JP4184713B2 - Method for increasing production of chemical products in coke oven - Google Patents

Method for increasing production of chemical products in coke oven Download PDF

Info

Publication number
JP4184713B2
JP4184713B2 JP2002161689A JP2002161689A JP4184713B2 JP 4184713 B2 JP4184713 B2 JP 4184713B2 JP 2002161689 A JP2002161689 A JP 2002161689A JP 2002161689 A JP2002161689 A JP 2002161689A JP 4184713 B2 JP4184713 B2 JP 4184713B2
Authority
JP
Japan
Prior art keywords
coal
liquefaction
coke
coke oven
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002161689A
Other languages
Japanese (ja)
Other versions
JP2004010629A (en
Inventor
寿弘 荒牧
洋一 相原
勲 持田
成 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Kankyo Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Kankyo Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2002161689A priority Critical patent/JP4184713B2/en
Publication of JP2004010629A publication Critical patent/JP2004010629A/en
Application granted granted Critical
Publication of JP4184713B2 publication Critical patent/JP4184713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Coke Industry (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コークス炉からの化成品の増産方法に関し、特に石炭液化法による常圧軽油および液化残渣をコークス炉装入炭に添加することでコークス製造法における課題と石炭液化法における課題を同時に解決する化成品の増産方法に関する。
【0002】
【従来の技術】
コークス製造方法においては乾留副産物を回収するいわゆる副産物回収式コークス炉が主流である。コークス炉上昇管から排出されるガスはガス精製設備で逐次冷却、精製され精製COG、コールタールなどの乾留副産物が回収される。コークスの生産が目的であるため、乾留副産物の品質や生産量は従属的である。また、高炉用のコークス製造方法においては比較的に乾留温度が高いため、コールタールの芳香族指数(fa)が過度に高くなり、これに伴ってピッチコークスの黒鉛化反応性が低下する場合がある。
【0003】
高炉用コークスを製造するコークス炉において、コールタールの生産量、品質を調整する方法は特開平8-231961号に開示されている。この方法は、系内で生産されるコールタール及び/又はピッチの一部または全部を装入炭に添加するものであり、添加したタール及び/又はピッチがガスやコークスに転換するため、添加量よりコールタールは減少する。
【0004】
ところで、石炭液化技術は、ガソリンやディーゼルなど輸送用燃料を目標に開発が進められてきたが、石炭液化プラントの建設費やランニングコストが高いために実用化が困難であった。また、石炭液化油は石油系燃料に比べて芳香族成分が過多であるため、別途、水素化精製や接触改質などの工程を必要とすることも経済的負担を大きくする要因であった。さらには、液化油を付加価値の高い化成品として利用する方法も考えられるが、目的の化学成分を分離・抽出するための工程が必要である。
【0005】
石炭液化法、特に連続式直接石炭液化法においては、石炭の水素化分解のために高価な水素が多量必要であるばかりではなく、液化油の収率を高めるために鉄系触媒が必要であり、通常は石炭あたり3wt%前後添加される。また、製品油である石炭液化粗油(常圧蒸留塔で蒸留された液化油)は石油に比較してナフテン環や1〜3環芳香族化合物の含有率が高いため、水素化精製などによるアップグレーディング(精製)が必要であり、経済性を悪化させる要因となる。即ち、常圧蒸留塔から生成する液化ナフサや常圧軽油(AGO)など石炭液化粗油を精製する精製設備が不可欠であり、また減圧蒸留塔から留出する減圧重質油は石炭液化のための循環溶剤として利用されているが、減圧液化残渣は、未だに活用される途を模索されているのが現状である。
【0006】
【発明が解決しようとする課題】
高炉用コークス製造方法における課題は、コークスコストパフォーマンスの大きい低価格劣質炭の使用比率増大や安定な高炉操業維持のためのコークス強度の向上などが課題である。また、副産物のコークス炉ガス(COG)やコールタールの生産量、これらの品質を独立に制御する方法の確立も大きな課題である。他方、石炭液化技術の実用化に向けては、水素化精製などのアップグレーディング工程を省略ないしは簡略化すること、また液化油の収率向上のための厳格な条件(触媒量や水素添加量の増加)を緩和すること、さらに液化残渣を有効に活用すること等、種々の課題がある。
かかる現状から、本発明の課題は、上記したコークス製造方法における課題と石炭液化技術の実用化における課題を同時に解決する手段を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者等は、コークス製造方法における課題と石炭液化における課題を同時に解決する手段について種々検討の結果、コークス工場と石炭液化プラントを組み合わせ併設することによってはじめて達成可能な本発明に想到した。
【0008】
すなわち、本発明のコークス炉における化成品の増産方法は、石炭の乾留副産物を回収する設備を備えたコークス製造方法において、コークス炉装入炭に石炭液化法に由来する生成物を添加して乾留することを特徴とする。
【0009】
ここで、上記した本発明の装入炭に添加する石炭液化法に由来する生成物としては少なくとも液化残渣であり、好ましくは、常圧軽油および液化残渣である。また常圧軽油の沸点範囲としては220〜350℃が望ましく、一方の液化残渣の沸点範囲が常圧換算500℃以上が望ましいものである。
更に石炭液化法に由来する生成物のコークス炉装入炭への添加量0.5〜6wt%、好ましくは1〜5wt%、最も好ましくは3wt%前後である。
【0010】
また本発明の石炭液化法は、石炭液化のプラントをコークス炉工場に併設して、石炭液化プラントから得られた生成物の内少なくとも一部を、コークス炉用装入炭に添加することで、水素化精製工程などのアップグレーディング工程を省略ないしは簡略化することを特徴とする。
これによって、石炭液化プラントの建設費やランニングコストを低減可能となり実用化の可能性が高まる。
【0011】
本発明によれば、石炭液化法に由来する生成物をコークス炉装入炭へ添加して乾留することによって、添加物はコークス炉内において熱分解され一部はコークスになるが、残部はガス、タール成分に転換する。これらは、コークス炉用装入炭の乾留にともなうCOGやコールタールとの混合状態でコークス炉上昇管から排出される。このため、装入炭への添加物由来の転換生成物の分だけBTX,フェノール,クレゾール,ナフタレン等の化成品の増産が可能であり、その回収と後の化成品処理は既設の化成品工場の設備がそのまま活用できる。
【0012】
すなわち、目的の化学成分を分離・抽出するための設備建設が省略できる。一方、高炉用コークス製造の観点からすると、主製品のコークスと副産物としてのコークス炉ガス(COG)やコールタールの生産量を高め、またこれらの品質を制御することが可能となる。
また上記した本発明によれば、従来の石炭液化プロセスにおいては、特に処理が極めて困難とされていた液化残渣がコークス炉を活用することによって、コールタール、ひいては有効な化成品として利用することを可能とした。
【0013】
また、従来の石炭液化プロセスでは液状ナフサ(ガソリン用途)やAGO(ディーゼル用途)など液化油の収率を高めるために、パイライト等の触媒量や水素添加量を多くし、かつ反応温度や圧力を高くする条件に設定せざるを得なかったが、本発明においては、こうした条件を著しく緩和することも可能である。さらに、従来必要とされていたアップグレーディング(精製)設備を省略ないしは簡略化できる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図1のフローシートに従って説明する。
先ず本発明の石炭液化法とは、特に限定されないが▲1▼鉄等の触媒を用い、高温高圧例えば500℃、300atmで水素と反応させて液化する高圧水素分解法、▲2▼コールタール系の高沸点溶剤を使用し、石炭の分解温度付近350〜450℃で加熱して抽出を行なう分解抽出法、▲3▼鉄系触媒の存在下、水素と溶剤を共存させて450℃前後で分解抽出に伴って水素化分解或いは水素化も行なう水素添加抽出法、▲4▼600℃前後の低温で乾留する低温乾留法が挙げられる。
これらの内、▲3▼水素添加抽出法は、連続式石炭液化法として大量処理が容易である点で本発明には最も好ましい。
【0015】
図1は石炭液化法として、上記の水素添加抽出法の一例をコークス炉に組み合わせたものである。通常石炭1は高沸点の液化油由来の重質分(減圧重質油)2と水素3、及び必要に応じて液化油の収率を高めるための鉄系触媒等を共存させた状態で石炭液化反応塔Aに装入されて、石炭の分解温度付近で加熱されることで溶剤抽出作用と水素化分解作用による石炭液化反応が生じる。ここで得られる石炭液化物4は、連続的に抜き出されて常圧蒸留塔Bで分留されてガス・水等の塔頂流出物5、液化ナフサ6、常圧軽油(AGO)7として分留される。
【0016】
これらを分留した残りの常圧蒸留塔Bの塔底油8は塔底温度310〜350℃、圧力5〜15KPaの減圧蒸留塔Cにて減圧重質油9を分留し、減圧蒸留塔の底部から液化残渣10が抜き出される。ここで上記の液化ナフサ6は必要に応じて調整されて輸送用燃料(基材)16として利用され、減圧重質油9は石炭液化反応塔Aへの循環溶剤として使用される。常圧軽油(AGO)7及び減圧蒸留塔の底部からの液化残渣10のいずれか一方又は両方が本発明のコークス炉用装入炭へ添加する対象とするものである。
【0017】
減圧蒸留塔Cからの液化残渣10と、必要に応じて常圧軽油(AGO)7とを添加されたコークス炉用装入炭11は、公知の室炉式コークス炉Dに装入されて通常の乾留条件(1000〜1200℃)にて高温乾留処理されて、ガス(COG)12、コールタール13、コークス14等を得る。コールタール13は適宜軽油類を含めた化成品原料15として回収され化成品製造設備へ送られる。
【0018】
ここで減圧蒸留塔Cからの液化残渣10は、沸点範囲が常圧換算500℃以上、軟化点が150℃以上であり、硬ピッチに近い性状を有するため、コークス炉用装入炭へ添加した場合、粘結性補填効果が享受できる。すなわち、低価格劣質炭の使用比率増大やコークス強度の向上などの効果がある。粘結性補填効果は添加率が低過ぎても効果は発揮できず、高過ぎても粘結性過多で逆効果となる。また、添加率が高過ぎると既設の化成品工場の設備能力を超えるため、0.5〜6wt%、好ましくは1〜5wt%、最も好ましくは3wt%前後添加することが最適である。
【0019】
ここで石炭液化プラントを単独で立地する場合は、液化油収率向上のため、反応温度450℃前後,鉄系触媒の添加率は3wt%/coal前後に設定する必要があり、水素消費量は5〜6wt%/daf-coal(無水、無灰ベースの石炭)に達するが、コークス工場に併設する場合は、液化油収率が低くても液化残渣を装入炭に添加することにより、コークス炉で乾留副産物として回収することができるため、鉄系触媒の添加率は1〜2wt%/coal前後まで液化条件を緩和することが可能となる。また、反応温度を430℃程度まで低下することにより、水素消費量は4wt%/daf-coal程度に抑えられる。
なお石炭液化生成物の中で液化ナフサ6および溶剤水素化工程における水素化ナフサは、沸点範囲がC4〜220℃であり、そのまま輸送用燃料(基材)16として利用することができる。
【0020】
【実施例】
以下、本発明の実施例を挙げて説明するが、本発明はかかる実施例によってなんら限定されるものではない。
【0021】
比較例1
タニトハルム炭(インドネシア産:亜瀝青炭)を原料とする標準的な液化条件と主要液化生成物の収率、性状を表1に示す。常圧軽油と液化残渣の収率合計は43.0wt%、液化ナフサの収率は26.0wt%であった。
【0022】
実施例1
比較例1で示したタニトハルム炭(インドネシア産:亜瀝青炭)を原料とする標準的な液化条件で得られる常圧軽油(AGO)と液化残渣を高炉用コークス製造に供される装入炭に合計3wt%添加した。この装入炭を高炉用コークスの標準的な製造条件で乾留した場合の主要乾留副産物の収率、性状およびコークス強度を表1に示す。
常圧軽油と液化残渣の分解・低分子化によりCOGとタール収率は、下記比較例2よりも大幅に増大した。また、芳香族指数faは若干低下し、BTX、フェノール、クレゾールの含有率は明らかに増加した。また、コークス強度は、常圧軽油と液化残渣を合計3wt%添加することによって基準より0.4ポイント増大した。因みに、芳香族指数faが過度に高い場合は下工程のピッチコークス性状(CTE等)にとって好ましくないが、液化残渣を添加することによりfaが低下し改善される効果も期待される。
【0023】
比較例2
実施例1における常圧軽油(AGO)と液化残渣を添加しない以外は、実施例1と同一条件の高炉用コークスの標準的な製造条件と主要乾留副産物の収率、性状の結果を表1に示す。コールタールの収率は3.6wt%、芳香族指数faは0.968であり、BTX、フェノール、クレゾールの含有率は1wt%前後であった。また、コークス強度は、タールを添加していない条件(基準)では85.0であった。
【0024】
実施例2
タニトハルム炭を原料とする比較例1よりも低触媒下の液化条件で得られる常圧軽油と液化残渣を高炉用コークス製造に供される装入炭に合計3wt%添加した。この装入炭を高炉用コークスの標準的な製造条件で乾留した場合の主要乾留副産物の収率、性状およびコークス強度を表2に示す。低触媒下の液化条件であるため、液化ナフサと常圧軽油の収率は比較例1よりも低下したが、液化残渣の収率は増大したため、装入炭に添加した液化残渣の分解・低分子化によりCOGとタール収率は実施例1よりさらに増大した。製出タールのfaもさらに低下したが、BTX、フェノール、クレゾールの含有率は実施例1とほぼ同様であった。また、コークス強度は、常圧軽油と液化残渣を合計3wt%添加することによって基準より0.6ポイント増大した。
【0025】
実施例3
タニトハルム炭を原料とする比較例1よりも低触媒下の液化条件で得られる常圧軽油と液化残渣を高炉用コークス製造に供される装入炭に合計6wt%添加した。この装入炭を高炉用コークスの標準的な製造条件で乾留した場合の主要乾留副産物の収率、性状およびコークス強度を表2に示す。
この場合の液化条件は実施例2と同様であるが、常圧軽油と液化残渣の装入炭への合計添加率が6wt%であるため、COGとタール収率は実施例2よりさらに増大した。製出タールのfaもさらに低下したが、BTX、フェノール、クレゾールの含有率は実施例2に比べやや増加した。また、常圧軽油と液化残渣を合計6wt%添加することによって粘結性過剰となり、コークス強度は基準より若干低下した。
【0026】
実施例4
タニトハルム炭を原料とする比較例1よりも低反応温度かつ低触媒の液化条件下では、液化ナフサおよび常圧軽油の収率は大幅に低下したが、液化残渣の収率は最大になった。この場合に得られる常圧軽油と液化残渣を高炉用コークス製造に供される装入炭に合計3wt%添加した。この装入炭を高炉用コークスの標準的な製造条件で乾留した場合の主要乾留副産物の収率、性状およびコークス強度を表2に示す。
この場合の液化条件は触媒添加率は実施例2,3と同様であるが、反応温度を低下させたことにより、液化ナフサと常圧軽油の収率は最低となったが、液化残渣の収率は増大したため、装入炭に添加した液化残渣の分解・低分子化によりCOGとタール収率は実施例2よりさらに増大した。製出タールのfaも実施例2よりさらに低下したがBTX、フェノール、クレゾールの含有率は実施例1,2とほぼ同様であった。また、コークス強度は、常圧軽油と液化残渣を合計3wt%添加することによって基準より0.7ポイント増大した。
【0027】
【表1】

Figure 0004184713
【0028】
【表2】
Figure 0004184713
【0029】
【発明の効果】
本発明は、高炉用コークス製造方法におけるCOGやコールタール生産の自由度を拡大するとともに、低価格劣質炭の使用比率増大やコークス強度の向上などの効果を発揮する。また、石炭液化油の一部を化成品として利用する場合で石炭液化プラントを単独に建設し稼動させる場合は、専用の化成品工場を新設する必要があるが、コークス工場に隣接して併設することにより、コークス工場に付設されている化成品工場が利用できるばかりではなく、石炭の液化条件の緩和が可能になることにより、石炭液化プラントの建設費やランニングコストの削減に寄与し、石炭液化の実用化を高めるものである。
【図面の簡単な説明】
【図1】本発明による石炭液化油から輸送用燃料と化成品を製造する概略の全体製造フローシートである。
【符号の説明】
1 石炭
2 液化油由来の重質分(減圧重質油)
3 水素
4 石炭液化物
5 塔頂流出物
6 液化ナフサ
7 常圧軽油
8 常圧蒸留塔Bの塔底油
9 減圧重質油
10 液化残渣
11 コークス炉用装入炭
12 ガス(COG)
13 コールタール
14 コークス
15 化成品
16 輸送用燃料(基材)
A 石炭液化反応塔
B 常圧蒸留塔
C 減圧蒸留塔
D コークス炉[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for increasing the production of chemical products from a coke oven, and in particular, by adding atmospheric pressure light oil and liquefaction residue from a coal liquefaction method to a coke oven charging coal, the problem in the coke production method and the problem in the coal liquefaction method are simultaneously achieved. The present invention relates to a method for increasing the production of chemical products to be solved.
[0002]
[Prior art]
In the coke production method, a so-called by-product recovery coke oven that recovers dry distillation by-products is the mainstream. The gas discharged from the coke oven riser is sequentially cooled and refined in a gas purification facility, and dry distillation byproducts such as purified COG and coal tar are recovered. Since the purpose is to produce coke, the quality and production volume of carbonization by-products are subordinate. Also, in the coke production method for blast furnace, since the carbonization temperature is relatively high, the aromatic index (fa) of coal tar becomes excessively high, and the graphitization reactivity of pitch coke may be reduced accordingly. is there.
[0003]
JP-A-8-231961 discloses a method for adjusting the production volume and quality of coal tar in a coke oven for producing blast furnace coke. In this method, a part or all of coal tar and / or pitch produced in the system is added to the charging coal, and the added tar and / or pitch is converted into gas or coke. More coal tar is reduced.
[0004]
By the way, although coal liquefaction technology has been developed with the goal of transporting fuel such as gasoline and diesel, it has been difficult to put into practical use because the construction cost and running cost of the coal liquefaction plant are high. In addition, coal liquefied oil has an excess of aromatic components compared to petroleum-based fuels, and the need for additional steps such as hydrorefining and catalytic reforming was another factor that increased the economic burden. Furthermore, a method of using liquefied oil as a high-value-added chemical product can be considered, but a process for separating and extracting a target chemical component is necessary.
[0005]
Coal liquefaction methods, especially continuous direct coal liquefaction methods, not only require large amounts of expensive hydrogen for the hydrocracking of coal, but also require iron-based catalysts to increase the yield of liquefied oil. Usually, about 3 wt% is added per coal. In addition, crude liquefied coal oil (liquefied oil distilled in an atmospheric distillation tower), which is a product oil, has a higher content of naphthene rings and 1 to 3 ring aromatic compounds than petroleum. Upgrade (refining) is necessary, which is a factor that deteriorates economic efficiency. In other words, refining equipment for refining coal liquefied crude oil such as liquefied naphtha and atmospheric light oil (AGO) produced from the atmospheric distillation column is indispensable, and the vacuum heavy oil distilled from the vacuum distillation column is used for coal liquefaction. Although it is used as a circulating solvent, the current situation is that the vacuum liquefaction residue is still being searched for.
[0006]
[Problems to be solved by the invention]
Problems in the blast furnace coke manufacturing method include increasing the use ratio of low-priced inferior coal with large coke cost performance and improving coke strength to maintain stable blast furnace operation. In addition, establishment of a method for independently controlling the production amount of coke oven gas (COG) and coal tar as by-products and their quality is also a major issue. On the other hand, for the practical application of coal liquefaction technology, the upgrade process such as hydrorefining is omitted or simplified, and strict conditions for improving the yield of liquefied oil (catalyst amount and hydrogenation amount There are various problems such as mitigating (increase) and effective utilization of the liquefaction residue.
Under such circumstances, an object of the present invention is to provide means for simultaneously solving the problems in the above-mentioned coke production method and the practical application of coal liquefaction technology.
[0007]
[Means for Solving the Problems]
As a result of various studies on means for simultaneously solving the problem in the coke production method and the problem in coal liquefaction, the present inventors have conceived the present invention that can be achieved only by combining a coke factory and a coal liquefaction plant.
[0008]
That is, the method for increasing the production of a chemical product in a coke oven according to the present invention is a coke production method equipped with a facility for recovering coal by-product by distillation, and adding a product derived from the coal liquefaction method to the coke oven charging coal It is characterized by doing.
[0009]
Here, the product derived from the coal liquefaction method to be added to the above-described charging coal of the present invention is at least a liquefaction residue, and preferably an atmospheric gas oil and a liquefaction residue. Further, the boiling range of normal pressure light oil is desirably 220 to 350 ° C., and the boiling range of one liquefaction residue is desirably 500 ° C. or higher in terms of normal pressure.
Furthermore, the addition amount of the product derived from the coal liquefaction method to the coke oven charging coal is 0.5 to 6 wt%, preferably 1 to 5 wt%, and most preferably around 3 wt%.
[0010]
Moreover, the coal liquefaction method of the present invention has a coal liquefaction plant attached to the coke oven plant, and at least a part of the product obtained from the coal liquefaction plant is added to the coke oven charging coal, It is characterized by omitting or simplifying an upgrade process such as a hydrorefining process.
As a result, the construction cost and running cost of the coal liquefaction plant can be reduced, increasing the possibility of practical application.
[0011]
According to the present invention, the product derived from the coal liquefaction method is added to the coke oven charging coal and dry-distilled, whereby the additive is pyrolyzed in the coke oven and partly becomes coke, with the remainder being gas. , Converted into tar components. These are discharged from the coke oven riser in a mixed state with COG and coal tar accompanying the dry distillation of the coke oven charging coal. For this reason, it is possible to increase the production of chemical products such as BTX, phenol, cresol, naphthalene, etc. by the amount of conversion products derived from the additive to the charging coal, and the recovery and subsequent chemical product processing will be performed at the existing chemical product plant. The equipment can be used as it is.
[0012]
That is, the construction of equipment for separating and extracting the target chemical component can be omitted. On the other hand, from the viewpoint of manufacturing blast furnace coke, it is possible to increase the production amount of coke oven gas (COG) and coal tar as main products and coke as a by-product, and to control their quality.
Further, according to the present invention described above, in the conventional coal liquefaction process, the liquefaction residue, which has been considered extremely difficult to treat, can be used as a coal tar, and thus as an effective chemical product, by utilizing a coke oven. It was possible.
[0013]
Also, in the conventional coal liquefaction process, in order to increase the yield of liquefied oil such as liquid naphtha (for gasoline) and AGO (for diesel), the amount of catalyst such as pyrite and the amount of hydrogenation are increased, and the reaction temperature and pressure are increased. Although it has been necessary to set the conditions to be higher, in the present invention, these conditions can be remarkably relaxed. Further, the upgrade (refining) equipment that has been conventionally required can be omitted or simplified.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the flow sheet of FIG.
First, the coal liquefaction method of the present invention is not particularly limited. (1) A high-pressure hydrocracking method using a catalyst such as iron and reacting with hydrogen at high temperature and high pressure, for example, 500 ° C. and 300 atm, and (2) coal tar system. (3) Decomposition and extraction method in which extraction is performed by heating at 350 to 450 ° C near the coal decomposition temperature, and (3) Decomposition at around 450 ° C in the presence of an iron-based catalyst in the presence of hydrogen and a solvent. Examples thereof include a hydrogenation extraction method in which hydrocracking or hydrogenation is also performed along with extraction, and (4) a low temperature carbonization method in which carbonization is performed at a low temperature of about 600 ° C.
Among these, (3) the hydrogenation extraction method is most preferable for the present invention in that a large-scale treatment is easy as a continuous coal liquefaction method.
[0015]
FIG. 1 shows an example of the above hydrogenation extraction method combined with a coke oven as a coal liquefaction method. Usually, coal 1 is coal in the presence of a heavy component (depressurized heavy oil) 2 and hydrogen 3 derived from high-boiling liquefied oil, and an iron-based catalyst for increasing the yield of liquefied oil if necessary. By being charged into the liquefaction reaction tower A and heated in the vicinity of the coal decomposition temperature, a coal liquefaction reaction occurs due to the solvent extraction action and the hydrocracking action. The liquefied coal 4 obtained here is continuously extracted and fractionated in the atmospheric distillation column B, and the top effluent 5 such as gas / water, liquefied naphtha 6 and atmospheric gas oil (AGO) 7 is obtained. Fractionated.
[0016]
The remaining bottom oil 8 of the atmospheric distillation tower B from which these were fractionated is the heavy oil 9 under reduced pressure in the vacuum distillation tower C at a tower bottom temperature of 310 to 350 ° C. and a pressure of 5 to 15 KPa. The liquefaction residue 10 is extracted from the bottom of the slag. Here, the above liquefied naphtha 6 is adjusted as necessary and used as a transportation fuel (base material) 16, and the reduced pressure heavy oil 9 is used as a circulating solvent to the coal liquefaction reactor A. One or both of atmospheric pressure light oil (AGO) 7 and the liquefaction residue 10 from the bottom of the vacuum distillation column are to be added to the coke oven charging coal of the present invention.
[0017]
The coke oven charging coal 11 to which the liquefaction residue 10 from the vacuum distillation column C and, if necessary, the atmospheric gas oil (AGO) 7 are added, is charged into a known chamber-type coke oven D and is usually added. Is subjected to high temperature carbonization under the dry distillation conditions (1000 to 1200 ° C.) to obtain gas (COG) 12, coal tar 13, coke 14 and the like. The coal tar 13 is appropriately recovered as a chemical product raw material 15 including light oils and sent to a chemical product manufacturing facility.
[0018]
Here, the liquefaction residue 10 from the vacuum distillation column C has a boiling point range of 500 ° C. or higher in terms of normal pressure, a softening point of 150 ° C. or higher, and has properties close to a hard pitch, so it was added to the coke oven charging coal. In this case, the caustic filling effect can be enjoyed. That is, there are effects such as an increase in the use ratio of low-cost inferior coal and improvement in coke strength. Even if the addition rate is too low, the caustic supplementing effect cannot be exhibited. Further, if the addition rate is too high, it exceeds the equipment capacity of the existing chemical product factory, so it is optimal to add 0.5 to 6 wt%, preferably 1 to 5 wt%, most preferably around 3 wt%.
[0019]
Here, when the coal liquefaction plant is located alone, in order to improve the yield of liquefied oil, it is necessary to set the reaction temperature around 450 ° C. and the addition rate of the iron-based catalyst around 3 wt% / coal, and the hydrogen consumption is 5-6 wt% / daf-coal (anhydrous, ashless-based coal), but when co-located in a coke plant, coke is added by adding liquefaction residue to the charging coal even if the liquefied oil yield is low. Since it can be recovered as a by-product by distillation in the furnace, the liquefaction conditions can be relaxed up to about 1 to 2 wt% / coal of the iron-based catalyst addition rate. Further, by reducing the reaction temperature to about 430 ° C., the hydrogen consumption can be suppressed to about 4 wt% / daf-coal.
Among the coal liquefaction products, the liquefied naphtha 6 and the hydrogenated naphtha in the solvent hydrogenation step have a boiling range of C4 to 220 ° C., and can be used as the transport fuel (base material) 16 as they are.
[0020]
【Example】
Hereinafter, although an example of the present invention is given and explained, the present invention is not limited at all by this example.
[0021]
Comparative Example 1
Table 1 shows the standard liquefaction conditions and the yield and properties of the main liquefaction products made from Tanitoharum coal (Indonesia: subbituminous coal). The total yield of atmospheric pressure light oil and liquefaction residue was 43.0 wt%, and the yield of liquefied naphtha was 26.0 wt%.
[0022]
Example 1
Total pressure gas oil (AGO) obtained under standard liquefaction conditions using Tanitoharum coal (Indonesia: sub-bituminous coal) shown in Comparative Example 1 as raw material and charged coal used for blast furnace coke production 3 wt% was added. Table 1 shows the yield, properties and coke strength of the main carbonization by-product when this charged coal is carbonized under the standard production conditions for blast furnace coke.
The COG and tar yields were significantly increased as compared with Comparative Example 2 below due to the decomposition and low molecular weight decomposition of the atmospheric gas oil and the liquefaction residue. In addition, the aromatic index fa slightly decreased, and the contents of BTX, phenol and cresol clearly increased. The coke strength was increased by 0.4 points from the standard by adding 3 wt% of atmospheric pressure light oil and liquefaction residue. Incidentally, when the aromatic index fa is excessively high, it is not preferable for the pitch coke properties (CTE or the like) in the lower step, but an effect of reducing and improving fa by adding a liquefaction residue is also expected.
[0023]
Comparative Example 2
Table 1 shows the standard production conditions of the blast furnace coke under the same conditions as in Example 1, the yield of the main dry distillation byproduct, and the properties, except that no atmospheric pressure light oil (AGO) and liquefaction residue were added in Example 1. Show. The yield of coal tar was 3.6 wt%, the aromatic index fa was 0.968, and the contents of BTX, phenol and cresol were around 1 wt%. Further, the coke strength was 85.0 under the condition (standard) in which tar was not added.
[0024]
Example 2
A total of 3 wt% of atmospheric gas oil and liquefaction residue obtained under liquefaction conditions under a lower catalyst than that of Comparative Example 1 using Tanitoharum coal as a raw material were added to the charging coal supplied for blast furnace coke production. Table 2 shows the yield, properties, and coke strength of the main carbonization by-products when this charged coal is carbonized under the standard production conditions for blast furnace coke. Since the liquefaction conditions were under a low catalyst, the yields of liquefied naphtha and atmospheric gas oil were lower than those in Comparative Example 1, but the yield of liquefied residue was increased. Molecularization further increased COG and tar yield over Example 1. The fa of the tar produced was further reduced, but the contents of BTX, phenol and cresol were almost the same as in Example 1. Moreover, coke strength increased by 0.6 points from the standard by adding 3 wt% of atmospheric pressure light oil and liquefaction residue.
[0025]
Example 3
Normal pressure light oil and liquefaction residue obtained under liquefaction conditions under a lower catalyst than that of Comparative Example 1 using Tanitoharum coal as a raw material were added in a total of 6 wt% to the charging coal used for blast furnace coke production. Table 2 shows the yield, properties, and coke strength of the main carbonization by-products when this charged coal is carbonized under the standard production conditions for blast furnace coke.
The liquefaction conditions in this case were the same as in Example 2, but the COG and tar yields were further increased from Example 2 because the total addition rate of atmospheric gas oil and liquefaction residue to the charged coal was 6 wt%. . Although the fa of produced tar was further reduced, the content of BTX, phenol and cresol was slightly increased as compared with Example 2. Further, by adding 6 wt% of the normal pressure light oil and the liquefaction residue, the caking strength was excessive, and the coke strength slightly decreased from the standard.
[0026]
Example 4
Under the liquefaction conditions with a lower reaction temperature and a lower catalyst than those of Comparative Example 1 using Tanitoharum coal as a raw material, the yields of liquefied naphtha and atmospheric gas oil were significantly reduced, but the yield of liquefied residue was maximized. In this case, the atmospheric pressure light oil and liquefaction residue obtained were added in a total amount of 3 wt% to the charging coal used for blast furnace coke production. Table 2 shows the yield, properties, and coke strength of the main carbonization by-products when this charged coal is carbonized under the standard production conditions for blast furnace coke.
In this case, the liquefaction conditions were the same as in Examples 2 and 3, but the yield of liquefied naphtha and atmospheric gas oil was minimized by lowering the reaction temperature. Since the rate increased, COG and tar yield further increased from those in Example 2 due to decomposition and low molecular weight decomposition of the liquefaction residue added to the charging coal. The fa of the tar produced was also lower than that in Example 2, but the contents of BTX, phenol and cresol were almost the same as those in Examples 1 and 2. Further, the coke strength was increased by 0.7 points from the standard by adding 3 wt% of atmospheric pressure light oil and liquefaction residue.
[0027]
[Table 1]
Figure 0004184713
[0028]
[Table 2]
Figure 0004184713
[0029]
【The invention's effect】
INDUSTRIAL APPLICABILITY The present invention expands the degree of freedom of COG and coal tar production in the blast furnace coke manufacturing method, and exhibits effects such as an increase in the use ratio of low-cost inferior coal and improvement in coke strength. In addition, when a part of coal liquefied oil is used as a chemical product and a coal liquefaction plant is to be constructed and operated independently, it is necessary to establish a dedicated chemical product factory, but it will be adjacent to the coke factory. As a result, not only can the chemicals factory attached to the coke factory be used, but also the liquefaction conditions of the coal can be relaxed, which contributes to the reduction of construction costs and running costs of the coal liquefaction plant. This will improve the practical use of
[Brief description of the drawings]
FIG. 1 is a schematic overall production flow sheet for producing transportation fuel and chemical products from coal liquefied oil according to the present invention.
[Explanation of symbols]
1 Coal 2 Heavy oil derived from liquefied oil (depressurized heavy oil)
3 Hydrogen 4 Coal liquefaction 5 Tower top effluent 6 Liquefaction naphtha 7 Atmospheric pressure oil 8 Atmospheric distillation column B bottom oil 9 Decompressed heavy oil 10 Liquefaction residue 11 Coke oven charging coal 12 Gas (COG)
13 Coal tar 14 Coke 15 Chemical product 16 Fuel for transportation (base material)
A Coal liquefaction reaction tower B Atmospheric distillation tower C Vacuum distillation tower D Coke oven

Claims (3)

石炭の乾留副産物を回収する設備を備えたコークス製造方法における該コークス炉装入炭に石炭液化法に由来する生成物をその添加量が0.5〜6wt%の範囲になるように添加して乾留して化成品を得る方法であって、該生成物が減圧蒸留から得られる液化残渣と常圧蒸留から得られる常圧軽油と併用したものであることを特徴とするコークス炉における化成品の増産方法。A product derived from the coal liquefaction method is added to the coke oven charging coal in the coke production method equipped with a facility for recovering coal dry distillation by-products so that the addition amount is in the range of 0.5 to 6 wt%. a method of obtaining a dry distillation to chemical products, reduction in the coke oven, wherein the product is obtained in combination with atmospheric gas oil obtained from atmospheric distillation and obtained that liquefied residues from vacuum distillation How to increase production of products. 石炭液化法に由来する生成物が、常圧蒸留で得られた塔底油を、塔底温度310〜350℃、圧力5〜15KPaの減圧蒸留にて、減圧蒸留塔の底部から得られる液化残渣を含む請求項1記載のコークス炉における化成品の増産方法。  The product derived from the coal liquefaction method is a liquefaction residue obtained from the bottom of the vacuum distillation column by subjecting the column bottom oil obtained by atmospheric distillation to vacuum distillation at a column bottom temperature of 310 to 350 ° C. and a pressure of 5 to 15 KPa. A method for increasing the production of a chemical product in a coke oven according to claim 1. 常圧軽油の沸点範囲が220〜350℃、液化残渣の沸点範囲が常圧換算500℃以上である請求項1〜2記載のコークス炉における化成品の増産方法。  The method for increasing the production of a chemical product in a coke oven according to claim 1 or 2, wherein the normal pressure gas oil has a boiling range of 220 to 350 ° C and the liquefaction residue has a boiling range of 500 ° C or higher in terms of normal pressure.
JP2002161689A 2002-06-03 2002-06-03 Method for increasing production of chemical products in coke oven Expired - Fee Related JP4184713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161689A JP4184713B2 (en) 2002-06-03 2002-06-03 Method for increasing production of chemical products in coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161689A JP4184713B2 (en) 2002-06-03 2002-06-03 Method for increasing production of chemical products in coke oven

Publications (2)

Publication Number Publication Date
JP2004010629A JP2004010629A (en) 2004-01-15
JP4184713B2 true JP4184713B2 (en) 2008-11-19

Family

ID=30430693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161689A Expired - Fee Related JP4184713B2 (en) 2002-06-03 2002-06-03 Method for increasing production of chemical products in coke oven

Country Status (1)

Country Link
JP (1) JP4184713B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798477B2 (en) * 2004-07-27 2011-10-19 学校法人日本大学 Method and apparatus for producing liquid fuel derived from woody biomass
CN105295965B (en) * 2014-05-28 2019-03-15 神华集团有限责任公司 A kind of method and apparatus preparing semicoke

Also Published As

Publication number Publication date
JP2004010629A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
KR101399207B1 (en) Method for producing feedstocks of high quality lube base oil from unconverted oil
US6709573B2 (en) Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
CA1166178A (en) Producing liquid hydrocarbon streams by hydrogenation of fossil-based feedstock
CN105102590B (en) Conversion of the asphalitine pitch during boiling bed residual oil hydrocracking
US4094746A (en) Coal-conversion process
CN102453510B (en) Combined processing method of copyrolysis of heavy oil and coal
CN107267186A (en) The method that coal mild hydrogenation pyrolysis prepares liquid hydrocarbon
WO1980001278A1 (en) Integrated coal liquefaction-gasification-naphtha reforming process
JP4184713B2 (en) Method for increasing production of chemical products in coke oven
CN108048121B (en) Direct coal liquefaction method and direct coal liquefaction device
JP5349475B2 (en) Method for producing high-grade lubricating base oil feedstock from coker gas oil
CN106883871A (en) Production method of needle coke raw material
JPS5898386A (en) Conversion of heavy oil or residual oil to gas and distillable hydrocarbon
JP4564176B2 (en) Crude oil processing method
CN109486518B (en) Method and system for modifying low-quality oil
WO1980001281A1 (en) Coal liquefaction-gasification process including reforming of naphtha product
US20140296595A1 (en) Methods And Apparatus For Producing Aromatics From Coal
CN109504421B (en) Method for extracting distilled oil from heavy oil-containing hydrocarbon stream by deep vaporization
KR101359266B1 (en) Method for Preparing of Coal Pitch
CN108504378B (en) Preparation method of coal hydropyrolysis hydrogen-donating solvent oil, hydrogen-donating solvent oil prepared by same and application thereof
CN114479937B (en) Method for converting heavy oil into light oil and acetylene
KR100731659B1 (en) Simultaneous hydroprocessing of two feedstocks
CN110885105A (en) Oil washing method for acidic water obtained in separation process of hydro-thermal cracking products of hydrocarbon material
CN102382667B (en) Coal cracking and heavy oil cracking joint production method
CN118703228A (en) Method for processing catalytic slurry oil by slurry bed hydrogenation technology

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20020626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20020626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4184713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees