JPH0367551B2 - - Google Patents

Info

Publication number
JPH0367551B2
JPH0367551B2 JP4135285A JP4135285A JPH0367551B2 JP H0367551 B2 JPH0367551 B2 JP H0367551B2 JP 4135285 A JP4135285 A JP 4135285A JP 4135285 A JP4135285 A JP 4135285A JP H0367551 B2 JPH0367551 B2 JP H0367551B2
Authority
JP
Japan
Prior art keywords
solvent
oil
boiling point
coal
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4135285A
Other languages
Japanese (ja)
Other versions
JPS61203197A (en
Inventor
Tadashi Yao
Keiichi Hayakawa
Kazuhito Kurachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4135285A priority Critical patent/JPS61203197A/en
Publication of JPS61203197A publication Critical patent/JPS61203197A/en
Publication of JPH0367551B2 publication Critical patent/JPH0367551B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、石炭を液化した際に生成する液化油
を分留し、沸点200〜350℃留分の一部を水素化分
解して該留分中の正パラフインの一部を軽質油と
して除去させることにより、石炭液化プロセスの
安定操業と、高品質、高収率の液化油製品を得る
石炭の液化方法に関する。 (従来技術) 石炭の液化方法は、普通石炭と石炭から生成し
た中・重質油を主成分とする溶剤とを触媒と共に
水素加圧下で加熱する。その際、石炭液化用溶剤
としては、以下の〜が必要とされている。 芳香族性の高い石炭を溶解するためには、芳
香族性の高い溶剤が必要である。 熱分解し易い石炭の再結合あるいは重合を抑
制し、液収率を増加するためには、水素供与性
の高い溶剤が必要である。 石炭の熱分解を促進し、液収率を増加するた
めには、若干極性を有する溶剤が必要である。 ところで、石炭中にはその根源植物のワツクス
分等に由来すると考えられる正パラフインが含ま
れており、液化油中の中・重質油を液化用溶剤と
して循環使用していると、分解しにくい正パラフ
インが次第に濃化してくる。正パラフインが循環
溶剤中に濃化すると、石炭液化用溶剤に必要な
〜の性質はすべて失われてくる。 すなわち、については、正パラフインは脂肪
族系の化合物であり、石炭を溶解する力は弱い。 については、水素供与性の目安としては、炭
素−水素結合の結合解離エネルギーが挙げられ、
通常水素供与性溶剤の結合解離エネルギーは約
82Kcal/molであるが、正パラフインでは約
90Kcal/molで、約10Kcal/molの差があり、正
パラフインは水素を供与しにくい性質である。溶
剤中に正パラフインが濃化することにより、水素
供与性は次第に損なわれる。さらに、正パラフイ
ン自身も熱分解するので、正パラフインにより水
素供与性溶剤が消費され、一層溶剤の水素供与性
は減少する。 については、正パラフインは非極性であり、
熱分解の促進は期待できない。 従つて、石炭液化用溶剤から正パラフインを減
少もしくは除去することは、重要な要件である。 そこで、本発明者らは、先に特開昭61−73794
号及び特開昭61−101591号において、沸点350〜
450℃留分から富パラフイン留分を除去した後、
乏パラフイン留分を石炭液化用溶剤の一部として
使用する方法を提供した。 (解決しようとする技術的課題) しかし、沸点350℃以上の正パラフインの融点
は、例えば沸点357℃のヘンエイコサンで41℃で
あり、室温では固体である。また、沸点350℃以
上の液化油留分も半固体であり、半固体の留分か
ら固体の留分を分離することは容易ではなく、上
記方法にはこの点に問題がある。上記方法では加
熱あるいは沸点350以下の留分で希釈して液状に
した後、正パラフインを分離する方法がとられて
いる。 一方、正パラフインは低臭、低毒性、低粘性で
あり、反応性が乏しく、微生物により容易に分解
されるほどの特性を有している。この特性のため
に、正パラフインはそのままで各種溶剤、潤滑剤
等に広く利用されるとともに各種界面活性剤用原
料としても利用されている。即ち、沸点350℃以
上の正パラフインは、潤滑剤、紙加工剤等に利用
され、また、沸点50℃以下の正パラフインは溶剤
及び界面活性剤用原料として利用されており、今
後ソフト型洗剤あるいは高級アルコール系洗剤原
料として、使用量の増加が見込まれている。 また、正パラフインは発熱量が大きなクリーン
な燃料であり、液化油製品中特に軽質油留分
(IBP〜200℃)中に多く含まれることが望まれ
る。 (発明の目的) 本発明は上記実情に鑑みなされたもので、比較
的簡単な手段で石炭の液化を阻害する正パラフイ
ンを中質油の一部から水素化分解によつて減少さ
せて、液化油収率の低下を防ぐと共に、製品価値
の高い液化油を得ることを目的とする。 (発明の構成) 本発明の骨子は、石炭液化油を分留し、特に沸
点200〜350℃留分(中質油)の一部を水素化分解
して正パラフインの一部を軽質油として除去した
留分と、沸点200〜350℃留分の残部と沸点50℃以
上留分とを水添して得た生成物を混和し、この混
和物を循環用溶剤として使用する点にある。第1
図は本発明のフローシートである。本発明は図面
によつて説明すれば、石炭、溶剤及び触媒を混和
したスラリーは、液化工程で石炭の液化反応を行
なう。 反応後の生成物は、蒸留工程で軽質油(沸点
200℃以下)、中質油(沸点200〜350℃)、重質油
(沸点350℃以上)の各留分に分留する。これらの
各留分のうち、中質油の一部を水素化分解して正
パラフインの一部を軽質油として除去した留分
と、中質油の残部と重質油とを水添して得た生成
物を混和し、この混和物を液化用溶剤として循環
使用する。中質油及び重質油は必要に応じて、そ
の全量又は一部を適当に混和して使用する。 液化工程における液化条件としては、反応温度
430〜470℃、反応時間0.52.0時間、水素圧100〜
200Kg/cm2程度が望ましい。 第2図に示す如く、反応温度430℃未満では石
炭液化が目的とする液化油収率が低く、逆に470
℃を越えると、ガス、残渣の生成量が多くなり液
化油収率が減少するとともにコーキング等による
操業トラブルが増加する。 また、水素圧については100Kg/cm2未満では芳
香環の水添反応及び、水添反応に引き続く分解反
応が起こりにくく、液収率が低下する。一方水素
圧が必要以上に高くなると高価な水素の消費量が
増加するとともに耐圧設備の製造に要するコスト
が割高となる。 石炭液化用触媒としては特に限定されず、入手
が容易でかつ安価な鉄系の化合物を使用すること
ができる。鉄系の触媒としては赤泥、鉄鉱石、転
炉ダスト等の製鉄所廃棄物、ならびに石炭ガス化
プロセスの廃棄物が挙げられ、その使用量として
は石炭に対して1〜5重量%で良い。また、助触
媒として硫黄化合物を鉄触媒と同様石炭に対して
1〜5重量%使用することが望ましい。触媒濃度
が1%未満では鉄系触媒による液収率向上の効果
がほとんど無く、5%を越えると触媒効率が悪く
なる。 得られた液化生成物は常圧蒸留あるいは減圧蒸
留により、沸点200℃までの軽質油、沸点200〜
350℃の中質油、沸点350℃以上の重質油に分留さ
れる。軽質油は製品として系外に取り出される。
本発明者らは、水添工程を経た重質油は、水素供
与性が極めて高く、石炭の液化反応を促進する効
果が優れていることを見出した。 即ち、第3図は水添工程を経た重質油と、コー
クス工場で副生する水素供与性の乏しい吸収油と
混合比を変えて石炭の液化反応を行つた結果であ
る。液収率の増加割合は、重質油濃度30%までは
急であるが、それ以上の濃度では穏やかである。 定常状態における溶剤中の重質油濃度は約25%
であるので、重質油だけでは水素供与性が若干不
足気味であるが、中質油の一部を補充すれば十分
な液収率が得られることがわかる。 さらに本発明者らの実験によれば、液化条件下
(450℃、1時間)における正パラフインの分解反
応は、沸点350℃以上の正パラフインでは平均分
解率が約50%であり、沸点200〜350℃の正パラフ
インでは約10%であつた。したがつて、液化条件
下で溶剤に濃化する正パラフインは沸点200〜350
℃の正パラフインであると考えられ、沸点200〜
350℃留分の一部を水素化分解してこの正パラフ
インを減少させれば、液化反応に対するパラフイ
ンの阻害を防止できることが分かつた。 中質油の水素化分解には、ゼオライト、シリカ
ゲル、アルミナ等の担体にNi、Co、Mo、W、
Pt等の金属を担持した、いわゆる水素化分解触
媒が使用される。水素化分解条件としては、反応
温度400℃以上、反応時間0.5〜2.0時間、水素圧
50〜200Kg/cm2が望ましい。 反応温度400℃未満では正パラフインの分解が
起こりにくい。反応時間0.5時間未満では十分な
分解反応が行われず、2時間以上では併発する重
合反応により触媒活性が損なわれる。また、水素
圧50Kg/cm2未満では触媒が被毒され易く、200
Kg/cm2を越えると高圧容器に要するコストが割高
となる。水素化分解工程を経た中質油は、軽質油
分を除去した後、溶剤水添工程を経た残部の中質
油及び重質油と混合して、石炭液化用溶剤に使用
する。 重質油及び中質油の一部を水添する溶剤水添工
程では、例えばNi−Mo/Al2O3等の水添触媒に
より、水素が溶剤あたり0.5〜2.0重量%付加され
る。 0.5%未満では、溶剤の水素供与性向上の効果
が認められず、2%を越えると高価な水素の消費
量が多くかつ過度の水素化により水素供与性が損
なわれる。 水添条件としては、反応温度300〜400℃、反応
時間0.5〜2.0時間、水素圧100〜200Kg/cm2が望ま
しい。反応温度300℃未満では溶剤の水素化は充
分に行なわれず、反応温度が400℃を越えると、
溶剤の分解反応が進行し易くなり、脱水素反応が
併発する。 また、反応時間0.5時間未満では充分な水素化
反応は行なわれず、反応時間が2時間を越えると
過度の水素化により、溶剤の水素供与性が損なわ
れる。さらに、水素圧100Kg/cm2未満では充分な
水素化が行なえず、200Kg/cm2を越えると高圧容
器に要するコストが割高となる。この水添工程を
経た中・重質油は、軽質油を除去した後、水素化
分解工程を経た中質油と共に、再び液化工程に液
化用溶剤として循環される。 次に本発明を実施例によつて説明する。 (実施例) 液化用石炭としてはワンドアン炭を用いた。そ
の元素分析値を第1表に示す。 このワンドアン炭を4/hrの処理能力を有す
る石炭液化連続装置、2/hrの処理能力を有す
る水素化分解装置、2/hrの処理能力を有する
溶剤水添装置により第2表に示す操業条件で液化
−水素化分解−溶剤水添をくり返し、定常状態に
達した時の物質収支を実施例として第3表に示
す。なお液化−溶剤水添のみをくり返し定常状態
に達した場合を比較例1として第3表に示す。 また、第5図に示すように沸点350℃以上の重
質油から正パラフインを除去した際の物質収支を
比較例2として第3表に示す。 なお、正パラフインの分離は以下の様に行なつ
た。 沸点350℃以上の留分1重量部に対し、少なく
とも3重量部のジメチルスルホキシド
(DMSO)、シクロヘキサン1重量部〜3重量部
を混合、撹拌した後、静置する。 下層のDMSO層を分離後、水を添加して芳香
族化合物を主成分とする沸点350℃以上の留分を
回収する。 上層のシクロヘキサン層から、シクロヘキサン
を蒸留で回収して正パラフインを主成分とする沸
点350℃以上の留分を回収する。 この方法に従い、沸点350℃以上の留分から正
パラフインを分離した。 第3表より、重質油から正パラフインを除去し
た比較例2では、正パラフインの除去により液収
率(軽質油+中質油+重質油)が48%から50%に
向上するが、目的製品である軽質油収率、軽質油
中の正パラフイン濃度、軽質油の発熱量が激減し
ている。 しかし、中質油の一部を水素化分解した実施例
の場合には、液収率は48%であるが、軽質油収
率、軽質油中の正パラフイン濃度、軽質油の発熱
量が大巾に向上している。軽質油中の正パラフイ
ン濃度が増加したことにより、軽質油中の芳香族
化合物濃度、含酸素化合物濃度、含窒素化合物濃
度、含硫黄化合物濃度は減少する。芳香族化合物
の減少により、燃焼時におけるススの発生が抑制
され、また、ヘテロ原子含有量が減少したことに
より液化油による腐食、臭気、燃焼時のNOx、
SOxの発生が改善される。 さらに、軽質油中に含まれる正パラフインの分
析を行なつたところ、第4図に示すように、炭素
鎖数9にピークが認められた。この軽質油は正パ
ラフイン量が多いためそのままでは自動車用ガソ
リンとしてオクタン価が低いけれども、既存の接
触改質技術によりオクタン価の向上が見込まれ
る。この正パラフインを既存技術で分離すれば、
工業用ガソリン例えばミネラルスピリツトとして
塗料用溶剤等に使用可能である。
(Industrial Application Field) The present invention involves fractionating the liquefied oil produced when coal is liquefied, and hydrocracking a part of the fraction with a boiling point of 200 to 350°C to remove normal paraffins in the fraction. The present invention relates to a coal liquefaction method for achieving stable operation of a coal liquefaction process and obtaining high-quality, high-yield liquefied oil products by removing a portion of the coal as light oil. (Prior Art) A coal liquefaction method involves heating ordinary coal and a solvent whose main components are medium to heavy oil produced from coal together with a catalyst under hydrogen pressure. At that time, the following ~ are required as a coal liquefaction solvent. In order to dissolve highly aromatic coal, a highly aromatic solvent is required. In order to suppress the recombination or polymerization of coal, which is prone to thermal decomposition, and to increase the liquid yield, a solvent with high hydrogen donating properties is required. Slightly polar solvents are required to promote coal pyrolysis and increase liquid yield. By the way, coal contains normal paraffin, which is thought to be derived from the wax of its source plants, and it is difficult to decompose when medium to heavy oil in liquefied oil is recycled as a liquefaction solvent. The normal paraffin gradually becomes thicker. When normal paraffin concentrates in the circulating solvent, it loses all of the properties necessary for a coal liquefaction solvent. That is, normal paraffin is an aliphatic compound and has a weak power to dissolve coal. As for hydrogen donating property, the bond dissociation energy of carbon-hydrogen bond can be cited as a measure of hydrogen donating property.
Normally, the bond dissociation energy of hydrogen-donating solvents is approximately
82Kcal/mol, but for normal paraffin it is approximately
90Kcal/mol, there is a difference of about 10Kcal/mol, and normal paraffin has a property that it is difficult to donate hydrogen. By concentrating the normal paraffin in the solvent, the hydrogen donating property is gradually impaired. Furthermore, since the normal paraffin itself is thermally decomposed, the hydrogen-donating solvent is consumed by the normal paraffin, and the hydrogen-donating ability of the solvent is further reduced. For, positive paraffin is non-polar,
Promotion of thermal decomposition cannot be expected. Therefore, reducing or eliminating normal paraffins from coal liquefaction solvents is an important requirement. Therefore, the present inventors previously published Japanese Patent Application Laid-Open No. 61-73794.
No. 61-101591, the boiling point is 350~
After removing the paraffin-rich fraction from the 450°C fraction,
A method of using a paraffin-poor fraction as part of a coal liquefaction solvent is provided. (Technical problem to be solved) However, the melting point of normal paraffin with a boiling point of 350°C or higher is 41°C, for example, heneicosane, which has a boiling point of 357°C, and is solid at room temperature. Furthermore, the liquefied oil fraction with a boiling point of 350° C. or higher is also semi-solid, and it is not easy to separate the solid fraction from the semi-solid fraction, which is a problem with the above method. The above method involves heating or diluting with a fraction with a boiling point of 350 or below to make it into a liquid state, and then separating the normal paraffin. On the other hand, normal paraffin has characteristics such as low odor, low toxicity, low viscosity, poor reactivity, and is easily decomposed by microorganisms. Because of this property, normal paraffin is widely used as it is in various solvents, lubricants, etc., and is also used as a raw material for various surfactants. In other words, normal paraffin with a boiling point of 350°C or higher is used in lubricants, paper processing agents, etc., and normal paraffin with a boiling point of 50°C or lower is used as a raw material for solvents and surfactants. Its usage is expected to increase as a raw material for higher alcohol-based detergents. In addition, normal paraffin is a clean fuel with a large calorific value, and is desired to be contained in large amounts in liquefied oil products, especially in light oil fractions (IBP ~ 200°C). (Purpose of the Invention) The present invention was made in view of the above circumstances, and is a method of reducing paraffin, which inhibits the liquefaction of coal, from a part of medium oil by hydrocracking using a relatively simple means. The purpose is to prevent a decrease in oil yield and obtain liquefied oil with high product value. (Structure of the Invention) The gist of the present invention is to fractionally distill coal liquefied oil, particularly by hydrocracking a part of the boiling point fraction (medium oil) of 200 to 350°C, and converting a part of normal paraffin into light oil. The removed fraction is mixed with a product obtained by hydrogenating the remainder of the fraction with a boiling point of 200 to 350°C and the fraction with a boiling point of 50°C or higher, and this mixture is used as a circulating solvent. 1st
The figure is a flow sheet of the present invention. The present invention will be explained with reference to the drawings. A slurry containing coal, a solvent, and a catalyst undergoes a coal liquefaction reaction in a liquefaction process. The product after the reaction is reduced to light oil (boiling point
200℃ or lower), medium oil (boiling point 200-350℃), and heavy oil (boiling point 350℃ or higher). Among these fractions, a part of the medium oil is hydrocracked and a part of the normal paraffin is removed as light oil, and the remainder of the medium oil and heavy oil are hydrogenated. The products obtained are mixed and the mixture is recycled as a liquefaction solvent. The medium oil and the heavy oil may be used by appropriately mixing the whole or a part thereof as necessary. The liquefaction conditions in the liquefaction process include the reaction temperature
430~470℃, reaction time 0.52.0 hours, hydrogen pressure 100~
Approximately 200Kg/cm2 is desirable. As shown in Figure 2, when the reaction temperature is lower than 430℃, the target liquefied oil yield of coal liquefaction is low;
When the temperature exceeds 0.degree. C., the amount of gas and residue produced increases, the yield of liquefied oil decreases, and operational troubles due to coking and the like increase. Furthermore, when the hydrogen pressure is less than 100 Kg/cm 2 , hydrogenation of aromatic rings and decomposition reactions following the hydrogenation are difficult to occur, resulting in a decrease in liquid yield. On the other hand, if the hydrogen pressure becomes higher than necessary, the amount of expensive hydrogen consumed increases and the cost required to manufacture pressure-resistant equipment becomes relatively high. The catalyst for coal liquefaction is not particularly limited, and easily available and inexpensive iron-based compounds can be used. Examples of iron-based catalysts include red mud, iron ore, steel mill waste such as converter dust, and waste from coal gasification processes, and the amount used may be 1 to 5% by weight based on coal. . Further, as with the iron catalyst, it is desirable to use a sulfur compound as a cocatalyst in an amount of 1 to 5% by weight based on the coal. When the catalyst concentration is less than 1%, the iron-based catalyst has little effect on improving the liquid yield, and when it exceeds 5%, the catalyst efficiency deteriorates. The obtained liquefied product is distilled by atmospheric distillation or vacuum distillation to produce light oil with a boiling point of up to 200℃, boiling point of 200℃~
It is fractionated into medium oil with a boiling point of 350℃ and heavy oil with a boiling point of 350℃ or higher. Light oil is taken out of the system as a product.
The present inventors have discovered that heavy oil that has undergone a hydrogenation process has extremely high hydrogen donating properties and is excellent in promoting the coal liquefaction reaction. That is, FIG. 3 shows the results of a coal liquefaction reaction with varying mixing ratios of heavy oil that has undergone a hydrogenation process and absorption oil that is by-produced in a coke factory and has poor hydrogen donating properties. The rate of increase in liquid yield is steep up to a heavy oil concentration of 30%, but is moderate at higher concentrations. Heavy oil concentration in solvent at steady state is approximately 25%
Therefore, it can be seen that although the hydrogen donating property is slightly insufficient with heavy oil alone, sufficient liquid yield can be obtained by supplementing with a portion of medium oil. Furthermore, according to experiments conducted by the present inventors, in the decomposition reaction of normal paraffin under liquefaction conditions (450°C, 1 hour), the average decomposition rate is about 50% for normal paraffin with a boiling point of 350°C or higher, and In normal paraffin at 350°C, it was about 10%. Therefore, normal paraffin that concentrates in the solvent under liquefaction conditions has a boiling point of 200-350
It is considered to be a normal paraffin with a boiling point of 200~
It was found that by hydrogenolyzing a portion of the 350°C fraction to reduce the amount of normal paraffins, it was possible to prevent the paraffins from inhibiting the liquefaction reaction. For hydrocracking of medium oil, Ni, Co, Mo, W,
A so-called hydrocracking catalyst supporting a metal such as Pt is used. Hydrocracking conditions include reaction temperature of 400℃ or higher, reaction time of 0.5 to 2.0 hours, and hydrogen pressure.
50-200Kg/ cm2 is desirable. If the reaction temperature is less than 400°C, decomposition of normal paraffin is difficult to occur. If the reaction time is less than 0.5 hours, sufficient decomposition reaction will not take place, and if it is more than 2 hours, the catalyst activity will be impaired due to concurrent polymerization reaction. In addition, if the hydrogen pressure is less than 50 kg/cm 2 , the catalyst is likely to be poisoned;
If it exceeds Kg/cm 2 , the cost required for the high-pressure container becomes relatively high. After the light oil content is removed from the medium oil that has undergone the hydrocracking process, it is mixed with the remaining medium oil and heavy oil that have undergone the solvent hydrogenation process, and is used as a solvent for coal liquefaction. In the solvent hydrogenation step of hydrogenating a portion of heavy oil and medium oil, hydrogen is added in an amount of 0.5 to 2.0% by weight per solvent using a hydrogenation catalyst such as Ni-Mo/Al 2 O 3 . If it is less than 0.5%, no effect of improving the hydrogen donating property of the solvent will be observed, and if it exceeds 2%, a large amount of expensive hydrogen will be consumed and the hydrogen donating property will be impaired due to excessive hydrogenation. The hydrogenation conditions are preferably a reaction temperature of 300 to 400°C, a reaction time of 0.5 to 2.0 hours, and a hydrogen pressure of 100 to 200 Kg/cm 2 . If the reaction temperature is less than 300℃, the solvent will not be hydrogenated sufficiently, and if the reaction temperature exceeds 400℃,
The decomposition reaction of the solvent will proceed more easily, and the dehydrogenation reaction will also occur. Further, if the reaction time is less than 0.5 hours, sufficient hydrogenation reaction will not be carried out, and if the reaction time exceeds 2 hours, excessive hydrogenation will impair the hydrogen donating ability of the solvent. Further, if the hydrogen pressure is less than 100 Kg/cm 2 , sufficient hydrogenation cannot be carried out, and if it exceeds 200 Kg/cm 2 , the cost required for the high-pressure vessel becomes relatively high. After the light oil is removed from the medium and heavy oils that have undergone this hydrogenation process, they are again recycled to the liquefaction process as a liquefaction solvent together with the medium oil that has undergone the hydrocracking process. Next, the present invention will be explained with reference to examples. (Example) Wandouan coal was used as the liquefaction coal. The elemental analysis values are shown in Table 1. This Wandouan coal was processed using a continuous coal liquefaction unit with a processing capacity of 4/hr, a hydrocracking unit with a processing capacity of 2/hr, and a solvent hydrogenation unit with a processing capacity of 2/hr under the operating conditions shown in Table 2. The material balance when a steady state is reached by repeating liquefaction-hydrogenolysis-solvent hydrogenation is shown in Table 3 as an example. Table 3 shows a case where only liquefaction and solvent hydrogenation were repeated until a steady state was reached as Comparative Example 1. Further, as shown in FIG. 5, the material balance when normal paraffin is removed from heavy oil with a boiling point of 350° C. or higher is shown in Table 3 as Comparative Example 2. In addition, the separation of normal paraffin was performed as follows. At least 3 parts by weight of dimethyl sulfoxide (DMSO) and 1 to 3 parts by weight of cyclohexane are mixed with 1 part by weight of a fraction having a boiling point of 350° C. or higher, stirred, and allowed to stand still. After separating the lower DMSO layer, water is added to collect the fraction with a boiling point of 350°C or higher, which is mainly composed of aromatic compounds. Cyclohexane is recovered from the upper cyclohexane layer by distillation to recover a fraction with a boiling point of 350°C or higher, which is mainly composed of normal paraffin. According to this method, normal paraffin was separated from the fraction with a boiling point of 350°C or higher. From Table 3, in Comparative Example 2 in which normal paraffin was removed from heavy oil, the liquid yield (light oil + medium oil + heavy oil) improved from 48% to 50% due to the removal of normal paraffin. The target product, the yield of light oil, the concentration of normal paraffin in the light oil, and the calorific value of the light oil have been drastically reduced. However, in the case of an example in which a part of medium oil was hydrocracked, the liquid yield was 48%, but the light oil yield, the concentration of normal paraffin in the light oil, and the calorific value of the light oil were large. It has improved drastically. As the concentration of normal paraffin in the light oil increases, the concentration of aromatic compounds, oxygen-containing compounds, nitrogen-containing compounds, and sulfur-containing compounds in the light oil decrease. The reduction in aromatic compounds suppresses the generation of soot during combustion, and the reduction in heteroatom content reduces corrosion caused by liquefied oil, odor, NOx during combustion,
SOx generation is improved. Furthermore, when the normal paraffin contained in the light oil was analyzed, a peak was observed at a carbon chain number of 9, as shown in FIG. Although this light oil has a high octane number as a gasoline for automobiles as it is because it has a large amount of normal paraffin, it is expected that the octane number will be improved by using existing catalytic reforming technology. If this normal paraffin is separated using existing technology,
It can be used as an industrial gasoline, such as mineral spirits, as a paint solvent, etc.

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 実施例から明らかなように、この発明によれば 液化油収率が向上する。 軽質油が高収率で得られる。 高品質の液化製品が得られる。(高発熱量、
低硫黄) 自動車用ガソリン、工業用ガソリン等に用途
開発が広がる。 などの効果を有し、工業的に極めて有益な発明で
ある。
[Table] (Effects of the Invention) As is clear from the Examples, the present invention improves the liquefied oil yield. Light oil is obtained in high yield. High quality liquefied products are obtained. (High calorific value,
(Low sulfur) Application development will expand to automotive gasoline, industrial gasoline, etc. This invention has the following effects and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を示すブロツク図。第2
図は本方法における反応温度と液収率の関係を示
す図。第3図は水添重質油濃度と液収率の関係を
示す図。第4図は実施例で得られた軽質油中の正
パラフインの分析結果を示す図。第5図は従来法
を示すブロツク図である。
FIG. 1 is a block diagram illustrating the method of the present invention. Second
The figure shows the relationship between reaction temperature and liquid yield in this method. FIG. 3 is a diagram showing the relationship between hydrogenated heavy oil concentration and liquid yield. FIG. 4 is a diagram showing the analysis results of normal paraffin in the light oil obtained in the example. FIG. 5 is a block diagram showing a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 溶剤を用いる石炭液化工程とその溶剤を再生
する溶剤水添工程からなる石炭の液化方法におい
て、石炭液化後の沸点200〜350℃留分の一部と沸
点350℃以上の留分を混合、水添して沸点200℃以
下の軽質油を除去した留分と石炭液化後の沸点
200〜350℃留分の残部を水素化分解処理するとで
その留分中に含まれていた正パラフインの一部を
沸点200℃未満の軽質油として除去した留分を混
和して、再び石炭液化工程に石炭液化用溶剤とし
て循環することを特徴とする方法。
1 In a coal liquefaction method consisting of a coal liquefaction process using a solvent and a solvent hydrogenation process to regenerate the solvent, a part of the fraction with a boiling point of 200 to 350 °C after coal liquefaction is mixed with a fraction with a boiling point of 350 °C or higher, Distillate obtained by hydrogenation to remove light oil with boiling point below 200℃ and boiling point after coal liquefaction
The remainder of the 200-350°C fraction is hydrocracked and a portion of the normal paraffins contained in the fraction is removed as a light oil with a boiling point of less than 200°C, and the fraction is mixed and recycled to coal liquefaction. A method characterized by circulating coal as a solvent for liquefying coal in the process.
JP4135285A 1985-03-04 1985-03-04 Liquefaction of coal Granted JPS61203197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4135285A JPS61203197A (en) 1985-03-04 1985-03-04 Liquefaction of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4135285A JPS61203197A (en) 1985-03-04 1985-03-04 Liquefaction of coal

Publications (2)

Publication Number Publication Date
JPS61203197A JPS61203197A (en) 1986-09-09
JPH0367551B2 true JPH0367551B2 (en) 1991-10-23

Family

ID=12606114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4135285A Granted JPS61203197A (en) 1985-03-04 1985-03-04 Liquefaction of coal

Country Status (1)

Country Link
JP (1) JPS61203197A (en)

Also Published As

Publication number Publication date
JPS61203197A (en) 1986-09-09

Similar Documents

Publication Publication Date Title
JP3564578B2 (en) Method for obtaining engine fuel by extracting and hydrotreating hydrocarbon charge, and obtained gas oil
CA1152924A (en) Process of converting high-boiling crude oils to equivalent petroleum products
US20080156693A1 (en) Process of hydrocracking heavy oil
US4452688A (en) Integrated coal liquefication process
JPS59109588A (en) Liquefaction of brown coal
US4148717A (en) Demetallization of petroleum feedstocks with zinc chloride and titanium tetrachloride catalysts
JPH0367552B2 (en)
CN107325839A (en) Method for regenerating waste lubricating oil
WO2023109818A1 (en) Heavy oil product upgrading method and heavy oil product upgrading system
CN109486518B (en) Method and system for modifying low-quality oil
JPH0367551B2 (en)
JPS5843433B2 (en) coal liquefaction method
CA1207265A (en) Method of hydrogenating heavy oil, asphalt and the like
JPS6254791A (en) Treatment of coal tar
US4737266A (en) Method for hydrogenating a solvent-refined coal
JPH0681835B2 (en) Liquefaction method of coal
CN109486521B (en) Method and system for efficiently utilizing catalytic cracking slurry oil
JPS6254792A (en) Treatment of coal tar
US1890436A (en) Conversion of solid fuels and products derived therefrom or other materials into valuable liquids
JPS5952679B2 (en) Coal liquefaction method
EP0159867A2 (en) Process for hydroconversion of sulphur containing heavy hydrocarbons with synthesis gas
JPS59145288A (en) Hydrorefining of gas oil
JPS62192487A (en) Method for treating coal tar
JPH064861B2 (en) Liquefaction method of coal
JPH01213398A (en) Method for liquefying coal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees