JPS61203197A - Liquefaction of coal - Google Patents

Liquefaction of coal

Info

Publication number
JPS61203197A
JPS61203197A JP4135285A JP4135285A JPS61203197A JP S61203197 A JPS61203197 A JP S61203197A JP 4135285 A JP4135285 A JP 4135285A JP 4135285 A JP4135285 A JP 4135285A JP S61203197 A JPS61203197 A JP S61203197A
Authority
JP
Japan
Prior art keywords
oil
solvent
coal
boiling point
liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4135285A
Other languages
Japanese (ja)
Other versions
JPH0367551B2 (en
Inventor
Tadashi Yao
正 矢尾
Keiichi Hayakawa
早川 恵一
Kazuhito Kurachi
倉地 和仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4135285A priority Critical patent/JPS61203197A/en
Publication of JPS61203197A publication Critical patent/JPS61203197A/en
Publication of JPH0367551B2 publication Critical patent/JPH0367551B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To prepare high-quality coal liquefaction products with a good yield consistently in a simple process, by using as solvent for coal liquefaction a mixt. of a product obtained by hydrocracking of a part of medium oil in coal liquefaction oil, a remainder of the medium oil and a hydrogenation product of heavy oil. CONSTITUTION:A slurry consisting of coal, solvent and catalyst is made to undergo liquefaction reaction at 430-470 deg.C under H2 pressure of 100-200 kg/cm<2> for 0.5-2.0 hr and is distilled to obtain a light oil with a boiling point of below 200 deg.C, a medium oil with a boiling point of 200-350 deg.C and a heavy oil with a boiling point of above 350 deg.C. The light oil is taken out of the system as final product and a part of medium oil is subjected to hydrocracking at above 400 deg.C under H2 pressure of 50-200kg/cm<2> for 0.5-2.0 hr in the presence of a catalyst for hydrocracking to reduce the n-paraffin content and remove the light oil and is used as solvent for coal liquefaction. Then a mixed solvent consisting of the remainder of the medium oil and the heavy oil is hydrogenated at 300-400 deg.C under H2 pressure of 100-200 kg/cm<2> fro 0.5 to 2.0 hr in the presence of a hydrogenation catalyst such as Ni-Mo/Al2O3 to add 0.5-2.0 wt% H2 to the mixed solvent and the resulting product is also used as solvent for coal liquefaction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭を液化した際に生成する液化油を分留し
、沸点200〜350℃留分の一部を水素化分解して該
留分中の正パラフィンを減少させることにより、石炭液
化プロセスの安定操業と、高品質、高収率の液化油製品
を得る石炭の液化方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention involves fractionating liquefied oil produced when coal is liquefied, and hydrocracking a portion of the fraction with a boiling point of 200 to 350°C. The present invention relates to a coal liquefaction method for achieving stable operation of a coal liquefaction process and obtaining high-quality, high-yield liquefied oil products by reducing the amount of normal paraffins in the fraction.

(従来技術) 石炭の液化方法は、普通石炭と石炭から生成した中・重
質油を主成分とする溶剤とを触媒と共に、水素加圧下で
加熱する。その際、石炭液化用溶剤としては、以下の■
〜■が必要とされている。
(Prior Art) A method for liquefying coal involves heating ordinary coal and a solvent whose main components are medium to heavy oil produced from coal together with a catalyst under hydrogen pressure. At that time, the following ■
~■ is needed.

■芳香族性の高い石炭を溶解するためには、芳香族性の
高い溶剤が必要である。
■In order to dissolve highly aromatic coal, a highly aromatic solvent is required.

(■熱分解し易い石炭の再結合あるいは重合を抑制し、
液収率を増加するためには、水素供与性、の高い溶剤か
必要である。
(■ Suppresses recombination or polymerization of coal that is easily decomposed,
In order to increase the liquid yield, a solvent with high hydrogen donating properties is required.

〈φ石炭の熱分解を促進し、液収率を増加するためには
、若干極性を有する溶剤が必要である。
<φ In order to accelerate the thermal decomposition of coal and increase the liquid yield, a slightly polar solvent is required.

ところで、石炭中にはその根源植物のワックス分等に由
来すると考えられる正パラフィンが含まれており、液化
油中の中Φ重質油を液化用溶剤として循環使用している
と、分解しにくい正パラフィンが次第に濃化してくる。
By the way, coal contains normal paraffins, which are thought to originate from the wax content of its source plants, and if medium-diameter heavy oil in liquefied oil is recycled as a liquefaction solvent, it is difficult to decompose. The normal paraffin gradually becomes thicker.

正パラフィンが循環溶剤中に濃化すると、石炭液化用溶
剤に必要な■〜■の性質はすべて失われてくる。
When normal paraffins are concentrated in the circulating solvent, all of the properties (1) to (3) necessary for a solvent for coal liquefaction are lost.

すなわち、■については、正パラフィンは脂肪族系の化
合物であり、石炭を溶解する力は弱い。
That is, regarding (■), normal paraffin is an aliphatic compound and has a weak power to dissolve coal.

■については、水素供与性の目安としては、炭素−水素
結合の結合解離エネルギーが挙げられ、通常水素供与性
溶剤の結合解離エネルギーは約82Kcal/molで
あるが、正パラフィンでは約90Kcal/molで、
約10Kcal/+solの差があり、正パラフィンは
水素を供与しにくい性質である。溶剤中に正パラフィン
が1化することにより、水素供与性は次第に損なわれる
。さらに、正パラフイン自身も熱分解するので、正パラ
フィンにより水素供与性溶剤が消費され、一層温剤の水
素供与性は減少する。
Regarding (2), the bond dissociation energy of carbon-hydrogen bonds is cited as a guideline for hydrogen donating property, and the bond dissociation energy of normal hydrogen donating solvents is about 82 Kcal/mol, but for normal paraffin it is about 90 Kcal/mol. ,
There is a difference of about 10 Kcal/+sol, and normal paraffins have a property of being difficult to donate hydrogen. As the normal paraffin becomes 1 in the solvent, the hydrogen donating property is gradually impaired. Furthermore, since the normal paraffin itself is thermally decomposed, the hydrogen-donating solvent is consumed by the normal paraffin, and the hydrogen-donating ability of the heating agent is further reduced.

■については、正パラフィンは非極性であり、熱分解の
促進は期待できない。
Regarding (2), normal paraffin is non-polar and cannot be expected to promote thermal decomposition.

従って、石炭液化用溶剤から正パラフィンを減少もしく
は除去することは、重要な要件である。
Therefore, reducing or eliminating normal paraffins from coal liquefaction solvents is an important requirement.

そこで、木発明者らは、先に特願昭59−195833
号及び特願昭59−221345号において、沸点35
0〜450℃留分から富パラフィン留分を除去した後。
Therefore, the inventors of the tree first applied for patent application No. 59-195833.
No. 59-221345, boiling point 35
After removing the paraffin-rich fraction from the 0-450°C fraction.

乏パラフィン留分を液化用溶剤の一部として使用する方
法を提供した。
A method is provided for using a paraffin-poor fraction as part of a liquefaction solvent.

(解決しようとする技術的課題) しかし、沸点350℃以上の正パラフィンの融点は、例
えば沸点357℃のヘンエイコサンで41℃であり、室
温では固体である。また、沸点350℃以上の液化油留
分も半固体であり、半固体の留分から固体の留分を分離
することは容易ではなく、上記方法にはこの点に問題が
ある。上記方法では加熱あるいは沸点350℃以下の留
分で希釈して液状にした後、正パラフィンを分離する方
法がとられている。
(Technical Problem to be Solved) However, the melting point of normal paraffins with a boiling point of 350°C or higher is 41°C, for example, heneicosane, which has a boiling point of 357°C, and is solid at room temperature. Furthermore, the liquefied oil fraction with a boiling point of 350° C. or higher is also semi-solid, and it is not easy to separate the solid fraction from the semi-solid fraction, and the above method has a problem in this respect. The above method involves heating or diluting with a fraction with a boiling point of 350° C. or lower to make it liquid, and then separating the normal paraffins.

一方、正パラフィンは低臭、低毒性、低粘性であり、反
応性が乏しく、微生物により容易に分解されるなどの特
性を有している。この特性のために、正パラフィンはそ
のままで各種溶剤、潤滑剤等に広く利用されるとともに
各種界面活性剤用原料としても利用されている。即ち、
沸点350℃以上の正パラフィンは、潤滑剤、紙加工剤
等に利用され、また、沸点350℃以下の正パラフィン
は溶剤及び界面活性剤用原料として利用されており、今
後ソフト型洗剤あるいは高級アルコール系洗剤原料とし
て、使用量の増加が見込まれている。
On the other hand, normal paraffin has characteristics such as low odor, low toxicity, low viscosity, poor reactivity, and is easily decomposed by microorganisms. Because of this property, normal paraffin is widely used as it is in various solvents, lubricants, etc., and is also used as a raw material for various surfactants. That is,
Normal paraffins with a boiling point of 350°C or higher are used in lubricants, paper processing agents, etc. Normal paraffins with a boiling point of 350°C or lower are used as raw materials for solvents and surfactants, and in the future will be used as soft detergents or higher alcohols. The amount used as a raw material for detergents is expected to increase.

また、正パラフィンは発熱量が大きなりリーンな燃料で
あり、液化油製品中特に軽質油留分(IBP〜200℃
)中に多く含まれることが望まれる。
In addition, normal paraffin is a lean fuel with a large calorific value, and in liquefied oil products, it is especially suitable for light oil fractions (IBP ~ 200℃).
) is desired to be included in large amounts.

(発明の目的) 本発明は上記実情に鑑みなされたもので、比較的簡単な
手段で石炭の液化を阻害する正パラフィンを中質油の一
部から水素化分解によって減少させて、液化油収率の低
下を防ぐと共に、製品価値の高い液化油を得ることを目
的とする。
(Objective of the Invention) The present invention has been made in view of the above circumstances, and it is possible to recover liquefied oil by reducing normal paraffins, which inhibit the liquefaction of coal, from a part of medium oil by hydrocracking using relatively simple means. The purpose is to prevent a decrease in oil yield and obtain liquefied oil with high product value.

(発明の構成) 本発明の骨子は、石炭液化油を分留し、特に沸点200
〜350℃留分(中質油)の一部を水素化分解して正パ
ラフィンを減少させた生成物と、沸点200〜350℃
留分の残部と沸点350℃以上留分とを水素化して得た
生成物を混合し、この混合物を循環用溶剤として使用す
る点にある。第1図は本発明のフローシートである0本
発明を図面によって説明すれば2石炭、溶剤及び触媒を
混合したスラリーは、液化工程で石炭の液化反応を行な
う。
(Structure of the Invention) The gist of the present invention is to fractionally distill coal liquefied oil, and in particular to
A product obtained by hydrocracking a part of the ~350°C fraction (medium oil) to reduce normal paraffins, and a product with a boiling point of 200~350°C
The remainder of the fraction and the fraction with a boiling point of 350° C. or higher are mixed with a product obtained by hydrogenation, and this mixture is used as a circulating solvent. FIG. 1 is a flow sheet of the present invention.The present invention will be explained with reference to the drawings.2 A slurry containing coal, a solvent, and a catalyst undergoes a coal liquefaction reaction in a liquefaction process.

反応後の生成物は、蒸留工程で軽質油(沸点200℃以
下)、中質油(沸点200〜350℃)、重質油(沸点
350℃以上)の各留分に分留する。これらの各留分の
うち、中質油の一部を水素化分解して正パラフィンを減
少させた生成物と、中質油の残部と重質油とを水素化し
て得た生成物を混合し、この混合物を液化用溶剤として
循環使用する。中質油及び重質油は必要に応じて、その
全量又は一部を適当に混合して使用する。
The product after the reaction is fractionated into light oil (boiling point 200°C or lower), medium oil (boiling point 200-350°C), and heavy oil (boiling point 350°C or higher) fractions in a distillation process. Among these fractions, a product obtained by hydrocracking a portion of medium oil to reduce normal paraffins and a product obtained by hydrogenating the remainder of medium oil and heavy oil are mixed. Then, this mixture is recycled as a liquefaction solvent. The medium oil and the heavy oil may be used by appropriately mixing all or part of them as necessary.

液化工程における液化条件としては、反応温度430〜
470℃、反応時間0.5〜2.0時間、水素圧100
〜200Kg/ ctn’程度が望ましい。
The liquefaction conditions in the liquefaction step include a reaction temperature of 430~
470°C, reaction time 0.5-2.0 hours, hydrogen pressure 100
~200Kg/ctn' is desirable.

第2図に示す如く、反応温度430℃未満では石炭液化
が目的とする液化油収率が低く、逆に470℃を越える
と、ガス、残液の生成量が多くなり液化油収率が減少す
るとともにコーキング等による操業トラブルが増加する
As shown in Figure 2, if the reaction temperature is less than 430°C, the liquefied oil yield aimed at by coal liquefaction will be low, and if it exceeds 470°C, the amount of gas and residual liquid produced will increase and the liquefied oil yield will decrease. At the same time, operational troubles due to caulking, etc. increase.

また、水素圧については100Kg/ cm″未満では
芳香環の水添反応及び、水添反応に引き続く分解反応が
起こりにくく、液収率が低下する。一方水素圧が必要以
上に高くなると高価な水素の消費量が増加するとともに
耐圧設備の製造に要するコストが割高となる。
Furthermore, if the hydrogen pressure is less than 100 kg/cm'', the hydrogenation reaction of the aromatic ring and the decomposition reaction following the hydrogenation reaction will be difficult to occur, resulting in a decrease in liquid yield.On the other hand, if the hydrogen pressure is higher than necessary, expensive hydrogen As the consumption of pressure increases, the cost required to manufacture pressure-resistant equipment becomes relatively high.

石炭液化用触媒としては特に限定されず、入手が容易で
かつ安価な鉄系の化合物を使用することができる。鉄系
の触媒としては赤泥、鉄鉱石、転炉ダスト等の製鉄所廃
棄物、ならびに石炭ガス化プロセスの廃棄物が挙げられ
、その使用量としては石炭に対して1〜5重量2で良い
、また、助触媒として硫黄化合物を鉄触媒と同様石炭に
対して1〜5重量2使用することが望ましい、触媒濃度
が1を未満では鉄系触媒による液収率向上の効果がほと
んど無く、5zを越えると触媒効率が悪くなる。
The catalyst for coal liquefaction is not particularly limited, and easily available and inexpensive iron-based compounds can be used. Examples of iron-based catalysts include red mud, iron ore, steel mill waste such as converter dust, and waste from coal gasification processes, and the amount used may be 1 to 5 parts by weight per coal. In addition, it is desirable to use a sulfur compound as a cocatalyst in a ratio of 1 to 5 weight 2 based on coal, similar to the iron catalyst.If the catalyst concentration is less than 1, the iron-based catalyst has little effect on improving the liquid yield, and 5z If it exceeds this, the catalyst efficiency will deteriorate.

得られた液化生成物は常圧蒸留あるいは減圧蒸留により
、沸点200℃までの軽質油、沸点200〜350℃の
中質油、沸点350℃以上の重質油に分留される。軽質
油は製品として系外に取り出される0本発明者らは、水
添工程を経た重質油は、水素供与性が極めて高く、石炭
の液化反応を促進する効果が優れていることを見出した
The obtained liquefied product is fractionated by atmospheric distillation or vacuum distillation into light oil with a boiling point of up to 200°C, medium oil with a boiling point of 200 to 350°C, and heavy oil with a boiling point of 350°C or higher. Light oil is taken out of the system as a product.The present inventors have discovered that heavy oil that has undergone a hydrogenation process has extremely high hydrogen donating properties and is highly effective in promoting the coal liquefaction reaction. .

即ち、第3図は水添工程を経た重質油と、コークス工場
で副生ずる水素供与性の乏しい吸収油との混合比を変え
て石炭の液化−反応を行った結果である。液収率の増加
割合は、重質油法度30%までは急であるが、それ以上
の濃度では穏やかである。
That is, FIG. 3 shows the results of a coal liquefaction reaction by changing the mixing ratio of heavy oil that has undergone a hydrogenation process and absorption oil that is a by-product in a coke factory and has poor hydrogen donating properties. The rate of increase in liquid yield is steep up to 30% heavy oil concentration, but is moderate at higher concentrations.

定常状態における溶剤中の重質油濃度は約252である
ので1重質油だけでは水素供与性が若干不足気味である
が、中質油の一部を補充すれば十分な液収率が得られる
ことがわかる。
Since the concentration of heavy oil in the solvent in a steady state is approximately 252, the hydrogen donating property is somewhat insufficient with just one heavy oil, but sufficient liquid yield can be obtained by replenishing some of the medium oil. I know that it will happen.

さらに本発明者らの実験によれば、液化条件下(450
℃、1時間)における正パラフィンの分解反応は、沸点
350℃以上の正パラフィンでは平均分解率が約502
であり、沸点200〜350℃の正ノぐラフインでは約
10%であった。したがって、液化条件下で溶剤に濃化
する正パラフィンは沸点200〜350℃の正パラフィ
ンであると考えられ、中質油の一部を水素化分解してこ
の正パラフィンを減少させれば、液化反応に対する正パ
ラフィンの阻害を防止できることが分かった。
Furthermore, according to the experiments of the present inventors, under liquefaction conditions (450
℃, 1 hour), the average decomposition rate of normal paraffins with a boiling point of 350℃ or higher is about 502℃.
It was about 10% in the case of pure grain rough-in with a boiling point of 200 to 350°C. Therefore, it is thought that the normal paraffins that concentrate in the solvent under liquefaction conditions are normal paraffins with a boiling point of 200 to 350°C. It was found that the inhibition of normal paraffin on the reaction could be prevented.

中質油の水素化分解には、ゼオライト、シリカゲル、ア
ルミナ等の担体にNi、 Go、 No、 W 、ρを
等の金属を担持した、いわゆる水素化分解触媒が使用さ
れる。水素化分解条件としては、反応温度400℃以上
、反応時間0.5〜2.0#間、水素圧50〜200K
g/ cゴが望ましい。
For the hydrocracking of medium oil, a so-called hydrocracking catalyst is used, in which a metal such as Ni, Go, No, W, or ρ is supported on a carrier such as zeolite, silica gel, or alumina. Hydrocracking conditions include reaction temperature of 400°C or higher, reaction time of 0.5 to 2.0 #, and hydrogen pressure of 50 to 200 K.
g/c go is preferable.

−反応温度400℃未満では正パラフィンの分解が起こ
りにくい。反応時間0.5時間未満では十分な分解反応
が行われず、2時間以上では併発する重合反応により触
媒活性が損なわれる。また、水素圧50Kg/am″未
満では触媒が被毒され易く、200Kg/crn’を越
えると高圧容器に要するコストが割高となる。この水素
化分解工程を経た中質油は、軽質油分を除去した後、溶
剤水添工程を経た残部の中質油及び重質油と混合して1
石炭液化用溶剤に使用する。
- If the reaction temperature is less than 400°C, decomposition of normal paraffins is difficult to occur. If the reaction time is less than 0.5 hours, sufficient decomposition reaction will not take place, and if it is more than 2 hours, the catalyst activity will be impaired due to concurrent polymerization reaction. In addition, if the hydrogen pressure is less than 50 kg/am'', the catalyst is likely to be poisoned, and if it exceeds 200 kg/crn', the cost required for a high-pressure vessel becomes relatively high.The medium oil that has undergone this hydrocracking process has light oil components removed. After that, it is mixed with the remaining medium oil and heavy oil that went through the solvent hydrogenation process to form 1
Used as a solvent for coal liquefaction.

重質油及び中質油の一部を水添する。溶剤水添工程では
、例えば旧−No/A 12 07等の水添触媒により
、水素が溶剤あたり0.5〜2.0重量2付加される。
Part of heavy oil and medium oil is hydrogenated. In the solvent hydrogenation step, hydrogen is added in an amount of 0.5 to 2.0 weight 2 per solvent using a hydrogenation catalyst such as old-No/A 12 07, for example.

0.5z未満では、溶剤の水素供与性向上の効果が認め
られず、2zを越えると高価な水素の消費量が多くかつ
過度の水素化により水素供与性が損なわれる。
If it is less than 0.5z, no effect of improving the hydrogen donating property of the solvent will be observed, and if it exceeds 2z, a large amount of expensive hydrogen will be consumed and the hydrogen donating property will be impaired due to excessive hydrogenation.

水添条件としては、反応温度300〜400℃、反応時
間0.5〜2.0時間、水素圧100〜200Kg/ 
am’が望ましい0反応温度300℃未満では溶剤の水
素化は充分に行なわれず、反応温度が400℃を越える
と、溶剤の分解反応が進行し易くなり、脱水素反応が併
発する。
The hydrogenation conditions include a reaction temperature of 300 to 400°C, a reaction time of 0.5 to 2.0 hours, and a hydrogen pressure of 100 to 200 kg/
If am' is less than 300° C., the solvent will not be sufficiently hydrogenated, and if the reaction temperature exceeds 400° C., the decomposition reaction of the solvent will tend to proceed, and the dehydrogenation reaction will also occur.

また、反応時間0.5時間未満では充分な水素化反応は
行なわれず、反応時間が2時間を越えると過度の水素化
により、溶剤の水素供与性が損なわれる。さらに、水素
圧100Kg/ crn’未満では充分な水素化が行な
えず、200Kg/ cm″を越えると高圧容器に要す
るコストが割高となる。この水添工程を経た中・重質油
は、軽質油を除去した後、水素化分解工程を経た中質油
と共に、再び液化工程に液化用溶剤として循環される。
Further, if the reaction time is less than 0.5 hours, sufficient hydrogenation reaction will not be carried out, and if the reaction time exceeds 2 hours, excessive hydrogenation will impair the hydrogen donating ability of the solvent. Furthermore, if the hydrogen pressure is less than 100 kg/crn', sufficient hydrogenation cannot be carried out, and if it exceeds 200 kg/cm', the cost required for a high-pressure vessel becomes relatively high.The medium and heavy oils that have undergone this hydrogenation process are converted into light oils. After removing the oil, it is recycled to the liquefaction process as a liquefaction solvent together with the medium oil that has passed through the hydrocracking process.

次に本発明を実施例によって説明する。Next, the present invention will be explained by examples.

(実施例) 液化用石炭としてはワンドアン炭を用いた。その元素分
析値を第1表に示す。
(Example) Wandouan coal was used as the liquefaction coal. The elemental analysis values are shown in Table 1.

このワンドアン炭を4fL/hrの処理能力を有する石
炭液化連続装置、2交/hrの処理能力を有する水素化
分解装置、 29./hrの処理能力を有する溶剤水添
装置により第2表に示す操業条件で液化−水素化分解−
溶剤水添をくり返し、定常状態に達した時の物質収支を
実施例として第3表に示す、なお液化−溶剤水添のみを
くり返し定常状態に達した場合を比較例1として第3表
に示す。
A continuous coal liquefaction unit with a processing capacity of 4fL/hr for this Wandouan coal, a hydrocracking unit with a processing capacity of 2 cycles/hr, 29. Liquefaction-hydrocracking- under the operating conditions shown in Table 2 using a solvent hydrogenation equipment with a processing capacity of /hr.
The material balance when the solvent hydrogenation is repeated and a steady state is reached is shown in Table 3 as an example.Table 3 shows the case where only liquefaction-solvent hydrogenation is repeated and a steady state is reached as a comparative example 1. .

また、第5図に示すように沸点350℃以上の重質油か
ら正パラフィンを除去した際の物質収支を比較例2とし
て第3表に示す。
Further, as shown in FIG. 5, the material balance when normal paraffin is removed from heavy oil having a boiling point of 350° C. or higher is shown in Table 3 as Comparative Example 2.

第3表より1重質油から正パラフィンを除去した比較例
2では、正パラフィンの除去により液収率(軽質油+中
質柚子重質油)が481から501に向上するが、目的
製品である軽質油収率、軽質油中の正パラフイン濃度、
軽質油の発熱量が激減している。
From Table 3, in Comparative Example 2 in which normal paraffin was removed from 1 heavy oil, the liquid yield (light oil + medium yuzu heavy oil) improved from 481 to 501 by removing normal paraffin, but the target product was A certain light oil yield, normal paraffin concentration in the light oil,
The calorific value of light oil has been drastically reduced.

しかし、中質油の一部を水素化分解した実施例の場合に
は、液収率は48%であるが、軽質油収率、軽質油中の
正パラフイン濃度、軽質油の発熱量が大巾に向上してい
る。軽質油中の正パラフイン濃度が増加したことにより
、軽質油中の芳香族化合物濃度、含酸素化合物濃度、含
窒素化合物濃度、含硫黄化合物濃度は減少する。芳香族
化合物の減少により、燃焼時におけるススの発生が抑制
され、また、ヘテロ原子含有量が減少したことにより液
化油による腐食、臭気、燃焼時のNOx、SO!の発生
が改善される。
However, in the case of the example in which a part of medium oil was hydrocracked, the liquid yield was 48%, but the light oil yield, the concentration of normal paraffin in the light oil, and the calorific value of the light oil were large. It has improved drastically. As the normal paraffin concentration in the light oil increases, the aromatic compound concentration, oxygen-containing compound concentration, nitrogen-containing compound concentration, and sulfur-containing compound concentration in the light oil decrease. The reduction in aromatic compounds suppresses the generation of soot during combustion, and the reduction in heteroatom content reduces corrosion caused by liquefied oil, odor, NOx during combustion, and SO! occurrence is improved.

さらに、軽質油中に含まれる正パラフィンの分析を行な
ったところ、第4図に示すように、炭素鎖数8にピーク
が認められた。この軽質油は正パラフイン量が多いため
そのままでは自動車用ガソリンとしてはオクタン価が低
いけれども、既存の接触改質技術によりオクタン価の向
上が見込まれル、コの正パラフィンを既存技術で分離す
れば、工業用ガソリン例えばミネラルスピリットとして
塗料用溶剤等に使用可能である。
Further, when the normal paraffin contained in the light oil was analyzed, a peak was observed at a carbon chain number of 8, as shown in FIG. This light oil has a large amount of normal paraffins, so its octane number is low for use as automotive gasoline. However, it is expected that the octane number will improve using existing catalytic reforming technology. It can be used as a paint solvent, for example, as a mineral spirit.

(発明の効果) 実施例から明らかなように、この発明によれば■液化油
収率が向上する。
(Effects of the Invention) As is clear from the examples, according to the present invention, (1) the liquefied oil yield is improved;

(Φ軽質油が高収率で得られる。(Phi light oil can be obtained in high yield.

■高品質の液化製品が得られる。(高発熱量、低硫黄) ■自動車用ガソリン、工業用ガソリン等に用途開発が広
がる。
■High quality liquefied products can be obtained. (High calorific value, low sulfur) ■ Application development is expanding to automobile gasoline, industrial gasoline, etc.

などの効果を有し、工業的に極めて有益な発明である。This invention has the following effects and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を示すブロック図、第2図は本方
法における反応温度と液収率の関係を示す図、第3図は
水添重質油濃度と液収率の関係を示す図、第4図は実施
例で得られた軽質油中の正パラフィンの分析結果を示す
図、第5図は従来法を示すブロック図である。
Figure 1 is a block diagram showing the method of the present invention, Figure 2 is a diagram showing the relationship between reaction temperature and liquid yield in this method, and Figure 3 is a diagram showing the relationship between hydrogenated heavy oil concentration and liquid yield. 4 is a diagram showing the analysis results of normal paraffins in the light oil obtained in the example, and FIG. 5 is a block diagram showing the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 石炭液化油中の、沸点200〜350℃留分の一部を水
素化分解して、正パラフィンを減少させた生成物と、沸
点200〜350℃留分の残部と沸点350℃以上留分
とを水素化して得た生成物を混合し、この混合物を石炭
液化用溶剤として使用することを特徴とする石炭の液化
方法。
A product obtained by hydrocracking a part of the fraction with a boiling point of 200 to 350 °C in coal liquefied oil to reduce normal paraffins, the remainder of the fraction with a boiling point of 200 to 350 °C, and a fraction with a boiling point of 350 °C or higher. A method for liquefying coal, which comprises mixing a product obtained by hydrogenating and using this mixture as a solvent for coal liquefaction.
JP4135285A 1985-03-04 1985-03-04 Liquefaction of coal Granted JPS61203197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4135285A JPS61203197A (en) 1985-03-04 1985-03-04 Liquefaction of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4135285A JPS61203197A (en) 1985-03-04 1985-03-04 Liquefaction of coal

Publications (2)

Publication Number Publication Date
JPS61203197A true JPS61203197A (en) 1986-09-09
JPH0367551B2 JPH0367551B2 (en) 1991-10-23

Family

ID=12606114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4135285A Granted JPS61203197A (en) 1985-03-04 1985-03-04 Liquefaction of coal

Country Status (1)

Country Link
JP (1) JPS61203197A (en)

Also Published As

Publication number Publication date
JPH0367551B2 (en) 1991-10-23

Similar Documents

Publication Publication Date Title
CA1094579A (en) Process for the up-grading of fischer-tropsch synthesis effluents
US5233109A (en) Production of synthetic crude petroleum
US20100087308A1 (en) Methods for conversion of methane to useful hydrocarbons, catalysts for use therein, and regeneration of the catalysts
JPH07242884A (en) Production of engine fuel by extraction and hydrogenation of hydrocarbon feed, and gas oil produced
CN104774282B (en) A kind of preparation method of the PIBA as gasoline cleaning agent host
CN105623736B (en) A kind of full cut catalytic thermocracking process of high temperature coal-tar
JPS59109588A (en) Liquefaction of brown coal
CN101568620A (en) Process for the synthesis of hydrocarbon constituents of gasoline
JPS61203198A (en) Liquefaction of coal
JP4803790B2 (en) Clean gasoline composition
JPS61203197A (en) Liquefaction of coal
US20060019823A1 (en) Hydrogenation catalysts and methods
CN86104285A (en) The method of composition and C3 and the C4 hydrocarbon conversion
JPS5843433B2 (en) coal liquefaction method
JPH10298556A (en) Liquefaction of coal
JPS581788A (en) Coal liquefaction
JPS61181890A (en) Method of liquefying coal
JP3491663B2 (en) Coal conversion method
US2967207A (en) Silica-alumina catalyst copromoted with palladium and iron-group metal, and isomerization process catalyzed thereby
JPS6254792A (en) Treatment of coal tar
WO1999033937A1 (en) Method of isomerizing light hydrocarbon oil
JPH10237457A (en) Method for converting coal with supercritical water
CN101955797A (en) Method for inhibiting alkaline nitrides in coker gatch
JPS6254791A (en) Treatment of coal tar
JP3417452B2 (en) Conversion method of coal by supercritical water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees