JPS61203198A - Liquefaction of coal - Google Patents

Liquefaction of coal

Info

Publication number
JPS61203198A
JPS61203198A JP4135385A JP4135385A JPS61203198A JP S61203198 A JPS61203198 A JP S61203198A JP 4135385 A JP4135385 A JP 4135385A JP 4135385 A JP4135385 A JP 4135385A JP S61203198 A JPS61203198 A JP S61203198A
Authority
JP
Japan
Prior art keywords
oil
solvent
liquefaction
boiling point
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4135385A
Other languages
Japanese (ja)
Other versions
JPH0367552B2 (en
Inventor
Tadashi Yao
正 矢尾
Keiichi Hayakawa
早川 恵一
Kazuhito Kurachi
倉地 和仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4135385A priority Critical patent/JPS61203198A/en
Publication of JPS61203198A publication Critical patent/JPS61203198A/en
Publication of JPH0367552B2 publication Critical patent/JPH0367552B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To prepare high-quality coal liquefaction products with a good yield consistently in a simple process, by mixing a product of hydrocracking of medium oil obtained by hydrogenation of a solvent fraction after coal liquefaction, with a heavy oil and using the mixt. as solvent for coal liquefaction. CONSTITUTION:A slurry consisting of coal, solvent and catalyst is made to undergo liquefaction reaction at 430-470 deg.C under H2 pressure of 100-200 kg/cm<2> for 0.5-2.0 hr and is distilled to obtain a light oil with a boiling point of below 200 deg.C, a medium oil with a boiling point of 200-350 deg.C and a heavy oil with a boiling point of above 350 deg.C. A mixed solvent consisting of the medi um oil and heavy oil is hydrogenated in the presence of a hydrogenation catalyst such as Ni-Mo/Al2O3 to add 0.5-2.0 wt% H2 to the solvent. The solvent is distilled for separation into light, medium and heavy oils. The medium oil is subjected to hydrocracking at above 400 deg.C under H2 pressure of 50-200 kg/cm<2> for 0.5-2.0 hr to crack n-paraffin and after removal of light oil, medium oil is mixed with the heavy oil after hydrogenation for recycling as solvent for coal liquefaction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、液化後の溶剤留分を水素添加した後、沸点2
00〜350℃留分を水素化分解することにより、石炭
液化プロセスの安定操業と、高品質、高収率の液化油製
品を得る石炭の液化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides hydrogenation of a liquefied solvent fraction with a boiling point of 2.
The present invention relates to a coal liquefaction method for achieving stable operation of a coal liquefaction process and obtaining high-quality, high-yield liquefied oil products by hydrocracking a 00-350°C fraction.

(従来技術) 石炭の液化方法は、普通石炭と石炭から生成した中・重
質油を主成分とする溶剤とを触媒と共に、水素加圧下で
加熱する。その際、石炭液化用溶剤としては、以下の■
〜■が必要とされている。
(Prior Art) A method for liquefying coal involves heating ordinary coal and a solvent whose main components are medium to heavy oil produced from coal together with a catalyst under hydrogen pressure. At that time, the following ■
~■ is needed.

■芳香族性の高い石炭を溶解するためには、芳香族性の
高い溶剤が必要である。
■In order to dissolve highly aromatic coal, a highly aromatic solvent is required.

■熱分解し易い石炭の再結合あるいは重合を抑制し、液
収率を増加するためには、水素供与性の高い溶剤が必要
である。
■In order to suppress the recombination or polymerization of coal, which is prone to thermal decomposition, and to increase the liquid yield, a solvent with high hydrogen donating properties is required.

(■石炭の熱分解を促進し、液収率を増加するためには
、若干極性を有する溶剤が必要である。
(■ In order to accelerate the thermal decomposition of coal and increase the liquid yield, a slightly polar solvent is required.

ところで、石炭中にはその根源植物のワックス分等に由
来すると考えられる正パラフィンが含まれており、液化
油中の中e重質油を液化用溶剤として循環使用している
と、分解しにくい正パラフィンが次第に濃化してくる。
By the way, coal contains normal paraffin, which is thought to be derived from the wax content of its source plants, and if medium-e heavy oil in liquefied oil is recycled as a liquefaction solvent, it will be difficult to decompose. The normal paraffin gradually becomes thicker.

正パラフィンが循環溶剤中に濃化すると、石炭液化用溶
剤に必要な■〜■の性質はすべて失われてくる。
When normal paraffins are concentrated in the circulating solvent, all of the properties (1) to (3) necessary for a solvent for coal liquefaction are lost.

すなわち、■については、正パラフィンは脂肪族系の化
合物であり、石炭を溶解する力は弱い。
That is, regarding (■), normal paraffin is an aliphatic compound and has a weak power to dissolve coal.

(りについては、水素供与性の目安としては、炭素−水
素結合の結合解離エネルギーが挙げられ。
(Regarding ri, the bond dissociation energy of carbon-hydrogen bonds can be cited as a measure of hydrogen donating property.

通常水素供与性溶剤の結合解離エネルギーは約82Kc
al/molであるが、正パラフィンでは約90Kca
l/ll1o1テ、約10Kca l/so Iの差が
あり、正パラフィンは水素を供与しにくい性質である。
Normally, the bond dissociation energy of hydrogen-donating solvents is approximately 82 Kc.
al/mol, but for normal paraffin it is about 90Kca.
There is a difference of about 10 Kcal/so I, and normal paraffins have a property of being difficult to donate hydrogen.

溶剤中に正パラフィンが濃化することにより、水素供与
性は次第に損なわれる。さらに、正パラフイン自身も熱
分解するので、正パラフィンにより水素供与性溶剤が消
費され、一層溶剤の水素供与性は減少する。
As the normal paraffins become concentrated in the solvent, hydrogen donating properties are gradually impaired. Furthermore, since the normal paraffin itself is thermally decomposed, the hydrogen-donating solvent is consumed by the normal paraffin, and the hydrogen-donating ability of the solvent is further reduced.

■については、正パラフィンは非極性であり、熱分解の
促進は期待できない。
Regarding (2), normal paraffin is non-polar and cannot be expected to promote thermal decomposition.

従って、石炭液化用溶剤から正パラフィンを減少もしく
は除去することは、重要な要件である。
Therefore, reducing or eliminating normal paraffins from coal liquefaction solvents is an important requirement.

そこで1本発明者らは、先に特願昭59−195833
号及び特願昭59−221345号において、沸点35
0〜450℃留分から富パラフィン留分を除去した後、
乏パラフィン留分を液化用溶剤の一部として使用する方
法を提供した。
Therefore, the inventors of the present invention first applied for patent application No. 59-195833.
No. 59-221345, boiling point 35
After removing the paraffin-rich fraction from the 0-450°C fraction,
A method is provided for using a paraffin-poor fraction as part of a liquefaction solvent.

(解決しようとする技術的課題) しかし、沸点350℃以上の正パラフィンの融点は、例
えば沸点357℃のヘンエイコサンで41℃であり、室
温では固体である。また、沸点350℃以上の液化油留
分も半固体であり、半固体の留分から固体の留分を分離
することは容易ではなく、上記方法にはこの点に問題が
ある。上記方法では加熱あるいは沸点350℃以下の留
分で希釈して液状にした後、正パラフィンを分離する方
法がとられている。
(Technical Problem to be Solved) However, the melting point of normal paraffins with a boiling point of 350°C or higher is 41°C, for example, heneicosane, which has a boiling point of 357°C, and is solid at room temperature. Furthermore, the liquefied oil fraction with a boiling point of 350° C. or higher is also semi-solid, and it is not easy to separate the solid fraction from the semi-solid fraction, and the above method has a problem in this respect. The above method involves heating or diluting with a fraction with a boiling point of 350° C. or lower to make it liquid, and then separating the normal paraffins.

一方、正パラフィンは低臭、低毒性、低粘性であり、反
応性が乏しく、微生物により容易に分解されるなどの特
性を有している。この特性のために、正パラフィンはそ
のままで各種溶剤、潤滑剤等に広く利用されるとともに
各種界面活性剤用原料としても利用されている。即ち、
沸点350℃以上の正パラフィンは、潤滑剤、紙加工剤
等に利用され、また、沸点350℃以下の正パラフィン
は溶剤及び界面活性剤用原料として利用されており・今
後ソフト型洗剤あるいは高級アルコール系洗剤原料とし
て、使用量の増加が見込まれている。
On the other hand, normal paraffin has characteristics such as low odor, low toxicity, low viscosity, poor reactivity, and is easily decomposed by microorganisms. Because of this property, normal paraffin is widely used as it is in various solvents, lubricants, etc., and is also used as a raw material for various surfactants. That is,
Normal paraffins with a boiling point of 350°C or higher are used in lubricants, paper processing agents, etc., and normal paraffins with a boiling point of 350°C or lower are used as raw materials for solvents and surfactants. The amount used as a raw material for detergents is expected to increase.

また、正パラフィンは発熱量が大きなりリーンな燃料で
あり、液化油製品中特に軽質油留分(IBP〜200℃
)中に多く含まれることが望まれる。
In addition, normal paraffin is a lean fuel with a large calorific value, and in liquefied oil products, it is especially suitable for light oil fractions (IBP ~ 200℃).
) is desired to be included in large amounts.

(発明の目的) 本発明は上記実情に鑑みなされたもので、比較的簡単な
手段によって、石炭の液化を阻害する正パラフィンを液
化用溶剤から減少もしくは除去して、液化油収率の低下
を防ぐと共に、製品価値の高い液化油を得ることを目的
とする。
(Object of the Invention) The present invention has been made in view of the above circumstances, and uses relatively simple means to reduce or remove normal paraffins that inhibit coal liquefaction from a liquefaction solvent, thereby reducing the yield of liquefied oil. The purpose is to prevent this and obtain liquefied oil with high product value.

(発明の構成) 本発明の骨子は、液化後の溶剤留分を水素添加した後、
沸点200〜350℃留分を水素化分解して正パラフィ
ンを減少させた生成物と、沸点350℃以上留分とを混
合し、この混合物を石炭液化用溶剤として使用する点に
ある。
(Structure of the Invention) The gist of the present invention is that after hydrogenating the solvent fraction after liquefaction,
The product obtained by hydrocracking a fraction with a boiling point of 200 to 350°C to reduce the amount of normal paraffins is mixed with a fraction with a boiling point of 350°C or higher, and this mixture is used as a solvent for coal liquefaction.

第1図は本発明のフローシートである0本発明。FIG. 1 is a flow sheet of the present invention.

を図面によって説明すれば1石炭、溶剤及び触媒を混合
したスラリーは、液化工程で石炭の液化反応を行なう。
To explain this using drawings, a slurry containing coal, a solvent, and a catalyst undergoes a coal liquefaction reaction in a liquefaction process.

反応後の生成物は、蒸留工程で軽質油(沸点200℃以
下)、中質油(沸点200〜350°C)、重質油(沸
点350℃以上)の各留分に分留する6次いで中質油及
び重質油は水素添加されて水素供与能を高められる。こ
の生成物は再び軽質油、中質油、重質油に分留され、こ
のうち、中質油は水素化分解して正パラフィンを減少さ
せた後、重質油と混合し、循環用溶剤として使用する。
The product after the reaction is fractionated into light oil (boiling point 200°C or lower), medium oil (boiling point 200-350°C), and heavy oil (boiling point 350°C or higher) in a distillation process. Medium oil and heavy oil are hydrogenated to increase their hydrogen donating ability. This product is again fractionated into light oil, medium oil, and heavy oil. Of these, the medium oil is hydrocracked to reduce normal paraffins, and then mixed with heavy oil and used as a circulating solvent. Use as.

なお、この間、各工程で分留された軽質油は製品として
系外に取り出す。
During this time, the light oil fractionated in each process is taken out of the system as a product.

液化工程における液化条件としては1反応源度430〜
470℃、反応時間0.5〜2,0時間、水素圧100
〜200Kg/ crn’程度が望ましい。
The liquefaction conditions in the liquefaction process are 1 reaction source degree 430~
470℃, reaction time 0.5-2.0 hours, hydrogen pressure 100
~200Kg/crn' is desirable.

第2図に示す如く1反応源度430℃未満では石炭液化
が目的とする液化油収率が低く、逆に470℃を越える
と、ガス、残渣の生成量が多くなり液化油収率が減少す
るとともにニーキング等による操業トラブルが増加する
As shown in Figure 2, if the temperature per reaction is less than 430°C, the liquefied oil yield, which is the goal of coal liquefaction, will be low, and if it exceeds 470°C, the amount of gas and residue produced will increase and the liquefied oil yield will decrease. At the same time, operational troubles due to kneeing, etc. increase.

また、水素圧については100Kg/ ctn’未満で
は芳香環の水添反応及び、水添反応に引き統〈分解反応
が起こりにくく、液収率が低下する。一方水素圧が必要
以上に高くなると高価な水素の消費量が増加するととも
に耐圧設備の製造に要するコストが割高となる。
In addition, when the hydrogen pressure is less than 100 Kg/ctn', the hydrogenation reaction of the aromatic ring and the decomposition reaction that is associated with the hydrogenation reaction are difficult to occur, resulting in a decrease in liquid yield. On the other hand, if the hydrogen pressure becomes higher than necessary, the amount of expensive hydrogen consumed increases and the cost required to manufacture pressure-resistant equipment becomes relatively high.

石炭液化用触媒としては特に限定されず、入手が容易で
かつ安価な鉄系の化合物を使用することができる。鉄系
の触媒としては赤泥、鉄鉱石、転炉ダスト等の製鉄所廃
棄物、ならびに石炭ガス化プロセスの廃棄物が挙げられ
、その使用量としCは石炭に対して1〜5重量2で良い
、また、助触媒として硫黄化合物を鉄触媒と同様石炭に
対して1〜5重量2使用することが望ましい、触媒濃度
が1$未満では鉄系触媒による液収率向上の効果がほと
んど無く、5zを越えると触媒効率が悪くなる。
The catalyst for coal liquefaction is not particularly limited, and easily available and inexpensive iron-based compounds can be used. Examples of iron-based catalysts include red mud, iron ore, steel mill waste such as converter dust, and waste from coal gasification processes. Good.Also, it is desirable to use a sulfur compound as a cocatalyst in the same way as an iron catalyst, at a ratio of 1 to 5 weight 2 based on coal.If the catalyst concentration is less than 1$, there is almost no effect of improving liquid yield by iron-based catalysts. If it exceeds 5z, the catalyst efficiency will deteriorate.

得られた液化生成物は常圧蒸留あるいは減圧蒸留により
、沸点200℃までの軽質油、沸点200〜350°C
の中質油、沸点350℃以上の重質油に分留される。軽
質油は製品としてそのまま系外に取出される0重質油の
全量と液化用溶剤を確保するのに必要な量の中質油は溶
剤水添工程に送られる。
The obtained liquefied product is distilled under normal pressure or reduced pressure to produce light oil with a boiling point of up to 200°C, boiling point between 200 and 350°C.
It is fractionated into medium oil and heavy oil with a boiling point of 350°C or higher. The light oil is taken out of the system as a product.The entire amount of heavy oil and the amount of medium oil necessary to secure the liquefaction solvent are sent to a solvent hydrogenation process.

溶剤水添工程では例えばXl−No/A2207等水添
触媒により水素が溶剤あたり0.5〜2.0重量2付加
される。0.5X未満では溶剤の水素供与性向上の効果
が認められず2zを越えると高価な水素の消費量も多く
かつ過度の水素化により水素供与性が損なわれる。水添
条件としては、反応温度300〜400℃、反応時間0
.5〜2.0時間、水素圧100〜200Kg/ cゴ
が望ましい。
In the solvent hydrogenation step, 0.5 to 2.0 weight 2 of hydrogen is added per solvent using a hydrogenation catalyst such as Xl-No/A2207. If it is less than 0.5X, no effect of improving the hydrogen donating property of the solvent will be observed, and if it exceeds 2z, a large amount of expensive hydrogen will be consumed and the hydrogen donating property will be impaired due to excessive hydrogenation. The hydrogenation conditions include a reaction temperature of 300 to 400°C and a reaction time of 0.
.. Hydrogen pressure of 100 to 200 kg/c for 5 to 2.0 hours is desirable.

反応温度300℃未満では溶剤の水素化は十分に行なわ
れず、400℃を越えると、溶剤の分解反応が進行し易
くなり脱水素反応が併発する−また、反応時間0.5時
間未満では十分な水素化反応は行なわれず、2時間を越
えると過度の水素化により、溶剤の水素供与性が損なわ
れる。さらに、水素圧100Kg/ crrr′未満で
は十分な水素化が行なえず、200Kg/ Cm″を越
えると高圧容器に要するコストが割高となる。上記溶剤
水添工程を経た中・重質油は、再び常圧蒸留、減圧蒸留
により沸点200℃までの軽質油、沸点200〜350
℃の中質油、沸点350℃以上の重質油に分留される0
本発明者らは溶剤水添工程を経た重質油は、中質油と比
べて水素供与性が極めて高く、石炭の液化反応を促進す
る効果が優れていることを見出した。
If the reaction temperature is less than 300°C, the solvent will not be sufficiently hydrogenated, and if it exceeds 400°C, the decomposition reaction of the solvent will easily proceed, resulting in simultaneous dehydrogenation reactions. No hydrogenation reaction takes place, and if the reaction time exceeds 2 hours, the hydrogen donating ability of the solvent will be impaired due to excessive hydrogenation. Furthermore, if the hydrogen pressure is less than 100 kg/crrr', sufficient hydrogenation cannot be carried out, and if it exceeds 200 kg/cm', the cost required for a high-pressure vessel becomes relatively high. Light oil with boiling point up to 200℃ by atmospheric distillation or vacuum distillation, boiling point 200-350
℃ medium oil, fractionated into heavy oil with a boiling point of 350℃ or higher
The present inventors have discovered that heavy oil that has undergone a solvent hydrogenation process has an extremely high hydrogen donating property compared to medium oil, and has an excellent effect of promoting the liquefaction reaction of coal.

第3図は、水添後の重質油とコークスエ堝で副生ずる水
素供与性の乏しい吸収油との混合比を変えて、石炭の液
化反応を行った結果゛である。液収率の増加割合は、重
質油濃度が30駕までは、急であるが、それ以上の濃度
では穏やかである。定常状態における溶剤中の重質油濃
度は約25%であるので、重質油だけでは水素供与性は
不十分である。
Figure 3 shows the results of a coal liquefaction reaction by varying the mixing ratio of hydrogenated heavy oil and absorbent oil with poor hydrogen donating properties produced as a by-product in a coke pot. The rate of increase in liquid yield is steep up to a heavy oil concentration of 30 ml, but is moderate at higher concentrations. Since the concentration of heavy oil in the solvent in a steady state is about 25%, heavy oil alone has insufficient hydrogen donating properties.

発明者らは、更に水添後の中質油を水素化分解し、軽質
油を除去した中質油には、水添後の中質油と比べて若干
劣るけれども水素供与性が残存していることを見出した
。この水素化分解後の中質油は定常状態で溶剤中に75
1含まれており、溶剤の大部分を占めているので、前述
の優れた水素供与性を有する重質油と混合することに、
より、重質油濃度30%以上の液収率が穏やかに増加す
る領域に持ち込めることを見出した。
The inventors further hydrocracked the medium oil after hydrogenation, and the medium oil from which the light oil was removed still had hydrogen donating properties, although it was slightly inferior to the medium oil after hydrogenation. I found out that there is. This medium oil after hydrocracking is in a solvent at a steady state of 75%
1 and occupies the majority of the solvent, so when mixed with the heavy oil that has excellent hydrogen donating properties,
It has been found that the liquid yield can be brought into a region where the liquid yield increases moderately when the heavy oil concentration is 30% or more.

しかも、この方法によると軽質油は液化工程、水添工程
、水素化分解工程の3工程で生成され、製品中に占める
軽質油の割合が大巾に増加する。
Moreover, according to this method, light oil is produced in three steps: liquefaction, hydrogenation, and hydrocracking, and the proportion of light oil in the product increases significantly.

さらに、水添工程を経た中質油は、液化工程後の中質油
と比べて水素化芳香環化合物が多く含まれているので、
水素化分解による軽質油収率の向上と、水素化分解工程
のコーキング防止に有効である。水素化芳香環化合物は
芳香環化合物と比べて水素供与性は優れており、熱分解
し易いことが知られている。
Furthermore, the medium oil that has undergone the hydrogenation process contains more hydrogenated aromatic ring compounds compared to the medium oil that has undergone the liquefaction process.
It is effective in improving the yield of light oil by hydrocracking and preventing coking in the hydrocracking process. It is known that hydrogenated aromatic ring compounds have better hydrogen donating properties than aromatic ring compounds and are easily thermally decomposed.

また、発明者らは液化条件下(450℃、1 h)で正
パラフィンの分解反応を行ない、沸点350℃以上の正
パラフィンの平均分解率が約5ozであり。
In addition, the inventors conducted a decomposition reaction of normal paraffins under liquefaction conditions (450°C, 1 h), and the average decomposition rate of normal paraffins with a boiling point of 350°C or higher was about 5 oz.

沸点350℃以下の正パラフィンの平均分解率が約10
駕であることから、液化プロセスで濃化する正パラフィ
ンは沸点350℃以下の正パラフィンであることを見出
した。
The average decomposition rate of normal paraffins with a boiling point of 350℃ or less is approximately 10
It was found that the normal paraffin that thickens in the liquefaction process is a normal paraffin with a boiling point of 350° C. or lower.

これらの知見に基づき、水添後の沸点200〜350℃
留分を水素化分解して、正パラフィンの分解と軽質油の
生成を行なう本発明をなしたものである。
Based on these findings, the boiling point after hydrogenation is 200-350℃.
The present invention involves hydrocracking a fraction to decompose normal paraffins and produce light oil.

水素化分解工程では例えばゼオライト、シリカゲル、ア
ルミナなどの担体に旧、Go、にo、 W 、 Pt等
の金属が担持されたいわゆる水素化分解触媒が使用され
る。水素化分解条件としては1反応温度400℃以上、
反応時間0.5〜2.0時間、水素圧50〜200Kg
/ crn”が望ましい0反応温度400℃未満では、
正パラフィンは分解しにくく、軽質油収率が低い、また
、反応時間0.5時間未満では十分な分解反応は起こり
にくく、2時間を越えると併発する重合反応等により、
触媒が劣化し易くなるとともに、生成した中質油の水素
供与性が損なわれる。さらに、水素圧50Kg/crn
’未満では重合反応が進行し易くなるので触媒が被毒さ
れ易< 、 200Kg/cm″を越えると高圧容器に
要するコストが割高となる。
In the hydrocracking process, a so-called hydrocracking catalyst is used in which a metal such as Go, Go, Ni, W, or Pt is supported on a carrier such as zeolite, silica gel, or alumina. Hydrocracking conditions include 1 reaction temperature of 400°C or higher;
Reaction time 0.5-2.0 hours, hydrogen pressure 50-200Kg
/ crn” is desirable at a reaction temperature of less than 400°C.
Normal paraffin is difficult to decompose and has a low light oil yield. Also, if the reaction time is less than 0.5 hours, sufficient decomposition reaction is difficult to occur, and if it exceeds 2 hours, polymerization reaction etc. occur simultaneously.
The catalyst tends to deteriorate, and the hydrogen donating ability of the produced medium oil is impaired. Furthermore, hydrogen pressure 50Kg/crn
If the pressure is less than 200 kg/cm, the polymerization reaction tends to proceed easily and the catalyst is likely to be poisoned. If the pressure exceeds 200 kg/cm, the cost required for the high-pressure vessel becomes relatively high.

この水素化分解工程を経た水添中質油は、常圧蒸留によ
り沸点200℃以下の軽質油が除去され。
From the hydrogenated medium oil that has undergone this hydrocracking process, light oil with a boiling point of 200° C. or lower is removed by atmospheric distillation.

沸点200℃以上の留分は前述の水添後の重質油と合わ
せて、液化用溶剤として循環使用される。
The fraction with a boiling point of 200° C. or higher is recycled and used as a liquefaction solvent together with the above-mentioned hydrogenated heavy oil.

次に本発明を実施例によって説明する。Next, the present invention will be explained by examples.

(実施例) 液化用石炭としてはワンドアン炭を用いた。その元素分
析値を第1表に示す。
(Example) Wandouan coal was used as the liquefaction coal. The elemental analysis values are shown in Table 1.

このワンドアン炭を4!J、/hrの処理能力を有する
石炭液化装置、2文ハrの能力を有する溶剤水添装置に
より、21ハrの処理能力を有する水素化分解装置を用
いて、第2表に示す操業条件で液化−溶剤水添−水素化
分解をくり返し、定常状態に達した時の物質収支を実施
例として第3表に示す、なお、液化−溶剤水添のみをく
り返した場合の物質収支を比較例1として、また第5図
に示すように液化−溶剤水添−重質油分からの正パラフ
ィンの分離をくり返した場合の物質収支を比較例2とし
て第3表に併記した。
This Wandoan charcoal is 4! Using a coal liquefaction equipment with a processing capacity of J,/hr, a solvent hydrogenation equipment with a capacity of 2 har, and a hydrocracking unit with a processing capacity of 21 hr, the operating conditions shown in Table 2 are carried out. The material balance when liquefaction-solvent hydrogenation-hydrogenolysis is repeated and a steady state is reached is shown in Table 3 as an example.The material balance when only liquefaction-solvent hydrogenation is repeated is shown in Table 3 as a comparative example. In addition, as shown in FIG. 5, the material balance in the case of repeating liquefaction, solvent hydrogenation, and separation of normal paraffin from heavy oil is also shown in Table 3 as Comparative Example 2.

第3表から明らかなように、重質油分から正パラフィン
を分離した場合(比較例2)には液化油収率(軽質油+
中質柚子重質油)は増加するけれども石炭液化プロセス
が目的としている、軽質油収率は減少する。
As is clear from Table 3, when normal paraffins are separated from heavy oil (Comparative Example 2), the liquefied oil yield (light oil +
The light oil yield, which is the target of the coal liquefaction process, will decrease, although the medium-quality yuzu heavy oil) will increase.

また、製品である軽質油に含まれる正パラフイン濃度、
軽質油の発熱量も大きく減少している。
In addition, the concentration of normal paraffin contained in the product light oil,
The calorific value of light oil has also decreased significantly.

しかし、水添中質油を水素化分解する実施例の場合には
、液化油収率は、重質油から正パラフィンを分離する場
合と同様増加しており、#に、軽質油収率、正パラフイ
ン濃度、発熱量は大巾に向上している。軽質油中に含ま
れる正パラフイン濃度が増加したことにより、芳香族化
合物濃度、含窒素化合物濃度、含硫黄化合物濃度、含酸
素化合物濃度は減少する。
However, in the case of the example in which hydrogenated medium oil is hydrocracked, the liquefied oil yield increases as in the case of separating normal paraffins from heavy oil, and in #, the light oil yield, The concentration of normal paraffin and calorific value are greatly improved. As the concentration of normal paraffin contained in light oil increases, the concentration of aromatic compounds, nitrogen-containing compounds, sulfur-containing compounds, and oxygen-containing compounds decrease.

芳香族化合物濃度の減少により、燃焼時におけるススの
発生が抑制され、また、含へテロ原子化合物濃度が減少
したことにより液化油による腐食、臭気、燃焼時のNO
x、SOxの発生が改善される。さらに、軽質油中に含
まれている正パラフィンの分析を行なったところ、第4
図に示すように炭素鎖数9にピークを有していることが
認められた。
The reduction in the concentration of aromatic compounds suppresses the generation of soot during combustion, and the reduction in the concentration of heteroatom-containing compounds reduces corrosion caused by liquefied oil, odor, and NO during combustion.
x, SOx generation is improved. Furthermore, when we analyzed the normal paraffins contained in light oil, we found that
As shown in the figure, it was observed that there was a peak at the number of carbon chains of 9.

この軽質油は正パラフィ゛ン含有量が多いので、そのま
まではオクタン価が低い自動車用ガソリンとなるが、既
存の接触改質技術によりオクタン価の向上が見込まれる
。゛ この正パラフィンを既存技術で分離すれば、工業用ガソ
リン例えばミネラルスピリットとして塗料用溶剤等に使
用可能である。
Since this light oil has a high content of positive paraffins, it becomes automobile gasoline with a low octane number as it is, but it is expected that the octane number can be improved by existing catalytic reforming technology. ``If this normal paraffin is separated using existing technology, it can be used as an industrial gasoline, such as mineral spirit, as a paint solvent.

第2表 (発明の効果) 実施例から明らかなように、この発明によれば■液化油
収率が向上する。
Table 2 (Effects of the Invention) As is clear from the Examples, according to the present invention (1) the liquefied oil yield is improved.

■軽質油が高収率で得られる。■Light oil can be obtained in high yield.

(■高品質の製品が得られる(高発熱量、低硫黄)。(■High quality products can be obtained (high calorific value, low sulfur).

■自動車用ガソリン、工業用ガソリン等に用途開発が広
がる。
■Applications are being developed to include automobile gasoline, industrial gasoline, etc.

などの効果を有し、工業的に極めて有益な発明である。This invention has the following effects and is extremely useful industrially.

【図面の簡単な説明】 第1図は本発明の方法を示すブロック図、第2図は本方
法における反応温度と液収率の関係を示す図、第3図は
水添重質油濃度と液収率の関係を示す図、第4図は実施
例で得られた軽質油中の正パラフィンの分析結果を示す
図、第5図は従来法を示すブロック図である。
[Brief Description of the Drawings] Figure 1 is a block diagram showing the method of the present invention, Figure 2 is a diagram showing the relationship between reaction temperature and liquid yield in this method, and Figure 3 is a diagram showing the relationship between hydrogenated heavy oil concentration and FIG. 4 is a diagram showing the relationship between liquid yields, FIG. 4 is a diagram showing the analysis results of normal paraffins in light oil obtained in Examples, and FIG. 5 is a block diagram showing the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 液化後の溶剤留分を水素添加した後、沸点200〜35
0℃留分を水素化分解して正パラフィンを減少させた生
成物と、沸点350℃以上留分とを混合し、この混合物
を石炭液化用溶剤として使用することを特徴とする石炭
の液化方法。
After hydrogenating the solvent fraction after liquefaction, the boiling point is 200-35
A method for liquefying coal, which comprises mixing a product obtained by hydrocracking a 0°C fraction to reduce normal paraffins and a fraction with a boiling point of 350°C or higher, and using this mixture as a solvent for coal liquefaction. .
JP4135385A 1985-03-04 1985-03-04 Liquefaction of coal Granted JPS61203198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4135385A JPS61203198A (en) 1985-03-04 1985-03-04 Liquefaction of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4135385A JPS61203198A (en) 1985-03-04 1985-03-04 Liquefaction of coal

Publications (2)

Publication Number Publication Date
JPS61203198A true JPS61203198A (en) 1986-09-09
JPH0367552B2 JPH0367552B2 (en) 1991-10-23

Family

ID=12606140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4135385A Granted JPS61203198A (en) 1985-03-04 1985-03-04 Liquefaction of coal

Country Status (1)

Country Link
JP (1) JPS61203198A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01213397A (en) * 1988-02-22 1989-08-28 Sumitomo Metal Ind Ltd Method for liquefying coal
AU746500B2 (en) * 1997-03-27 2002-05-02 Kabushiki Kaisha Kobe Seiko Sho (A.K.A. Kobe Steel Ltd.) Process of coal liquefaction
CN103468314A (en) * 2013-09-27 2013-12-25 神华集团有限责任公司 Direct coal liquefaction cycle solvent, preparation method thereof and application thereof
US11629233B2 (en) 2017-06-22 2023-04-18 Elkem Silicones France Sas Free-radical photoinitiators and uses of same in silicone compositions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01213397A (en) * 1988-02-22 1989-08-28 Sumitomo Metal Ind Ltd Method for liquefying coal
AU746500B2 (en) * 1997-03-27 2002-05-02 Kabushiki Kaisha Kobe Seiko Sho (A.K.A. Kobe Steel Ltd.) Process of coal liquefaction
CN103468314A (en) * 2013-09-27 2013-12-25 神华集团有限责任公司 Direct coal liquefaction cycle solvent, preparation method thereof and application thereof
US11629233B2 (en) 2017-06-22 2023-04-18 Elkem Silicones France Sas Free-radical photoinitiators and uses of same in silicone compositions

Also Published As

Publication number Publication date
JPH0367552B2 (en) 1991-10-23

Similar Documents

Publication Publication Date Title
CA1094579A (en) Process for the up-grading of fischer-tropsch synthesis effluents
JPH07242884A (en) Production of engine fuel by extraction and hydrogenation of hydrocarbon feed, and gas oil produced
WO1985000619A1 (en) Production of fuels, particularly jet and diesel fuels, and constituents thereof
CN102031140A (en) Combination method of gasification and coke processing from inferior heavy oil
CN107460003B (en) Method for increasing yield of aviation kerosene through hydrocracking
CA1142117A (en) Process for the preparation of gas oil
JPS59109588A (en) Liquefaction of brown coal
JPS61203198A (en) Liquefaction of coal
WO2023109818A1 (en) Heavy oil product upgrading method and heavy oil product upgrading system
JPS5843433B2 (en) coal liquefaction method
JPH0367551B2 (en)
JP4889095B2 (en) Eco-friendly gasoline composition and method for producing the same
CN109777488B (en) Refinery gas combined processing technology
JPS5952679B2 (en) Coal liquefaction method
EP0159867B1 (en) Process for hydroconversion of sulphur containing heavy hydrocarbons with synthesis gas
JP3491663B2 (en) Coal conversion method
US2132855A (en) Production of valuable liquid products from distillable carbonaceous materials
JPS61181890A (en) Method of liquefying coal
JPS6254791A (en) Treatment of coal tar
JPS6254792A (en) Treatment of coal tar
RU2572514C1 (en) Method of obtaining automobile petrol
CN117660056A (en) Combined method for producing industrial white oil
CA2578864A1 (en) Method for desulfurization of heavy oil
JPS6361086A (en) Liquefying method for coal
AU576776B2 (en) Production of fuels, particularly jet and diesel fuels, and constituents thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees