石炭
を含むスラリーを超臨界状態を維持したまま酸素又は空
気を加えることにより前記未反応の石炭の炭素を一酸化
炭素に部分酸化する部分酸化工程(12a)を含み、 前記液化工程(12)において、次の〜の3つの反応を
併発して複合的に起こさせることにより前記未反応石炭
を軽質化して液化する ことを特徴とする石炭の転換方
法。石炭の加水分解反応、 石炭の熱分解反応、及び 前記及びの反応で未反
応の石炭と前記の反応で生成した活性水素及び前記部
分酸化工程(12a)で生成した一酸化炭素と水により生成
した活性水素又はその双方との反応
1. A slurry prepared by mixing pulverized coal and water.
Concentration pretreatment step of preparing a slurry of coal to be 5 to 60 wt% and (11); density 0.05 the slurry at a temperature three hundred seventy-four to eight hundred ° C.
Supercritical water stepwise depressurization and cooling comprising an oil produced in the liquefaction step (12); to maintain the supercritical state of 0.9 g / cm 3, a coal liquefaction process for liquefying coal (12) Fractionation step (1
3) a coal conversion method comprising, wherein the liquefaction step (12), the unreacted coal in the liquefaction step (12)
Slurry containing oxygen while maintaining supercritical state
Carbon of the unreacted coal by adding air
The method includes a partial oxidation step (12a) of partial oxidation to carbon, and in the liquefaction step (12), the following three reactions are performed.
The unreacted coal is generated by causing it to occur in a complex manner.
A coal conversion method characterized by lightening and liquefying coal. Coal hydrolysis, coal pyrolysis reaction, and non-anti-above and the reaction
Coal and active hydrogen produced by the above reaction and the above part
Generated by carbon monoxide generated in the partial oxidation step (12a) and water
With activated hydrogen or both
【請求項2】2. 石炭液化工程(12)において、CoMo/In the coal liquefaction process (12), CoMo /
AlAl 22 O 33 ,NiW/Al, NiW / Al 22 O 33 ,又はNiW/ゼオライト, Or NiW / zeolite
を触媒として使用する請求項1記載の石炭の転換方法。The method for converting coal according to claim 1, wherein is used as a catalyst.
【請求項3】3. 分留工程(13)で分留された重質油の一部Part of the heavy oil fractionated in the fractionation step (13)
を前処理工程(11)における石炭のスラリーと混合する請To mix with the slurry of coal in the pretreatment step (11)
求項1記載の石炭の転換方法。The method for converting coal according to claim 1.
【請求項4】 石炭が草炭、褐炭、亜歴青炭又は歴青炭
である請求項1ないしいずれか記載の石炭の転換方
法。
4. A coal peat moss, lignite, subbituminous Aosumi or gravel claims 1 to blue charcoal to 3 transformation method of coal according to any one.
JP04335197A 1997-02-27 1997-02-27 Coal conversion method Expired - Fee Related JP3491663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04335197A JP3491663B2 (en) 1997-02-27 1997-02-27 Coal conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04335197A JP3491663B2 (en) 1997-02-27 1997-02-27 Coal conversion method

Publications (2)

Publication Number Publication Date
JPH10237459A JPH10237459A (en) 1998-09-08
JP3491663B2 true JP3491663B2 (en) 2004-01-26

Family

ID=12661439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04335197A Expired - Fee Related JP3491663B2 (en) 1997-02-27 1997-02-27 Coal conversion method

Country Status (1)

Country Link
JP (1) JP3491663B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1639056A (en) * 2001-08-21 2005-07-13 三菱综合材料株式会社 Method and apparatus for recycling hydrocarbon resource
CN113416589B (en) * 2021-06-08 2022-10-11 太原理工大学 Process for passivating and partially desulfurizing lignite

Also Published As

Publication number Publication date
JPH10237459A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
CN101434879B (en) Method for preparing methyl alcohol synthesis gas and compressed natural gas from coke oven gas and coal
US4050908A (en) Process for the production of fuel values from coal
US20080098654A1 (en) Synthetic fuel production methods and apparatuses
EP3052435B1 (en) Method for storing electric energy
EP0444684A2 (en) Solid waste refining and conversion to methanol
CN102649683B (en) Method for producing methanol by combined gasification of lurgi gasification wastewater through treatment of coal water slurry furnace
AU2010272097A1 (en) Hydrogen Production Method and Hydrogen Production System
JP2007527348A (en) Method for converting hydrocarbons
CN101845319B (en) Process for producing wax and clean fuel oil by using biomass as raw material
CN1267386C (en) Process for the production of liquid hydrocarbons
CN100396662C (en) Integrated urea manufacturing equipment and method
RU2459860C2 (en) Method for obtaining fuels from waste
JP3489478B2 (en) Conversion method of hydrocarbon resources using supercritical water
JP4030846B2 (en) Methanol production method and apparatus
JP3491663B2 (en) Coal conversion method
AU731318B2 (en) Process for the production of liquid hydrocarbons
CA2147809C (en) Process for converting natural gas into hydrocarbons
JPS6383032A (en) Manufacture of liquid organic substances
JP3491664B2 (en) Conversion method of coal using supercritical water
JP3508812B2 (en) Continuous coal conversion equipment using supercritical water
GB2263314A (en) Power generation process.
JP3417452B2 (en) Conversion method of coal by supercritical water
JP5182635B2 (en) High-grade hydrocarbon oil production apparatus and production method
CN103980928A (en) Biomass oil and preparation method thereof
CN1513047A (en) Method to start a process for hydrocarbons

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees