JPS5952679B2 - Coal liquefaction method - Google Patents

Coal liquefaction method

Info

Publication number
JPS5952679B2
JPS5952679B2 JP11464977A JP11464977A JPS5952679B2 JP S5952679 B2 JPS5952679 B2 JP S5952679B2 JP 11464977 A JP11464977 A JP 11464977A JP 11464977 A JP11464977 A JP 11464977A JP S5952679 B2 JPS5952679 B2 JP S5952679B2
Authority
JP
Japan
Prior art keywords
coal
oil
heat
reaction
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11464977A
Other languages
Japanese (ja)
Other versions
JPS5448810A (en
Inventor
篤雄 藤宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP11464977A priority Critical patent/JPS5952679B2/en
Publication of JPS5448810A publication Critical patent/JPS5448810A/en
Publication of JPS5952679B2 publication Critical patent/JPS5952679B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は石炭粉末を溶剤処理することにより液体化する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for liquefying coal powder by treating it with a solvent.

更に詳しくは、石油類を700℃以上の温度で熱分解、
水蒸気分解あるいは接触分解して得られる生成油のうち
初留点が150℃以上の留分を加熱処理して得られる熱
処理油あるいはこの熱処理油を更に蒸留してピッチ分を
分離した熱安定性の高い油を単独あるいは石炭系重質油
と混合したものを溶剤として用いることを特徴とする石
炭の液化方法に関するものである。
More specifically, petroleum is thermally decomposed at a temperature of 700℃ or higher,
A heat-treated oil obtained by heat-treating a fraction with an initial boiling point of 150°C or higher among produced oils obtained by steam cracking or catalytic cracking, or a thermally stable oil obtained by further distilling this heat-treated oil to separate the pitch component. The present invention relates to a method for liquefying coal, which is characterized by using high-temperature oil alone or mixed with coal-based heavy oil as a solvent.

石炭は固体燃料として石油が多量に生産されるまでは長
年大量に使用されてきた。
Coal was used in large quantities as a solid fuel for many years until oil was produced in large quantities.

石炭が石油にその地位をゆすった原因としては固体であ
ることと不燃性の灰分が多量に含まれていることが挙げ
られる。
Coal has lost its place to oil because it is solid and contains a large amount of non-flammable ash.

近年石油資源が漸減する予測から石炭の再利用が注目さ
れており、石炭の燃料としての欠点を除くために液化し
て灰分を除く方法が数多く提案されている。
In recent years, the reuse of coal has been attracting attention due to predictions that petroleum resources will gradually decline, and many methods have been proposed to remove ash by liquefying coal in order to eliminate its drawbacks as a fuel.

また一方現在における石炭の大きな用途として製鉄用コ
ースタを製造するための原料炭としての利用があるが世
界的な銑鉄需要の増大と原料の粘結炭の枯渇化のために
、粘結炭の低い一般炭を粘結炭化する必要があり、その
ための提案が数多くなされているが、有力な方法として
溶剤処理した石炭の液化物(Solvent Refi
ned Coal)を使用する方法があり、このための
石炭の液化法が燃料用とともに研究されている。
On the other hand, a major use of coal at present is as coking coal for manufacturing coasters for steel manufacturing, but due to the increasing global demand for pig iron and the depletion of coking coal as a raw material, the availability of coking coal is low. It is necessary to coagulate steam coal, and many proposals have been made for this purpose.
There is a method of using ned coal), and methods for liquefying coal for this purpose are being researched as well as for fuel use.

これらには従来の石炭を高圧高温下で水素化触媒の存在
下で水素で直接水素化して液体化する直接水素化法のほ
かに溶剤を用いてそれより温和な条件下で石炭の液化を
行う方法が提案されている。
In addition to the conventional direct hydrogenation method, in which coal is directly hydrogenated and liquefied with hydrogen under high pressure and high temperature in the presence of a hydrogenation catalyst, coal is liquefied under milder conditions using a solvent. A method is proposed.

この溶剤を使用する方法は次の2つに大別される。Methods using this solvent can be roughly divided into the following two types.

一つは水素加圧下で反応を行う方法であり、もう一つは
水素を用いないで溶解反応のみを行う方法である。
One is a method in which the reaction is carried out under hydrogen pressure, and the other is a method in which only a dissolution reaction is carried out without using hydrogen.

これらの2つの方法ともに使用される溶剤はアンスラセ
ン油、クレオソート油、ピッチ油、コールタールなどの
石炭系重質油がほとんどであり、石油系重質油は石炭と
の相容性が悪いためほとんど使用されていなかった。
The solvents used in both of these two methods are mostly coal-based heavy oils such as anthracene oil, creosote oil, pitch oil, and coal tar, and petroleum-based heavy oils are not compatible with coal. It was hardly used.

しかし日本特許公告52−30282号には石炭と石油
系重質油を混合して400〜450℃で熱処理して、つ
いでこの熱処理物中の集合体を分離することにより無灰
燃料を製造する方法が示され、石油系重質油としては原
油の常圧蒸留残油、真空蒸留残油、アスファル1〜、ナ
フサ熱分解副生タールが用いられている。
However, Japanese Patent Publication No. 52-30282 discloses a method for producing ashless fuel by mixing coal and petroleum-based heavy oil, heat-treating the mixture at 400 to 450°C, and then separating the aggregates in this heat-treated product. As the petroleum-based heavy oil, crude oil residual oil from atmospheric distillation, residual oil from vacuum distillation, asphalt 1~, and naphtha thermal decomposition byproduct tar are used.

この方法においては脂肪族系の炭化水素の多い残油類を
芳香族化させるために必然的に400〜450℃という
高い温度が必要であり、また石炭系重質油と比べて石炭
に対する溶解性が低いなどという欠点を有している。
In this method, a high temperature of 400 to 450°C is required to aromatize the residual oil containing a lot of aliphatic hydrocarbons, and it also has a higher solubility in coal than coal-based heavy oil. It has the disadvantage of being low.

またナフサ熱分解副生タールはそのままで芳香族性が高
いが、オレフィン分か゛多く含まれており、そのまま用
いるとそのオレフィン分の重合が起こり高分子量のピッ
チを生成し石炭の溶解を低下せしめるという欠点を有し
ていることが明らかになった。
In addition, naphtha thermal decomposition by-product tar is highly aromatic as it is, but it contains a large amount of olefins, and if used as is, the olefins will polymerize, producing high-molecular-weight pitch and reducing the dissolution of coal. It has become clear that it has some drawbacks.

本発明はこのような欠点を有するナフサ熱分解副生ター
ルを含めた石油類の熱分解生成油を用いてこれを適当な
処理をすることによりこれらの欠点を除き、さらにこれ
らを溶剤として用いる石炭の液化方法を発見したもので
ある。
The present invention uses petroleum pyrolysis product oil including naphtha pyrolysis by-product tar, which has such drawbacks, and removes these drawbacks by appropriately treating the oil, and furthermore, uses these as a solvent to produce coal. He discovered a method to liquefy

すなわち本発明は、石油類を700℃以上の温度で熱分
解、水蒸気分解あるいは接触分解して得られる生成油の
うち初留点が150℃以上の留分を常圧ないし200k
g/cm2Gの圧力で温度250〜500℃、15分〜
10時間熱処理し、この熱処理物あるいはこれを蒸留し
て得た留分を単独であるいはこれと石炭系重質油と混合
して溶剤とし、石炭粉末に対してこの溶剤を1〜10重
量倍混合し反応圧常圧ないし200kg/cm□ G、
反応温度300〜500℃、反応時間0.5〜5時間処
理することにより石炭を液化する方法である。
In other words, the present invention uses a fraction having an initial boiling point of 150°C or higher of oil obtained by thermally cracking, steam cracking, or catalytic cracking of petroleum at a temperature of 700°C or higher at normal pressure or 200°C.
At a pressure of g/cm2G and at a temperature of 250 to 500℃ for 15 minutes or more
After heat treatment for 10 hours, the heat treated product or the fraction obtained by distilling it is used alone or mixed with coal-based heavy oil as a solvent, and this solvent is mixed 1 to 10 times by weight with respect to coal powder. The reaction pressure is normal pressure to 200kg/cm□G,
This is a method of liquefying coal by treating the coal at a reaction temperature of 300 to 500°C for a reaction time of 0.5 to 5 hours.

本発明に用いる溶剤である特殊な処理をした石油類の熱
分解生成油は次のようにして得られる。
The specially treated oil produced by thermal decomposition of petroleum, which is the solvent used in the present invention, can be obtained as follows.

まず石油類を700℃以上の温度で水蒸気の存在下ある
いは非存在下で熱分解あるいは接触分解するとガス分の
ほかに多量の液状生成油が得られる。
First, when petroleum is thermally cracked or catalytically cracked at a temperature of 700° C. or higher in the presence or absence of steam, a large amount of liquid oil is obtained in addition to gas.

ここでは、石油類の分解によりエチレン、プロピレンな
どのオレフィンを製造する際に副生物として得られる液
状生成油が好ましく用いられる。
Here, liquid product oil obtained as a by-product when producing olefins such as ethylene and propylene by decomposing petroleum is preferably used.

これらの液状生成油のうち沸点150℃以上の留分、好
ましくは200℃以上の留分を次いで特定の条件下で加
熱処理する。
Of these liquid product oils, a fraction with a boiling point of 150° C. or higher, preferably a boiling point of 200° C. or higher, is then heat-treated under specific conditions.

この加熱処理によりオレフィン分などの不安定成分は安
定化されて石炭の液化用溶剤として適した油となる。
This heat treatment stabilizes unstable components such as olefins, resulting in an oil suitable as a solvent for coal liquefaction.

加熱処理はかなり広範囲な条件を用いることができるが
一般には反応圧力が常圧から200kg/cm2G、好
ましくは2〜20kg/cm2G、反応温度250〜5
00℃、好ましくは300〜450℃、反応時間15分
〜10時間、好ましくは1〜5時間反応させる。
Although a fairly wide range of conditions can be used for the heat treatment, generally the reaction pressure is from normal pressure to 200 kg/cm2G, preferably 2 to 20 kg/cm2G, and the reaction temperature is 250 to 50 kg/cm2G.
The reaction time is 15 minutes to 10 hours, preferably 1 to 5 hours.

この反応は回分式または連続式で1段もしくは2段以上
の多段で行うことができる。
This reaction can be carried out batchwise or continuously in one stage or in multiple stages of two or more stages.

2段で行う場合の反応条件の一例として次の条件で行う
こともできる。
As an example of the reaction conditions when carrying out the reaction in two stages, the following conditions can also be used.

第1段反応では反応圧力2 kg/cm2G以−七、好
ましくは5〜20kg/cm2G反応温度250〜36
0℃、好ましくは300〜350℃で15分以上、好ま
しくは1〜5時間熱処理する。
In the first stage reaction, the reaction pressure is 2 kg/cm2G or more, preferably 5 to 20 kg/cm2G, and the reaction temperature is 250 to 36 kg/cm2.
Heat treatment is performed at 0°C, preferably 300 to 350°C, for 15 minutes or more, preferably 1 to 5 hours.

続いて第2段反応では反応圧力2〜20kg/cm□G
、好ましくは5〜15kg/cm2G、反応温度370
〜450℃好ましくは390〜430℃の条件下で30
分〜10時間、好ましくは1〜5時間熱処理する。
Subsequently, in the second stage reaction, the reaction pressure was 2 to 20 kg/cm□G.
, preferably 5 to 15 kg/cm2G, reaction temperature 370
~450°C, preferably 30°C under conditions of 390~430°C
The heat treatment is carried out for 1 to 10 hours, preferably 1 to 5 hours.

この場合好ましくは、連続で操作し第1段攪拌容器に連
続的に原料を導入し、第1段攪拌容器から熱処理油を連
続的に抜出し、第2段攪拌容器に導入する方法が採用さ
れる。
In this case, preferably, a method is adopted in which the raw material is continuously introduced into the first-stage stirring vessel through continuous operation, and the heat-treated oil is continuously extracted from the first-stage stirring vessel and introduced into the second-stage stirring vessel. .

この熱処理反応は触媒として鉱酸類、固体酸類、フリー
デルクラフト触媒、パーオキシド類、その他のオレフィ
ン類の重合反応を促進する物質を添加して行ってもよい
This heat treatment reaction may be carried out by adding mineral acids, solid acids, Friedel-Crafts catalysts, peroxides, and other substances that promote the polymerization reaction of olefins as catalysts.

このようにして得られた熱処理油はそのまま溶剤として
用いられるか゛、好ましくはこれを蒸留して得た留分を
用いることである。
The heat-treated oil thus obtained may be used as a solvent as it is, or preferably a fraction obtained by distilling it may be used.

例えばこの熱処理油を蒸留し沸点400℃以上の留分が
ピッチ分として除去された後に、油成分のうち軽質分が
除去された沸点範囲200〜400℃、好ましくは24
0〜330℃さらに好ましくは240〜300℃留分を
蒸留分離し、必要に応じて水素化精製して用いられる。
For example, after distilling this heat-treated oil and removing the fraction with a boiling point of 400°C or higher as pitch, the boiling point range is 200 to 400°C, preferably 24°C, from which the light fraction of the oil components is removed.
A fraction of 0 to 330°C, more preferably 240 to 300°C, is separated by distillation and, if necessary, subjected to hydrorefining for use.

本発明の石炭液化用溶剤としてこの熱処理油又は熱処理
油を更に蒸留して得た留分を単独で用いることができる
が石炭系重質油、たとえばクレオソート油、アンスラセ
ン油、コールタール、ピッチ油あるいは石炭液化油から
回収された溶剤相当留分等を混合したものも本発明の石
炭液化用溶剤として用いることができる。
As the solvent for coal liquefaction of the present invention, this heat-treated oil or a fraction obtained by further distillation of the heat-treated oil can be used alone, but coal-based heavy oils such as creosote oil, anthracene oil, coal tar, and pitch oil can be used alone. Alternatively, a mixture of fractions equivalent to the solvent recovered from coal liquefied oil can also be used as the coal liquefaction solvent of the present invention.

これらの混合物を用いる場合には、熱処理油またはこれ
を蒸留して得られる留分の使用量は石炭系重質油に対し
て0.1〜〜10容量倍、好ましくは0.5〜5容量倍
用いる。
When using a mixture of these, the amount of heat-treated oil or the fraction obtained by distilling it is 0.1 to 10 times the volume of coal-based heavy oil, preferably 0.5 to 5 volumes. Use twice.

これら石炭系溶剤を本発明の熱処理油と混合して使用す
ると石炭系溶剤の欠点である粘性の高いことによる作業
性の悪さが改善され、更に石炭のコークス化をこの熱処
理油の水素供与性が石炭系溶剤より高いことを利用して
防止するのに効果が゛ある。
When these coal-based solvents are used in combination with the heat-treated oil of the present invention, poor workability due to high viscosity, which is a disadvantage of coal-based solvents, can be improved, and the hydrogen-donating properties of this heat-treated oil can also improve the coking of coal. It is effective in preventing this by taking advantage of the fact that it is higher than coal-based solvents.

本発明で言う石炭は通常の石炭が用いられ、たとえば各
種褐炭、亜炭、亜歴青炭、歴青炭などが用いられ、これ
を粉末に通常20メツシユ以下たとえば100メツシユ
以下に粉砕して用いられる。
The coal referred to in the present invention is ordinary coal, such as various brown coals, lignites, subbituminous coals, bituminous coals, etc., which is pulverized into powder, usually 20 meshes or less, for example 100 meshes or less. .

本発明においては石炭に対する溶剤の量を1〜10重量
倍、好ましくは1.5〜5重量倍使用する。
In the present invention, the amount of solvent used is 1 to 10 times the weight of coal, preferably 1.5 to 5 times by weight.

溶剤の使用量が1重量倍より少ないと、反応生成物の分
散が悪くなり、均一な分散が行われず、石炭粉末と溶剤
の混合物が反応容器中への送入に機械的困難をともなう
欠点がある。
If the amount of solvent used is less than 1 times the weight, the dispersion of the reaction product will be poor, and uniform dispersion will not be achieved, resulting in mechanical difficulties in feeding the mixture of coal powder and solvent into the reaction vessel. be.

また溶剤の量を10重量倍より多くしても石炭の溶解性
にそれほど効果がないばかりか、また石炭の液化処理の
能率を下げるなどという不利がある。
Furthermore, increasing the amount of solvent by more than 10 times by weight not only does not have much effect on the solubility of coal, but also has disadvantages such as lowering the efficiency of coal liquefaction treatment.

石炭の液化処理の反応圧力は常圧ないし200 kg/
cm2Gを用いるが、より高い圧力では石炭の溶解性に
それほど効果がなく、また設備費、運転費が高くなって
実用的ではない。
The reaction pressure for coal liquefaction treatment is normal pressure to 200 kg/
cm2G is used, but higher pressures do not have much effect on the solubility of coal, and are not practical due to high equipment and operating costs.

また反応温度300〜500℃、好ましくは350〜4
50℃を用いるが、300℃より低温では石炭の液化反
応は起らず石炭の物理的膨潤が起こり、また500℃よ
り高温では石炭のコークス化、分解反応などが起こり、
目的とする液化反応はほとんど起らない。
Also, the reaction temperature is 300-500°C, preferably 350-400°C.
A temperature of 50°C is used; however, at temperatures lower than 300°C, the liquefaction reaction of the coal does not occur and physical swelling of the coal occurs, and at temperatures higher than 500°C, coking and decomposition reactions of the coal occur.
The desired liquefaction reaction hardly occurs.

反応時間は0.5〜5時間、好ましくは0.5〜2時間
である。
The reaction time is 0.5 to 5 hours, preferably 0.5 to 2 hours.

0.5時間より短いと石炭の液化反応がまだ十分に行な
われず、反応時間5時間より長い反応生成物の2次的な
重合反応、分解反応などが活発となり目的とする石炭の
液化反応を妨害する作用をする。
If the reaction time is shorter than 0.5 hours, the coal liquefaction reaction will not take place sufficiently, and if the reaction time is longer than 5 hours, the secondary polymerization reaction, decomposition reaction, etc. of the reaction products will become active and interfere with the desired coal liquefaction reaction. have the effect of

本発明においては、この反応において、水素を用いるこ
とが好ましく採用される。
In the present invention, it is preferable to use hydrogen in this reaction.

もちろん必ずしも水素が必要という訳ではない。Of course, hydrogen is not always necessary.

水素を用いる場合は溶媒に溶解した石炭を水素化するこ
とにより2次的な重合を防ぎ、液化物の安定性を高める
のに効果があるが、水素を用いない場合でもこの液化物
を速やかに系外に取り出し冷却することにより2次的な
重合を起こさせないようにすることも可能である。
When using hydrogen, it is effective to prevent secondary polymerization and increase the stability of the liquefied product by hydrogenating the coal dissolved in the solvent, but even when hydrogen is not used, it is effective to hydrogenate the coal dissolved in the solvent. It is also possible to prevent secondary polymerization by taking it out of the system and cooling it.

水素の採用は用いられる石炭の溶解性の難易や生成する
石炭の液状物の必要とする性状により選択される。
The use of hydrogen is selected depending on the solubility of the coal used and the required properties of the liquid coal to be produced.

また本発明の石炭の液化反応には反応を促進するために
触媒を用いても良いが必ずしも必要というものではない
Further, in the coal liquefaction reaction of the present invention, a catalyst may be used to promote the reaction, but it is not always necessary.

この触媒は通常石炭の液化反応に用いられる触媒が使用
で゛き、例えば下e、 Co、 Niなどの鉄族元素に
属する元素の酸化物や硫化物の単独や混合物あるいはモ
リブデンやタングステンの酸化物や硫化物の組み合せあ
るいはこれを種々の担体に担持したもの、あるいはフリ
ーデル・クラフト型触媒たとえば塩化アルミニウム、塩
化亜鉛、塩化スズ、塩化ニッケルなど、および複合酸化
物(シリカ・アルミナ、シリカ・チタニア、シリカ・ジ
ルコニア、亜鉛・アルミナ、チタニア・アルミナ、ジル
コニア・アルミナなど)などが用いうる。
Catalysts that are normally used in coal liquefaction reactions can be used for this catalyst, such as single or mixed oxides and sulfides of elements belonging to the iron group such as Co, Co, and Ni, or oxides of molybdenum and tungsten. and sulfides supported on various carriers, or Friedel-Crafts type catalysts such as aluminum chloride, zinc chloride, tin chloride, nickel chloride, etc., and composite oxides (silica-alumina, silica-titania, Silica/zirconia, zinc/alumina, titania/alumina, zirconia/alumina, etc.) can be used.

このようにして得られた石炭の液化物すなわち溶剤精製
炭は反応条件により常温で液体にも固体にもなりうるが
、無産燃料として用いられる場合にはさらに含まれる灰
分を除去するために遠心分離やろ過が行われる。
The liquefied coal obtained in this way, that is, the solvent-refined coal, can be either liquid or solid at room temperature depending on the reaction conditions, but when used as a non-productive fuel, it is centrifuged to remove the ash content. and filtration are performed.

強粘結炭用粘結助剤として用いられる場合には灰分の除
去は全く必要がないが、あるいは灰分の含有率の高い石
炭が処理された場合にはろ過あるいは遠心分離により軽
度に灰分の除去が行われる。
When used as a caking aid for highly caking coal, ash removal is not necessary at all, or when coal with a high ash content is processed, ash removal may be performed by filtration or centrifugation. will be held.

次に本発明の実施例を上げて説明する。Next, examples of the present invention will be described.

これらは本発明を具体的に説明するためのものであって
本発明はこれらに制限されるものではない。
These are for specifically explaining the present invention, and the present invention is not limited thereto.

実施例 1 ナフサ熱分解残油の沸点150℃以上の留分をオートク
レーブ中に入れ400℃で15kg/cm2・Gの条件
で3時間熱処理した。
Example 1 A fraction of naphtha pyrolysis residue with a boiling point of 150°C or higher was placed in an autoclave and heat-treated at 400°C for 3 hours at 15 kg/cm2·G.

熱処理後この熱処理物を減圧蒸留し常圧換算沸点240
〜300℃の留分を捕集した。
After heat treatment, the heat treated product is distilled under reduced pressure to have a boiling point of 240 in terms of normal pressure.
The fraction at ~300°C was collected.

この留分を100メツシユ以下に粉砕した夕張炭に対し
3重量倍加えてオートクレーブ沖で45kg/cm2G
、400℃で2時間処理した。
This fraction was added 3 times by weight to Yubari coal crushed to less than 100 mesh, and then heated to 45kg/cm2G in an autoclave offshore.
, and treated at 400°C for 2 hours.

処理後の石炭の液化率は60%であった。The liquefaction rate of the coal after treatment was 60%.

この処理物をプレコートフィルターでろ過し溶剤精製炭
を得た。
This treated product was filtered through a pre-coat filter to obtain solvent purified charcoal.

この精製炭は常温で固体であるが100℃の加熱程度で
溶解する。
This refined coal is solid at room temperature, but melts when heated to about 100°C.

原料炭の元素分析ではC86,1,H6,3,05,4
,N2,0. So、3%であったが溶剤精製炭はC9
0,2,H6,2,N2,6. So、1%でありその
発熱量は原料炭の8500Kcal/ kgに対して約
9000Kcal/kgであった。
Elemental analysis of coking coal shows C86,1, H6,3,05,4
,N2,0. So, 3%, but solvent refined coal has C9
0,2,H6,2,N2,6. So was 1%, and its calorific value was approximately 9000 Kcal/kg compared to 8500 Kcal/kg for coking coal.

実施例 2 ナフサ熱分解残油のうち沸点150℃以上の留分をオー
トクレーブに入れ400℃で10kg/cm2・Gの圧
力下で2時間加熱処理し、熱処理物を減圧蒸留して常圧
換算沸点230〜330℃の留分を得た。
Example 2 A fraction of the naphtha pyrolysis residue with a boiling point of 150°C or higher was placed in an autoclave and heat-treated at 400°C for 2 hours under a pressure of 10 kg/cm2・G, and the heat-treated product was distilled under reduced pressure to determine the boiling point in terms of normal pressure. A fraction of 230-330°C was obtained.

二の留出油をアンスラセン油と等容量混合し、この混合
物を太平洋炭に対し2重量倍加えて圧力30kg/cm
□G、温度410℃で2時間処理した。
Mix the same volume of distillate oil with anthracene oil, add 2 times the weight of this mixture to Taiheiyo Coal, and apply a pressure of 30 kg/cm.
□G, treated at a temperature of 410°C for 2 hours.

処理後石炭の液化率は約80%であった。The liquefaction rate of the treated coal was about 80%.

実施例 3 ナフサを850℃で熱分解し、次いで蒸留して重質残渣
油を得た。
Example 3 Naphtha was pyrolyzed at 850° C. and then distilled to obtain a heavy residual oil.

この留分は比重(15℃/4℃)1.047、初留点1
56℃、50%留出点269℃、終点70%、346℃
の性状を有していた。
This fraction has a specific gravity (15℃/4℃) of 1.047 and an initial boiling point of 1.
56℃, 50% distillation point 269℃, end point 70%, 346℃
It had the following properties.

この残渣油をまず内径4mmのパイプスチールを通して
350℃まで昇温した後攪拌器付容器に連続的に張り込
み熱処理を行った。
This residual oil was first heated to 350° C. through a steel pipe with an inner diameter of 4 mm, and then continuously poured into a container equipped with a stirrer for heat treatment.

このとき圧力は15kg/cm□G、平均滞留時間は1
時間であった。
At this time, the pressure was 15 kg/cm□G, and the average residence time was 1
It was time.

第1段攪拌容器から連続的に抜き出された熱処理物を第
2段目のパイプスチールを通して400℃まで昇温後、
第2段攪拌反応器に張り込み熱処理を行った。
The heat-treated material continuously extracted from the first stage stirring vessel is heated to 400°C through the second stage pipe steel.
The mixture was placed in a second-stage stirring reactor and subjected to heat treatment.

このとき圧力は10kg/cm”G、温度は400℃、
平均滞留時間は1時間であった。
At this time, the pressure was 10kg/cm"G, the temperature was 400℃,
Average residence time was 1 hour.

次に第2段反応器より熱処理物を連続的に抜き出し、2
50℃、10mmHgの条件下に運転されているフラッ
シュ蒸留塔に導入し沸点が400℃より軽い留分と重い
留分に分離する。
Next, the heat-treated product is continuously extracted from the second stage reactor, and the
The mixture is introduced into a flash distillation column operated at 50° C. and 10 mmHg, and separated into a fraction with a boiling point lower than 400° C. and a heavier fraction.

こうして得られた沸点400℃以下の留出油を併設され
ている減圧蒸留装置に導入し常圧換算沸点240〜30
0℃留分を採取した。
The distillate oil with a boiling point of 400°C or less obtained in this way is introduced into the attached vacuum distillation equipment, and the distillate has a boiling point of 240 to 30°C in terms of normal pressure.
The 0°C fraction was collected.

この油の比重は(15℃/4℃)で土01であった。The specific gravity of this oil was (15°C/4°C) and 01.

(A油とする) 次に200メツシユ以下に粉砕した夕張炭にこのA油を
3重量倍加えて反応圧力60kg/cm2G、反応温度
400℃で反応時間1時間処理した。
(This oil is referred to as A oil) Next, 3 times the weight of this oil A was added to Yubari coal crushed to 200 mesh or less, and the mixture was treated at a reaction pressure of 60 kg/cm2G and a reaction temperature of 400° C. for 1 hour.

処理後石炭の液化率は約60%であった。The liquefaction rate of the treated coal was about 60%.

実施例 4 実施例3で得られたA油を原料として水素化精製を行っ
た。
Example 4 Hydrorefining was performed using oil A obtained in Example 3 as a raw material.

触媒は市販のN1−W−A1203触媒を用い反応圧力
50 kg/cm2G、反応温度350℃、LH3VI
I(z/H,C容量比600で行った。
The catalyst used was a commercially available N1-W-A1203 catalyst, the reaction pressure was 50 kg/cm2G, the reaction temperature was 350°C, and LH3VI
I(z/H, C capacity ratio 600).

この処理油を200メツシユ以下に粉砕した夕張炭に対
し4重量倍添加し水素加圧下で420℃圧力40kg/
cm2Gで2時間処理したところ石炭の液化率は83%
であった。
This treated oil was added 4 times by weight to Yubari coal crushed to less than 200 mesh and heated at 420℃ under hydrogen pressure at 40kg/
When treated at cm2G for 2 hours, the liquefaction rate of coal was 83%.
Met.

実施例 5 実施例3で得られたA油を、石炭の液化物から減圧蒸留
により得られたA油とほは゛同一沸点範囲を有するリサ
イクル油と1:10の割合で混合した。
Example 5 Oil A obtained in Example 3 was mixed in a ratio of 1:10 with a recycled oil having almost the same boiling point range as Oil A obtained by vacuum distillation from coal liquefaction.

次いでこの混合油を200メツシユ以下に粉砕した太平
洋炭に2重量倍加えてオートクレーブ沖で圧力60kg
/cm2G、温度380℃で2時間処理した。
Next, this mixed oil was added twice by weight to Pacific coal crushed to less than 200 mesh, and the mixture was placed in an autoclave at a pressure of 60 kg.
/cm2G and a temperature of 380°C for 2 hours.

処理後の石炭の液化率は80%であった。The liquefaction rate of the coal after treatment was 80%.

実施例 6 実施例3に示したA油を200メツシユ以下に粉砕した
赤平炭に対して3重量倍加えてペースト状にしたものに
触媒として塩化亜鉛を1wt%添加してオートクレーブ
中で70kg/cm2G、380℃で1時間30分処理
した。
Example 6 Oil A shown in Example 3 was added 3 times by weight to Akahira coal crushed to 200 mesh or less to make a paste, 1 wt% of zinc chloride was added as a catalyst, and the mixture was heated to 70 kg/cm2G in an autoclave. , and treated at 380° C. for 1 hour and 30 minutes.

処理後の石炭の液化率は72%であった。The liquefaction rate of the coal after treatment was 72%.

実施例 7 実施例3に示したA油を150メツシユ以下に粉砕した
三池炭に対して5重量倍加えて、触媒としてN1−W−
TiO2−8iO2(NiOとして5wt%、WO3と
して22%、Ti : Si= 1モル1モル)触媒を
2wt%加え、水素加圧下でオートクレーブ中で63k
g/cm2G390℃で2時間処理した。
Example 7 Oil A shown in Example 3 was added 5 times by weight to Miike charcoal crushed to 150 mesh or less, and N1-W- was added as a catalyst.
Added 2 wt% of TiO2-8iO2 (5 wt% as NiO, 22% as WO3, Ti:Si = 1 mol 1 mol) catalyst and heated to 63k in an autoclave under hydrogen pressure.
g/cm2G and treated at 390°C for 2 hours.

処理後の石炭の液化率は79%であった。The liquefaction rate of the coal after treatment was 79%.

Claims (1)

【特許請求の範囲】 1 石油類を700℃以上の温度で熱分解、水蒸気分解
あるいは接触分解して得られる生成油のうち初留点が1
50℃以上の留分を常圧ないし200kg/cm2Gの
圧力で温度250〜500℃、15分〜10時間熱処理
し、この熱処理物あるいはこれを蒸留して得た留分を単
独であるいはこれと石炭系重質油と混合して溶剤とし、
石炭粉末に対してこの溶剤を1〜10重量倍混合し反応
圧常圧ないし200kg/cm2G、反応温度300〜
500℃、反応時間0.5〜5時間処理することを特徴
とする石炭の液化方法。 2 熱処理圧力が2〜20kg/cm2、熱処理温度が
300〜450℃である特許請求の範囲第1項記載の方
法。 3 熱処理物を蒸留して得た留分が沸点200〜400
℃を有することを特徴とする特許請求の範囲第1項記載
の方法。 4 熱処理油あるいはこれを蒸留して得た留分を石炭系
重質油に対して0.1〜10容量倍用いることを特徴と
する特許請求の範囲第1項記載の方法。 5 溶斉1jを用いる石炭粉末の処理を水素の存在下で
行うことを特徴とする特許請求の範囲第1項記載の方法
[Scope of Claims] 1 Oil obtained by thermally cracking, steam cracking or catalytically cracking petroleum at a temperature of 700°C or higher and having an initial boiling point of 1
The fraction above 50°C is heat-treated at a pressure of normal pressure to 200 kg/cm2G at a temperature of 250 to 500°C for 15 minutes to 10 hours, and the heat-treated product or the fraction obtained by distilling it is used alone or in combination with coal. It is mixed with heavy oil and used as a solvent.
This solvent is mixed 1 to 10 times by weight with respect to coal powder, reaction pressure is normal pressure to 200 kg/cm2G, and reaction temperature is 300 to 200 kg/cm2G.
A method for liquefying coal, characterized by treating at 500°C for a reaction time of 0.5 to 5 hours. 2. The method according to claim 1, wherein the heat treatment pressure is 2 to 20 kg/cm2 and the heat treatment temperature is 300 to 450°C. 3 The fraction obtained by distilling the heat-treated product has a boiling point of 200 to 400
2. A method according to claim 1, characterized in that the temperature is 0.degree. 4. The method according to claim 1, wherein the heat-treated oil or the fraction obtained by distilling the same is used in an amount of 0.1 to 10 times the volume of coal-based heavy oil. 5. The method according to claim 1, characterized in that the treatment of coal powder using the melting temperature 1j is carried out in the presence of hydrogen.
JP11464977A 1977-09-26 1977-09-26 Coal liquefaction method Expired JPS5952679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11464977A JPS5952679B2 (en) 1977-09-26 1977-09-26 Coal liquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11464977A JPS5952679B2 (en) 1977-09-26 1977-09-26 Coal liquefaction method

Publications (2)

Publication Number Publication Date
JPS5448810A JPS5448810A (en) 1979-04-17
JPS5952679B2 true JPS5952679B2 (en) 1984-12-20

Family

ID=14643082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11464977A Expired JPS5952679B2 (en) 1977-09-26 1977-09-26 Coal liquefaction method

Country Status (1)

Country Link
JP (1) JPS5952679B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647486A (en) * 1979-09-27 1981-04-30 Nippon Mining Co Ltd Treatment of cracking fraction
ZA83346B (en) * 1982-02-09 1984-03-28 Coal Industry Patents Ltd Coal extraction

Also Published As

Publication number Publication date
JPS5448810A (en) 1979-04-17

Similar Documents

Publication Publication Date Title
US3997425A (en) Process for the liquefaction of coal
US3018242A (en) Production of hydrogen-enriched hydrocarbonaceous liquids
AU2005266712B2 (en) A process for direct liquefaction of coal
CA1152924A (en) Process of converting high-boiling crude oils to equivalent petroleum products
CA1142117A (en) Process for the preparation of gas oil
JPS6189290A (en) Modified catalyst for hydro-converting of carbonaceous stockmaterial
US4081358A (en) Process for the liquefaction of coal and separation of solids from the liquid product
EP0047570B1 (en) Controlled short residence time coal liquefaction process
JPS6126954B2 (en)
US4427526A (en) Process for the production of hydrogenated aromatic compounds and their use
JPS5843433B2 (en) coal liquefaction method
AU545423B2 (en) Short residence time coal liquefaction process including catalytic hydrogenation
JPS6219478B2 (en)
JPS5952679B2 (en) Coal liquefaction method
US2118940A (en) Destructive hydrogenation of distillable carbonaceous material
DE2711105C2 (en) Process for converting coal into hydrocarbons which are liquid under normal conditions
US4464245A (en) Method of increasing the oil yield from hydrogenation of coal
US4536275A (en) Integrated two-stage coal liquefaction process
CN108504378B (en) Preparation method of coal hydropyrolysis hydrogen-donating solvent oil, hydrogen-donating solvent oil prepared by same and application thereof
JPS6158513B2 (en)
JPS5952680B2 (en) Coal liquefaction method
JPS61203198A (en) Liquefaction of coal
JP4184713B2 (en) Method for increasing production of chemical products in coke oven
CN109486521B (en) Method and system for efficiently utilizing catalytic cracking slurry oil
JPS60170693A (en) Connected process of coal liquefaction process and coke preparation process