JPH10229190A - Silicon carbide semiconductor device and manufacture thereof - Google Patents

Silicon carbide semiconductor device and manufacture thereof

Info

Publication number
JPH10229190A
JPH10229190A JP9030409A JP3040997A JPH10229190A JP H10229190 A JPH10229190 A JP H10229190A JP 9030409 A JP9030409 A JP 9030409A JP 3040997 A JP3040997 A JP 3040997A JP H10229190 A JPH10229190 A JP H10229190A
Authority
JP
Japan
Prior art keywords
semiconductor layer
silicon carbide
groove
semiconductor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9030409A
Other languages
Japanese (ja)
Inventor
Yuichi Takeuchi
有一 竹内
Takamasa Suzuki
孝昌 鈴木
Shoichi Onda
正一 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP9030409A priority Critical patent/JPH10229190A/en
Priority to US09/023,280 priority patent/US6133587A/en
Publication of JPH10229190A publication Critical patent/JPH10229190A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Abstract

PROBLEM TO BE SOLVED: To provide a silicon carbide semiconductor device and manufacture thereof which improves channel mobility to effectively reduce the on-resistance. SOLUTION: This device comprises an n<+> and n<-> -type Si carbide semiconductor or layers 1, 2 and p-type semiconductor layer 3, and its main surface is a (0001-) carbon plane and is composed of a hexagonal single-crystal silicon carbide. On the surface of the semiconductor layer 3, n<+> -type source regions 5 are formed with trenches 7 passing from the main surface to the semiconductor layer 2 through the regions 5 and layer 3 and side faces thereof, formed parallel to the (11-00) plane. A gate-insulating film is formed by wet thermal oxidation. This improves the channel mobility and reduces the on-resistance of the semiconductor device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭化珪素半導体装
置、たとえば、大電力用縦型絶縁ゲート型電界効果トラ
ンジスタに関する。
The present invention relates to a silicon carbide semiconductor device, for example, a high power vertical insulated gate field effect transistor.

【0002】[0002]

【従来の技術】近年、電力用トランジスタとして炭化珪
素単結晶材料を使用して作製される縦型パワーMOSF
ETが提案されている。これは基板表面から半導体基板
に溝を形成し、溝側面をチャネル領域とするものであ
る。電力用トランジスタにおいてはゲート電圧がオフ時
のソースとドレイン間のリーク電流が少なく、かつ、オ
ン時にはソースとドレイン間の抵抗(以下、オン抵抗と
いう)が小さいことが必要であり、このような要求に対
して、六方晶炭化珪素の電子物性の長所を生かし、高電
圧印加時のリーク電流の低減とオン抵抗の低減が効果的
に図れる電力用トランジスタとして例えば、特開平7−
131016号公報や特開平7−326755号公報に
記載のものが提案されている。
2. Description of the Related Art Recently, a vertical power MOSF manufactured using a silicon carbide single crystal material as a power transistor has been developed.
ET has been proposed. In this method, a groove is formed in a semiconductor substrate from the substrate surface, and the side surface of the groove is used as a channel region. In a power transistor, it is necessary that the leak current between the source and the drain when the gate voltage is off is small and the resistance between the source and the drain when the gate voltage is on (hereinafter referred to as on-resistance) is small. On the other hand, as a power transistor which can effectively reduce the leak current and the on-resistance when a high voltage is applied, taking advantage of the electronic properties of hexagonal silicon carbide, for example, Japanese Unexamined Patent Publication No.
JP-A-131016 and JP-A-7-326755 have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
7−131016号公報や特開平7−326755号公
報の溝ゲート型パワーMOSFETにおいては、必ずし
もチャネル移動度が向上するとはいえず、依然としてオ
ン抵抗が高いという問題があった。そこで、本発明の目
的は、チャネル移動度を改善しオン抵抗を効果的に低減
できるトランジスタ及びその製造方法を提供することに
ある。
However, in the trench gate type power MOSFETs disclosed in JP-A-7-131016 and JP-A-7-326755, the channel mobility is not necessarily improved, and the on-resistance still remains. There was a problem of high. Therefore, an object of the present invention is to provide a transistor capable of improving channel mobility and effectively reducing on-resistance, and a method for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】請求項1及び請求項3に
記載の発明は、縦型絶縁ゲート型電界効果トランジスタ
溝ゲート型のチャネル面、すなわち六方晶系の単結晶炭
化珪素からなる半導体基板の主表面からその内部に形成
した溝の側面を略[11−00]方向とし、この溝の側
面に設けるゲート絶縁膜をウエット雰囲気の熱酸化にて
形成することを特徴とする炭化珪素半導体装置及びその
製造方法をその要旨とする。
According to a first aspect of the present invention, there is provided a semiconductor substrate comprising a vertical insulated gate field effect transistor groove gate channel surface, that is, a hexagonal single crystal silicon carbide. A side surface of a groove formed therein from a main surface of the semiconductor device is substantially in the [11-00] direction, and a gate insulating film provided on the side surface of the groove is formed by thermal oxidation in a wet atmosphere. And its manufacturing method as its gist.

【0005】請求項2に記載の発明は、請求項1に記載
の発明における前記溝側面の平面形状が各内角が略等し
い六角形である炭化珪素半導体装置をその要旨とする。
以下、本願発明者らの実験及びその結果に基づく考察に
より本願発明をより詳細に説明する。チャネル移動度が
依然として低いという課題に対して、本発明者らはトラ
ンジスタの電気特性に及ぼすトランジスタ溝側面の表面
形状依存性、チャネル面の結晶面方位依存性、及びゲー
ト絶縁膜形成条件依存性について検討、実験した。
According to a second aspect of the present invention, there is provided a silicon carbide semiconductor device according to the first aspect, wherein the planar shape of the groove side surface is a hexagon having substantially the same interior angle.
Hereinafter, the present invention will be described in more detail based on experiments performed by the present inventors and considerations based on the results. In order to solve the problem that the channel mobility is still low, the present inventors discuss the dependence of the transistor shape on the surface shape of the side surface of the transistor groove, the crystal plane orientation of the channel surface, and the dependence of the gate insulating film formation conditions on the electrical characteristics of the transistor. We examined and experimented.

【0006】主表面を(0001−)カーボン面とする
縦型絶縁ゲート型電界効果トランジスタのチャネル面の
面方位すなわち溝側面を5度ずつ変化させたMOSFT
ETを作製し、チャネル移動度を評価した。その結果、
ゲート絶縁膜がウエット雰囲気の熱酸化で形成されたM
OSFETではチャネル移動度は60度の周期性を示
し、チャネル面の面方位が[11−00]に平行である
場合にチャネル移動度は極大を示した。また、界面準位
密度を見積もったところ、[11−00]に平行である
場合に極小を示した。図14に本発明者らの評価から得
られた界面準位密度の面方位依存性を示す。ここで、ゲ
ート絶縁膜がドライ雰囲気の熱酸化で形成されたMOS
FETでは、ウエット雰囲気で形成されたMOSFET
よりチャネル移動度は低く、界面準位密度も大きく、強
い面方位依存性を示さなかった。
A MOSFT in which the plane orientation of the channel plane, that is, the groove side surface of the vertical insulated gate field effect transistor whose main surface is a (0001-) carbon plane is changed by 5 degrees.
ET was prepared and the channel mobility was evaluated. as a result,
The gate insulating film is formed by thermal oxidation in a wet atmosphere.
In the OSFET, the channel mobility showed a periodicity of 60 degrees, and the channel mobility showed a maximum when the plane orientation of the channel plane was parallel to [11-00]. In addition, when the interface state density was estimated, it was found to be minimal when it was parallel to [11-00]. FIG. 14 shows the plane orientation dependence of the interface state density obtained from the evaluation of the present inventors. Here, a MOS in which a gate insulating film is formed by thermal oxidation in a dry atmosphere
For FET, MOSFET formed in wet atmosphere
The channel mobility was lower, the interface state density was higher, and no strong plane orientation dependence was exhibited.

【0007】この結果はチャネル移動度低下の要因の1
つとして六方晶炭化珪素半導体の結晶構造に起因する界
面準位密度が重要であることを示している。本願発明者
らの考察では、炭化珪素半導体にて形成されたMOSF
ETの界面準位密度の起源は、単原子より構成されるシ
リコン半導体の場合とは異なり、チャネル面に存在する
カーボン原子が重要な役割を担っており、シリコン半導
体から形成されたMOSFETよりも一桁以上大きな値
を示す界面準位密度はカーボン原子に起因するものであ
るとの結論に達した。その理由は、六方晶炭化珪素にお
いて(0001)シリコン面に比べ(0001−)カー
ボン面で界面準位密度が大きいこと、さらに実験で得ら
れた図14の界面準位密度の分布が、結晶構造から数学
的に計算される単位面積当たりのカーボン原子密度とよ
い相関があったからである。
This result is one of the causes of the decrease in channel mobility.
First, the interface state density resulting from the crystal structure of the hexagonal silicon carbide semiconductor is important. The present inventors consider that MOSF formed of a silicon carbide semiconductor
The origin of the interface state density of ET is different from the case of a silicon semiconductor composed of a single atom, in which carbon atoms existing on the channel surface play an important role, and are one more than those of a MOSFET formed from a silicon semiconductor. It was concluded that the interface state density, which is greater than an order of magnitude, was attributed to carbon atoms. The reason is that hexagonal silicon carbide has a higher interface state density on the (0001-) carbon plane than on the (0001) silicon plane, and the distribution of the interface state density in FIG. This is because there was a good correlation with the carbon atom density per unit area calculated mathematically from

【0008】そこで、チャネル面、及びゲート酸化膜内
に存在するカーボン原子の密度を最大限に減少させ、カ
ーボン原子を起源とする界面準位密度を低下させること
で炭化珪素にて形成したMOSFETのチャネル移動度
向上を図ることができると考えた。それには、チャネル
面を[11−00]に平行とし、ゲート絶縁膜をウエッ
ト雰囲気の熱酸化で形成することが有効であると本発明
者らの実験で確認された。
Therefore, the density of carbon atoms existing in the channel surface and in the gate oxide film is reduced to the maximum, and the interface state density originating from carbon atoms is reduced to reduce the density of the MOSFET formed of silicon carbide. We thought that channel mobility could be improved. It has been confirmed by experiments of the present inventors that it is effective to make the channel surface parallel to [11-00] and to form the gate insulating film by thermal oxidation in a wet atmosphere.

【0009】従って、請求項1あるいは請求項3に記載
の発明によれば、縦型絶縁ゲート型電界効果トランジス
タのチャネル面を略[11−00]に平行な面としたの
で、炭化珪素結晶構造にもとずくカーボン原子密度最小
となる面にMOSFETのチャネル界面を形成すること
ができ、さらに、前記ゲート絶縁膜がウエット雰囲気の
熱酸化で形成された絶縁膜であるので、本発明者らの実
験結果が示すように、効果的に界面準位密度を低下する
ことができる。カーボン原子を起源とする界面準位密度
を低下させることができれば、高信頼性のあるゲート絶
縁膜が得られ、ゲート絶縁膜の寿命をものばすことがで
きる。
Therefore, according to the first or third aspect of the present invention, since the channel surface of the vertical insulated gate field effect transistor is substantially parallel to [11-00], the silicon carbide crystal structure Since the channel interface of the MOSFET can be formed on the surface where the carbon atom density is minimized, and the gate insulating film is an insulating film formed by thermal oxidation in a wet atmosphere, As shown by the experimental results, the interface state density can be effectively reduced. If the interface state density derived from carbon atoms can be reduced, a highly reliable gate insulating film can be obtained, and the life of the gate insulating film can be extended.

【0010】請求項2に記載の発明によれば、請求項1
に記載の発明の作用に加え、前記側面の平面形状は、各
内角が略等しい六角形としたので、六角形の各辺におい
て内角をなす角度は略120度となる。よって、縦型絶
縁ゲート型電界効果トランジスタのオフ時にソース・ド
レイン間に高電圧が印加された場合に、側面の形状が六
角形の溝にて形成された半導体部で電界集中によるアバ
ランシェブレークダウンは発生しない。すなわち、請求
項3に示すように前記多角形の辺を所定の方向に揃える
ためには三角形や菱形もあり得るがこのような形状では
鋭角になる部分が生じ電界集中によってアバランシェブ
レークダウンが生じやすいが、六角形では鋭角になる領
域が存在しないためアバランシェブレークダウンが発生
しない。従って、ソース・ドレイン間耐圧設計において
は、高抵抗半導体層と第1の半導体層の不純物濃度及び
その膜厚で決まる耐圧を考えればよいので、高耐圧設計
が可能となる。
According to the second aspect of the present invention, the first aspect is provided.
In addition to the effect of the invention described in (1), since the planar shape of the side surface is a hexagon having substantially the same interior angle, the angle forming the interior angle on each side of the hexagon is approximately 120 degrees. Therefore, when a high voltage is applied between the source and the drain when the vertical insulated gate field effect transistor is turned off, avalanche breakdown due to electric field concentration occurs in the semiconductor portion formed by the hexagonal groove on the side surface. Does not occur. That is, a triangle or a rhombus may be used to align the sides of the polygon in a predetermined direction as described in claim 3. However, in such a shape, an acute angle portion is generated, and avalanche breakdown easily occurs due to electric field concentration. However, in the case of a hexagon, no avalanche breakdown occurs because there is no acute angle region. Therefore, in the source-drain breakdown voltage design, the breakdown voltage determined by the impurity concentration and the film thickness of the high-resistance semiconductor layer and the first semiconductor layer may be considered, so that a high breakdown voltage design is possible.

【0011】尚、本明細書においては、六方晶系の単結
晶炭化珪素の面および方向軸を表す場合、本来ならば図
面に記載されているように、所要の数字の上にバーを付
した表現をとるべきであるが、表現手段に制約があるた
めに、前記所要の数字の上にバーを付す表現の代わり
に、前記所要数字の後に「−」を付して表現している。
In this specification, when the plane and the direction axis of the hexagonal single-crystal silicon carbide are expressed, a bar is added to a required numeral as originally described in the drawings. Although the expression should be taken, due to the restriction of the expression means, instead of the expression in which a bar is added above the required number, the required number is represented by adding "-" after the required number.

【0012】[0012]

【発明の実施の形態】以下、この発明の実施の形態を図
面に従って説明する。図1に本実施の形態におけるnチ
ャネルタイプの縦型絶縁ゲート型電界効果トランジスタ
(以下、縦型パワーMOSFETという)を示す。低抵
抗半導体層としてのn+ 型炭化珪素半導体基板1は六方
晶の炭化珪素(SiC)が用いられている。このn+
炭化珪素半導体基板1上に、高抵抗半導体層としてのn
- 型炭化珪素半導体層2とp型炭化珪素半導体層3が順
次積層されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an n-channel type vertical insulated gate field effect transistor (hereinafter referred to as a vertical power MOSFET) in this embodiment. Hexagonal silicon carbide (SiC) is used for n + -type silicon carbide semiconductor substrate 1 as a low-resistance semiconductor layer. On this n + type silicon carbide semiconductor substrate 1, n as a high resistance semiconductor layer
- type silicon carbide semiconductor layer 2 and the p-type silicon carbide semiconductor layer 3 are sequentially laminated.

【0013】このように、n+ 型炭化珪素半導体基板1
とn- 型炭化珪素半導体層2と第一のp型炭化珪素半導
体層3とから単結晶炭化珪素よりなる半導体基板4が構
成されており、その上面を略(0001−)カーボン面
としている。p型炭化珪素半導体層3内の表層部におけ
る所定領域には、半導体領域としてのn+ 型ソース領域
5が形成されている。さらに、p型炭化珪素半導体層3
内の表層部における所定領域には、低抵抗p型炭化珪素
領域6が形成されている。
Thus, n + type silicon carbide semiconductor substrate 1
And n -type silicon carbide semiconductor layer 2 and first p-type silicon carbide semiconductor layer 3 constitute a semiconductor substrate 4 made of single-crystal silicon carbide, and its upper surface is substantially a (0001-) carbon surface. An n + -type source region 5 as a semiconductor region is formed in a predetermined region in a surface portion in p-type silicon carbide semiconductor layer 3. Further, p-type silicon carbide semiconductor layer 3
A low-resistance p-type silicon carbide region 6 is formed in a predetermined region in a surface layer portion.

【0014】又、n+ 型ソース領域5の所定領域に溝7
が形成され、この溝7は、n+ 型ソース領域5とp型炭
化珪素半導体層3を貫通しnー型炭化珪素半導体層2に
達している。溝7は半導体基板4の表面に垂直な側面7
aおよび半導体基板4の表面に平行な底面7bを有す
る。又、溝7の側面7aは略[11−00]方向に延設
されている。さらに、溝7の側面7aの平面形状は、各
内角が略等しい六角形である。つまり、図2の基板4の
平面図において、六角形の6つの辺をS1、S2、S
3、S4、S5、S6で示し、辺S1とS2となす角度
(内角)、辺S2とS3となす角度(内角)、辺S3と
S4となす角度(内角)、辺S4とS5となす角度(内
角)、辺S5とS6となす角度(内角)、辺S6とS1
となす角度(内角)は略120゜となっている。
A groove 7 is formed in a predetermined region of the n + type source region 5.
This trench 7 penetrates n + type source region 5 and p type silicon carbide semiconductor layer 3 to reach n − type silicon carbide semiconductor layer 2. The groove 7 is a side surface 7 perpendicular to the surface of the semiconductor substrate 4.
a and a bottom surface 7 b parallel to the surface of the semiconductor substrate 4. The side surface 7a of the groove 7 extends substantially in the [11-00] direction. Further, the planar shape of the side surface 7a of the groove 7 is a hexagon whose interior angles are substantially equal. That is, in the plan view of the substrate 4 of FIG. 2, the six sides of the hexagon are represented by S1, S2, S
3, S4, S5, S6, the angle between the sides S1 and S2 (interior angle), the angle between the sides S2 and S3 (interior angle), the angle between the sides S3 and S4 (inner angle), the angle between the sides S4 and S5 (Inner angle), angle between sides S5 and S6 (inner angle), sides S6 and S1
(Inner angle) is approximately 120 °.

【0015】さらに、溝7内の側面7aと溝7の底面7
bにはゲート絶縁膜8が形成されている。溝7内におけ
るゲート絶縁膜8の内側にはゲート電極層9が充填され
ている。ゲート電極層9は絶縁膜10にて覆われてい
る。n+ 型ソース領域5の表面およびと低抵抗p型炭化
珪素領域6の表面には第1の電極層としてのソース電極
層11が形成されている。n+ 型炭化珪素半導体基板1
の表面(半導体基板4の裏面)には、第2の電極層とし
てのドレイン電極層12が形成されている。
Further, the side surface 7a in the groove 7 and the bottom surface 7 of the groove 7
The gate insulating film 8 is formed on b. The inside of the gate insulating film 8 in the trench 7 is filled with a gate electrode layer 9. Gate electrode layer 9 is covered with insulating film 10. A source electrode layer 11 as a first electrode layer is formed on the surface of n + type source region 5 and the surface of low-resistance p-type silicon carbide region 6. n + -type silicon carbide semiconductor substrate 1
A drain electrode layer 12 as a second electrode layer is formed on the front surface (back surface of the semiconductor substrate 4).

【0016】このように溝ゲート型パワーMOSFET
は、チャネル形成面が[11−00]方向となってい
る。次に、溝ゲート型パワーMOSFETの製造工程
を、図3〜図11を用いて説明する。まず、図3に示す
ように、主表面が略(0001−)カーボン面であるn
+ 型炭化珪素半導体基板1を用意し、その表面にn-
炭化珪素半導体層2をエピタキシャル成長し、さらにn
- 型炭化珪素半導体層2上にp型炭化珪素半導体層3を
エピタキシャル成長する。このようにして、n+ 型炭化
珪素半導体基板1とn - 型炭化珪素半導体層2とp型炭
化珪素半導体層3とからなる半導体基板4が形成され
る。
As described above, the trench gate type power MOSFET
Indicates that the channel forming surface is in the [11-00] direction.
You. Next, the manufacturing process of the trench gate type power MOSFET
Will be described with reference to FIGS. First, shown in FIG.
Thus, n whose main surface is a substantially (0001-) carbon surface
+Type silicon carbide semiconductor substrate 1 is prepared and n-Type
A silicon carbide semiconductor layer 2 is epitaxially grown, and n
-P-type silicon carbide semiconductor layer 3 on p-type silicon carbide semiconductor layer 2
It grows epitaxially. Thus, n+Type carbonization
Silicon semiconductor substrate 1 and n --Type silicon carbide semiconductor layer 2 and p-type carbon
A semiconductor substrate 4 composed of a silicon nitride semiconductor layer 3 is formed.
You.

【0017】次に、図4に示すように、p型炭化珪素半
導体層3の表層部の所定領域に、n + 型ソース領域5を
例えば窒素のイオン注入により形成する。さらに、p型
炭化珪素半導体層3の表層部の別の所定領域に低抵抗p
型炭化珪素領域6を例えばアルミニウムのイオン注入に
より形成する。そして、図5に示すようにドライエッチ
ング法、例えばRIE(Reactive Ionetching)により、
+ 型ソース領域5及びp型炭化珪素半導体層3をとも
に貫通してn- 型炭化珪素半導体層2に達する溝7を形
成する。この時、溝7の側面7aが[11−00]方向
に平行となるように溝7を形成する。それゆえ、図2に
示すように上面から見た溝の形状が主表面において六角
形となる。
Next, as shown in FIG.
In a predetermined region of the surface portion of the conductor layer 3, n +Mold source region 5
For example, it is formed by ion implantation of nitrogen. Furthermore, p-type
Low resistance p is applied to another predetermined region of the surface layer portion of silicon carbide semiconductor layer 3.
Type silicon carbide region 6 for ion implantation of aluminum, for example.
Formed. Then, as shown in FIG.
RIE (Reactive Ionetching)
n+Source region 5 and p-type silicon carbide semiconductor layer 3
Through n-Groove 7 reaching type silicon carbide semiconductor layer 2 is formed.
To achieve. At this time, the side surface 7a of the groove 7 is oriented in the [11-00] direction.
The groove 7 is formed so as to be parallel to. Therefore, in FIG.
As shown from the top, the shape of the groove is hexagonal on the main surface
It takes shape.

【0018】引き続き、図6に示すように、半導体基板
4およびn型炭化珪素半導体薄膜層7の表面と溝7の底
面7bにはゲート絶縁膜8を形成する。このとき、ゲー
ト絶縁膜8はウエット雰囲気の熱酸化で形成する。この
ウエット酸化はパイロジェニック法と呼ばれる方法で行
い、成膜条件としては上記溝7が形成された半導体基板
4を熱酸化炉内に配置し炉内の温度を1100℃まで上
昇させ、水素(H2 )と酸素(O2 )とを4:3の割合
で流入し、水素と酸素とを燃焼させて水蒸気をつくり、
水蒸気と酸素とで熱酸化膜を形成した。本実施形態では
酸化膜の成長速度を25nm/hとし、100nmまで
成長させた。これに対してドライ酸化は酸素のみを供給
して酸化膜を形成する方法である。
Subsequently, as shown in FIG. 6, a gate insulating film 8 is formed on the surfaces of the semiconductor substrate 4 and the n-type silicon carbide semiconductor thin film layer 7 and the bottom surface 7b of the groove 7. At this time, the gate insulating film 8 is formed by thermal oxidation in a wet atmosphere. This wet oxidation is performed by a method called a pyrogenic method. As a film forming condition, the semiconductor substrate 4 on which the groove 7 is formed is placed in a thermal oxidation furnace, the temperature in the furnace is increased to 1100 ° C., and hydrogen (H 2 ) and oxygen (O 2 ) flow at a ratio of 4: 3 and burn hydrogen and oxygen to produce steam,
A thermal oxide film was formed with water vapor and oxygen. In this embodiment, the growth rate of the oxide film is 25 nm / h, and the oxide film is grown up to 100 nm. On the other hand, dry oxidation is a method of forming an oxide film by supplying only oxygen.

【0019】そして、図7に示すように、溝7内のゲー
ト絶縁膜8の内側にゲート電極層9を形成するための電
極材料として例えば多結晶シリコンを充填する。さら
に、図8に示すように、ゲート電極層9の上面に気相成
長法(例えばCemical Vapor Deposition)等により絶縁
膜10を形成する。その後、図1に示すように、絶縁膜
10上を含むソース領域5と低抵抗p型炭化珪素領域6
の上に例えばニッケル(Ni)からなるソース電極層1
1を形成する。又、n+ 型炭化珪素半導体基板1の表面
に例えばニッケルからなるドレイン電極層12を形成し
て溝ゲート型パワーMOSFETを完成する。
Then, as shown in FIG. 7, the inside of the gate insulating film 8 in the trench 7 is filled with, for example, polycrystalline silicon as an electrode material for forming the gate electrode layer 9. Further, as shown in FIG. 8, an insulating film 10 is formed on the upper surface of the gate electrode layer 9 by a vapor deposition method (for example, Chemical Vapor Deposition). Thereafter, as shown in FIG. 1, source region 5 including on insulating film 10 and low-resistance p-type silicon carbide region 6 are formed.
A source electrode layer 1 made of, for example, nickel (Ni)
Form one. Further, a drain electrode layer 12 made of, for example, nickel is formed on the surface of the n + type silicon carbide semiconductor substrate 1 to complete a trench gate type power MOSFET.

【0020】以上のように、本実施形態においては縦型
MOSFETのチャネルを形成する溝7の側面7aを
[11−00]方向に平行となるように形成し、かつこ
のような溝7の側面7aに対してウエット酸化にてゲー
ト絶縁膜8を形成しているため図14に示すように界面
準位を最も低減させることができ、これによってチャネ
ル移動度を向上させることができ、オン抵抗を効果的に
低減できるトランジスタを提供できる。
As described above, in this embodiment, the side surface 7a of the groove 7 forming the channel of the vertical MOSFET is formed so as to be parallel to the [11-00] direction, and the side surface of such a groove 7 is formed. Since the gate insulating film 8 is formed by wet oxidation with respect to 7a, the interface state can be reduced most as shown in FIG. 14, whereby the channel mobility can be improved and the on-resistance can be reduced. A transistor that can be effectively reduced can be provided.

【0021】これまで述べた構成の他にも、例えば、n
+ 型ソース領域5と低抵抗p型炭化珪素層5に形成され
るソース電極は、異なる材料でもよい。又、低抵抗p型
炭化珪素層5は省略も可能であり、この場合ソース電極
層11はn+ 型ソース領域5と第一のp型炭化珪素半導
体層3に接するように形成される。又、ソース電極層1
1は、少なくともn+ 型ソース領域5の表面に形成され
ていればよい。
In addition to the configuration described above, for example, n
The source electrode formed on + type source region 5 and low resistance p-type silicon carbide layer 5 may be made of different materials. The low-resistance p-type silicon carbide layer 5 can be omitted. In this case, the source electrode layer 11 is formed so as to be in contact with the n + -type source region 5 and the first p-type silicon carbide semiconductor layer 3. Also, the source electrode layer 1
1 may be formed at least on the surface of the n + type source region 5.

【0022】さらに、上述した例ではnチャネル縦型M
OSFETに適用した場合について説明したが、図1に
おいてp型とn型を入れ替えた、pチャネル縦型MOS
FETにおいても同じ効果が得られる。さらに、図1で
は溝7は基板表面に対し側面7aがほぼ90゜となって
いるが、図9に示すように、溝7の側面7aと基板表面
のなす角度は必ずしも90゜に近くなくてもよい。又、
溝7は底面を有しないV字型でもよい。さらに図10に
示すように溝7の側面7aは平面でなくてもよく、滑ら
かな曲面でもよい。尚、溝7の側面7aと基板表面のな
す角度は、チャネル移動度が大きくなるように設計する
ことにより、より良い効果が得られる。
Further, in the above example, the n-channel vertical type M
The case where the present invention is applied to an OSFET has been described. However, in FIG.
The same effect can be obtained in the FET. Further, in FIG. 1, the side surface 7a of the groove 7 is substantially 90 ° with respect to the substrate surface, but as shown in FIG. 9, the angle between the side surface 7a of the groove 7 and the substrate surface is not necessarily close to 90 °. Is also good. or,
The groove 7 may be V-shaped without a bottom surface. Further, as shown in FIG. 10, the side surface 7a of the groove 7 may not be a flat surface, but may be a smooth curved surface. A better effect can be obtained by designing the angle between the side surface 7a of the groove 7 and the substrate surface so as to increase the channel mobility.

【0023】又、図11に示すように、ゲート電極9の
上部がn+ 型ソース領域5の上方に延びる形状であって
もよい。さらに、図12に示すように、溝15の側面の
平面形状(詳しくは、ゲート電極層10側の形状)は、
各内角が略等しい六角形としても良い。つまり、図13
の基板4の平面図において、六角形の6つの辺をS1
1、S12、S13、S14、S15、S16で示し、
辺S11とS12となす角度(内角)、辺S12とS1
3となす角度(内角)、辺S13とS14となす角度
(内角)、辺S14とS15となす角度(内角)、辺S
15とS16となす角度(内角)、辺S16とS11と
なす角度(内角)は略120度となっている。
Further, as shown in FIG. 11, the upper portion of gate electrode 9 may have a shape extending above n + type source region 5. Further, as shown in FIG. 12, the planar shape of the side surface of the groove 15 (specifically, the shape on the gate electrode layer 10 side) is
It may be a hexagon whose inner angles are substantially equal. That is, FIG.
In the plan view of the substrate 4 of FIG.
1, S12, S13, S14, S15, S16,
Angle (inner angle) between sides S11 and S12, sides S12 and S1
3, the angle between the sides S13 and S14 (the interior angle), the angle between the sides S14 and S15 (the interior angle), the side S
An angle (inner angle) between 15 and S16 and an angle (inner angle) between sides S16 and S11 are approximately 120 degrees.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態の溝ゲート型パワーMOSFET
の斜視図。
FIG. 1 is a trench gate type power MOSFET according to a first embodiment.
FIG.

【図2】基板の平面図。FIG. 2 is a plan view of a substrate.

【図3】溝ゲート型パワーMOSFETの製造工程を示
す断面図。
FIG. 3 is a sectional view showing a manufacturing process of the trench gate type power MOSFET.

【図4】溝ゲート型パワーMOSFETの製造工程を示
す断面図。
FIG. 4 is a sectional view showing a manufacturing process of the trench gate type power MOSFET.

【図5】溝ゲート型パワーMOSFETの製造工程を示
す断面図。
FIG. 5 is a sectional view showing a manufacturing process of the trench gate type power MOSFET.

【図6】溝ゲート型パワーMOSFETの製造工程を示
す断面図。
FIG. 6 is a sectional view showing the manufacturing process of the trench gate type power MOSFET.

【図7】溝ゲート型パワーMOSFETの製造工程を示
す断面図。
FIG. 7 is a sectional view showing the manufacturing process of the trench gate type power MOSFET.

【図8】溝ゲート型パワーMOSFETの製造工程を示
す断面図。
FIG. 8 is a sectional view showing the manufacturing process of the trench gate type power MOSFET.

【図9】応用例の溝ゲート型パワーMOSFETの断面
構造模式図。
FIG. 9 is a schematic sectional view of a trench gate type power MOSFET of an application example.

【図10】応用例の溝ゲート型パワーMOSFETの断
面構造模式図。
FIG. 10 is a schematic sectional view of a trench gate type power MOSFET of an application example.

【図11】応用例の溝ゲート型パワーMOSFETの断
面構造模式図。
FIG. 11 is a schematic sectional view of a trench gate type power MOSFET of an application example.

【図12】応用例を説明するための基板の平面図。FIG. 12 is a plan view of a substrate for describing an application example.

【図13】応用例を説明するための基板の平面図。FIG. 13 is a plan view of a substrate for describing an application example.

【図14】六方晶炭化珪素半導体における界面準位密度
の面方位依存性を示す特性図。
FIG. 14 is a characteristic diagram showing a plane orientation dependency of an interface state density in a hexagonal silicon carbide semiconductor.

【符号の説明】[Explanation of symbols]

1 n+ 型炭化珪素半導体基板 2 n- 型炭化珪素半導体層 3 p型炭化珪素半導体層 4 半導体基板 5 n+ 型ソース領域 7 溝 7a 側面 7b 底面 8 ゲート絶縁膜 9 ゲート電極層 10 絶縁膜 11 ソース電極層 12 ドレイン電極層Reference Signs List 1 n + -type silicon carbide semiconductor substrate 2 n -- type silicon carbide semiconductor layer 3 p-type silicon carbide semiconductor layer 4 semiconductor substrate 5 n + -type source region 7 groove 7 a side surface 7 b bottom surface 8 gate insulating film 9 gate electrode layer 10 insulating film 11 Source electrode layer 12 Drain electrode layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の低抵抗半導体層と第1導電
型の高抵抗半導体層と第2導電型の半導体層とが順次積
層された六方晶系の単結晶炭化珪素よりなる半導体基板
と、 前記半導体層の表層部の所定領域に形成された第1導電
型の半導体領域と、 前記半導体基板の主表面から前記半導体領域と前記半導
体層を貫通し前記高抵抗半導体層に達するとともに、略
[11−00]方向に対して平行である側面を有する溝
と、 少なくとも前記溝の側面の表面に形成されるとともに、
ウエット雰囲気の熱酸化で形成されたゲート絶縁膜と、 該ゲート絶縁膜上に形成されたゲート電極層と、 少なくとも前記半導体領域の表面に形成された第1の電
極と、 前記低抵抗半導体層の裏面に形成された第2の電極とを
備えたことを特徴とする炭化珪素半導体装置。
1. A semiconductor substrate made of hexagonal single-crystal silicon carbide in which a low-resistance semiconductor layer of a first conductivity type, a high-resistance semiconductor layer of a first conductivity type, and a semiconductor layer of a second conductivity type are sequentially stacked. A first conductivity type semiconductor region formed in a predetermined region of a surface layer portion of the semiconductor layer; and a semiconductor layer and a semiconductor layer penetrating from the main surface of the semiconductor substrate to the high resistance semiconductor layer. A groove having a side surface that is substantially parallel to the [11-00] direction; and a groove formed at least on the surface of the side surface of the groove.
A gate insulating film formed by thermal oxidation in a wet atmosphere; a gate electrode layer formed on the gate insulating film; a first electrode formed on at least a surface of the semiconductor region; A silicon carbide semiconductor device, comprising: a second electrode formed on a back surface.
【請求項2】 前記溝の側面の平面形状は、各内角が略
等しい六角形である請求項1に記載の炭化珪素半導体装
置。
2. The silicon carbide semiconductor device according to claim 1, wherein the planar shape of the side surface of the groove is a hexagon whose interior angles are substantially equal.
【請求項3】 第1導電型の低抵抗半導体層と第1導電
型の高抵抗半導体層と第2導電型の半導体層とを順次積
層して六方晶系の単結晶炭化珪素よりなる半導体基板を
用意する第1工程と、 前記半導体層の表層部の所定領域に第1導電型の半導体
領域を形成する第2工程と、 前記半導体基板の主表面から前記半導体領域と前記半導
体層を貫通し前記高抵抗半導体層に達するとともに、略
[11−00]方向に対して平行である側面を有する溝
を形成する第3工程と、 少なくとも前記溝の側面の表面に対して、ウエット雰囲
気の熱酸化でゲート酸化膜を形成する第4工程と、 該ゲート絶縁膜上にゲート電極層を形成する第5工程
と、 少なくとも前記半導体領域の表面に第1の電極を形成す
るとともに、前記低抵抗半導体層の裏面に第2の電極を
形成する第6工程とを備えたことを特徴とする炭化珪素
半導体装置の製造方法。
3. A semiconductor substrate made of hexagonal single-crystal silicon carbide by sequentially laminating a first-conductivity-type low-resistance semiconductor layer, a first-conductivity-type high-resistance semiconductor layer, and a second-conductivity-type semiconductor layer. A second step of forming a first conductivity type semiconductor region in a predetermined region of a surface portion of the semiconductor layer; and a step of penetrating the semiconductor region and the semiconductor layer from a main surface of the semiconductor substrate. Forming a groove reaching the high-resistance semiconductor layer and having a side surface substantially parallel to the [11-00] direction; and thermally oxidizing at least a surface of the side surface of the groove in a wet atmosphere. A fourth step of forming a gate oxide film on the gate insulating film, a fifth step of forming a gate electrode layer on the gate insulating film, and forming a first electrode on at least a surface of the semiconductor region and the low-resistance semiconductor layer. The second electrode on the back of The method of manufacturing a silicon carbide semiconductor device characterized by comprising a sixth step of forming.
JP9030409A 1996-01-23 1997-02-14 Silicon carbide semiconductor device and manufacture thereof Withdrawn JPH10229190A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9030409A JPH10229190A (en) 1997-02-14 1997-02-14 Silicon carbide semiconductor device and manufacture thereof
US09/023,280 US6133587A (en) 1996-01-23 1998-02-13 Silicon carbide semiconductor device and process for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9030409A JPH10229190A (en) 1997-02-14 1997-02-14 Silicon carbide semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10229190A true JPH10229190A (en) 1998-08-25

Family

ID=12303157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9030409A Withdrawn JPH10229190A (en) 1996-01-23 1997-02-14 Silicon carbide semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10229190A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013179820A1 (en) * 2012-05-31 2016-01-18 国立研究開発法人産業技術総合研究所 Semiconductor device
EP2851959A4 (en) * 2012-05-18 2016-02-17 Sumitomo Electric Industries Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2851959A4 (en) * 2012-05-18 2016-02-17 Sumitomo Electric Industries Semiconductor device
JPWO2013179820A1 (en) * 2012-05-31 2016-01-18 国立研究開発法人産業技術総合研究所 Semiconductor device
EP2860761A4 (en) * 2012-05-31 2016-02-24 Nat Inst Of Advanced Ind Scien Semiconductor device

Similar Documents

Publication Publication Date Title
US5744826A (en) Silicon carbide semiconductor device and process for its production
KR100199997B1 (en) Silicon carbide semiconductor device
US6133587A (en) Silicon carbide semiconductor device and process for manufacturing same
JP5884617B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JPH11251592A (en) Carbon silicon semiconductor device
JP5776610B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US8035112B1 (en) SIC power DMOSFET with self-aligned source contact
JP3719323B2 (en) Silicon carbide semiconductor device
WO2010098076A1 (en) Storage-, insulation gate-, and field effect-type transistor
US9362121B2 (en) Method of manufacturing a silicon carbide semiconductor device
JP5994604B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2003318398A (en) Silicon carbide semiconductor device
WO2008065782A1 (en) Process for producing silicon carbide semiconductor device
KR20070000386A (en) Semiconductor element
JP2012164707A (en) Semiconductor device, and method of manufacturing the same
CN103503146A (en) Semiconductor device
WO2004025735A1 (en) Semiconductor device
JP4948784B2 (en) Semiconductor device and manufacturing method thereof
JP2005183943A (en) Semiconductor device
JP5098293B2 (en) Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof
JP2015056644A (en) Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method
JP3610721B2 (en) Silicon carbide semiconductor device
CN103930996A (en) Semiconductor device
JP5072482B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2018206872A (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511