JPH10229119A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JPH10229119A
JPH10229119A JP3359797A JP3359797A JPH10229119A JP H10229119 A JPH10229119 A JP H10229119A JP 3359797 A JP3359797 A JP 3359797A JP 3359797 A JP3359797 A JP 3359797A JP H10229119 A JPH10229119 A JP H10229119A
Authority
JP
Japan
Prior art keywords
film
oxide film
groove
semiconductor substrate
pad oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3359797A
Other languages
Japanese (ja)
Other versions
JP3547279B2 (en
Inventor
Norio Ishizuka
典男 石塚
Hideo Miura
英生 三浦
Shuji Ikeda
修二 池田
Norio Suzuki
範夫 鈴木
Yasushi Matsuda
安司 松田
Yasuko Yoshida
安子 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03359797A priority Critical patent/JP3547279B2/en
Priority to TW087102181A priority patent/TW388100B/en
Priority to CNB2006100943951A priority patent/CN100474558C/en
Priority to US09/367,524 priority patent/US6242323B1/en
Priority to PCT/JP1998/000671 priority patent/WO1998036452A1/en
Priority to CNB021571880A priority patent/CN1284224C/en
Priority to CNB031306020A priority patent/CN100521146C/en
Priority to MYPI98000689A priority patent/MY121321A/en
Publication of JPH10229119A publication Critical patent/JPH10229119A/en
Priority to KR1019997007482A priority patent/KR100307000B1/en
Priority to US09/845,338 priority patent/US6559027B2/en
Priority to US10/392,916 priority patent/US6881646B2/en
Application granted granted Critical
Publication of JP3547279B2 publication Critical patent/JP3547279B2/en
Priority to US11/108,827 priority patent/US7402473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the withstand voltage characteristics of a transistor capacitance constituting a circuit from being deteriorated, by a method wherein, when a groove is formed, a pad oxide film is removed by etching longer than the distance in a specified range from the end parts of an oxidation preventive film to retreat the pad oxide film. SOLUTION: A pad oxide film 2 is formed on the surface of a silicon substrate 1, and a silicon nitride film 12 and a photoresist 13 are deposited on the film 2. Each one part of the phtoresist 13 and the films 12 and 2 is removed and a shallow groove having a prescribed angle is formed in the substrate 1. Then, the film 2 is removed by etching in a thickness of 5 to 40nm or thereabouts to retreat the film 2 and thereafter, the surface of the substrate 1 is thermally oixdized and a thermal oxide film 5 is formed on the part of the groove. For relaxing the volume expansion originating stress of the film 5 in this oxidation of the groove, a buried insulating film 6 is buried in the groove. Then, the film 6 is etched back and the films 12 and 2 are removed, whereby a groove buried structure is completed. After that, a semiconductor device is completed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、信頼性の高い溝分
離構造を有する半導体装置及びその製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor device having a highly reliable groove separation structure and a method of manufacturing the same.

【0002】[0002]

【従来の技術】半導体基板上で隣接した素子間を電気的
に絶縁分離する構造としてLOCOS(Local Oxidatio
n of Silicon)構造がある。この構造は基板表面を選
択的に酸化して厚い酸化膜を形成したものであり、多く
の半導体装置に採用されている。しかしながらこのLO
COS構造は、ディープサブミクロンデバイスのように
加工寸法精度が要求される高集積化半導体装置の絶縁分
離構造には適していない。これは,選択酸化に使用する
窒化硅素膜に代表される酸化防止膜の直下で,膜端部か
ら酸化種が拡散侵入し,結果的にバーズビークという厚
い酸化膜領域が形成されてしまうためである.このた
め,高集積化を要求される半導体装置の絶縁分離構造と
してLOCOS構造に代わり例えば特開昭63ー143835号
公報に開示されているような基板表面に浅い溝を形成
し、その溝部分を選択的に酸化して熱酸化膜を形成す
る、選択酸化法の溝分離構造が採用され始めている。
2. Description of the Related Art A LOCOS (Local Oxidation Ratio) is used as a structure for electrically insulating and separating adjacent elements on a semiconductor substrate.
n of Silicon) structure. In this structure, a thick oxide film is formed by selectively oxidizing the substrate surface, and is used in many semiconductor devices. However, this LO
The COS structure is not suitable for an insulating isolation structure of a highly integrated semiconductor device requiring processing dimensional accuracy like a deep submicron device. This is because an oxidizing species diffuses and invades from the edge of the film just below the antioxidant film typified by the silicon nitride film used for selective oxidation, resulting in a thick oxide film region called a bird's beak. . For this reason, a shallow groove is formed on the substrate surface as disclosed in, for example, Japanese Patent Application Laid-Open No. 63-143835, instead of the LOCOS structure as an insulating isolation structure of a semiconductor device requiring high integration. A groove separation structure of a selective oxidation method for selectively oxidizing to form a thermal oxide film has begun to be adopted.

【0003】この溝分離構造はLOCOS構造と比較し
て平面寸法の小さな素子分離酸化膜が形成できるという
利点があることから0.5μm以下の加工寸法精度が要
求されるディープサブミクロンデバイス製造に好適であ
る。
The trench isolation structure has an advantage that an element isolation oxide film having a small plane dimension can be formed as compared with the LOCOS structure. Therefore, it is suitable for manufacturing a deep submicron device which requires a processing dimensional accuracy of 0.5 μm or less. It is.

【0004】[0004]

【発明が解決しようとする課題】例えば、半導体基板で
あるシリコン基板表面を酸化してシリコン熱酸化膜を形
成する場合、形成された熱酸化膜とシリコン基板との界
面に大きな機械的応力が発生する。これは、シリコン基
板の一部が酸化されて熱酸化膜に変化する際に約2倍の
体積膨張が生じるためである。この機械的応力が大きく
なるとシリコン基板内に転位や積層欠陥等の結晶欠陥が
発生しやすくなり、半導体装置の信頼性を劣化させる。
また、酸化反応自体が応力の影響を受けて成長する酸化
膜の形状が変化(圧縮応力により、酸化膜の成長が遅く
なる)することが明らかとなっている。
For example, when a silicon thermal oxide film is formed by oxidizing the surface of a silicon substrate which is a semiconductor substrate, a large mechanical stress is generated at an interface between the formed thermal oxide film and the silicon substrate. I do. This is because when a part of the silicon substrate is oxidized and changes into a thermal oxide film, the volume expansion is approximately doubled. When the mechanical stress is increased, crystal defects such as dislocations and stacking faults are likely to occur in the silicon substrate, thereby deteriorating the reliability of the semiconductor device.
In addition, it has been clarified that the shape of an oxide film that grows under the influence of stress in the oxidation reaction itself changes (the growth of the oxide film becomes slow due to compressive stress).

【0005】図1は、従来の選択酸化法における溝構造
の製造工程の模式図である。図1に示したように従来の
方法では、シリコン基板1の表面にパット酸化膜(シリ
コン酸化膜)2を介して酸化防止膜3を堆積した後、所
望の位置の酸化防止膜3、パット酸化膜2及びシリコン
基板1を部分的に除去して溝を形成(図1a〜b)し、
その溝部分を酸化して素子分離熱酸化膜5を形成してい
る(図1c)。
FIG. 1 is a schematic view of a manufacturing process of a trench structure in a conventional selective oxidation method. As shown in FIG. 1, according to the conventional method, an antioxidant film 3 is deposited on a surface of a silicon substrate 1 via a pad oxide film (silicon oxide film) 2, and then the antioxidant film 3 at a desired position is removed. Forming a groove by partially removing the film 2 and the silicon substrate 1 (FIGS. 1a and 1b);
The groove portion is oxidized to form an element isolation thermal oxide film 5 (FIG. 1c).

【0006】本構造では特に溝上端部近傍の基板形状が
図1(c)に示したように鋭角に尖った形状(基板鋭角
部4)に酸化される場合がある。
In this structure, in particular, the shape of the substrate near the upper end of the groove may be oxidized to an acutely sharp shape (substrate acute portion 4) as shown in FIG.

【0007】埋め込み絶縁膜6形成後、図1(d)に示
すように酸化保護膜3に覆われていた素子形成領域にト
ランジスタ、容量等の電子回路を形成するが、このよう
な基板鋭角部4が基板表面に残留すると、例えば、A.Br
yant等が「Tecnical Digestof IEDM´94、pp.671-67
4」に公表しているように、回路動作中にこの部分に電
界集中が発生し、回路を構成するトランジスタや容量の
耐圧特性を劣化させる場合がある。このような耐圧劣化
現象は,溝上端近傍の基板の角度が90度以上でも溝上
端近傍の基板側の曲率半径が約3nm以下では同様に生
じることが経験的に知られている.そこで,本発明の目
的は、溝分離構造を有する半導体装置において、回路を
構成するトランジスタ容量の耐圧特性を劣化させること
のない信頼性の高い半導体装置及びその製造方法を提供
することにある。
After the buried insulating film 6 is formed, as shown in FIG. 1D, an electronic circuit such as a transistor and a capacitor is formed in the element forming region covered with the oxide protective film 3. 4 remains on the substrate surface, for example, A.Br
yant et al., “Tecnical Digestof IEDM´94, pp.671-67
4), electric field concentration occurs in this part during circuit operation, which may degrade the withstand voltage characteristics of transistors and capacitors constituting the circuit. It is empirically known that such a withstand voltage deterioration phenomenon similarly occurs even when the angle of the substrate near the upper end of the groove is 90 degrees or more and when the radius of curvature on the substrate side near the upper end of the groove is about 3 nm or less. SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device having a trench isolation structure, which has high reliability without deteriorating withstand voltage characteristics of a transistor capacitor constituting a circuit, and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記目的は、半導体基板
表面の素子分離用溝上端部近傍の発生応力を低減させ、
基板形状の鋭角化を防止することにより達成される。上
記目的を達成するために本発明に係る半導体装置の製造
方法は次の工程を含んでいる。 (1)半導体基板の回路形成面にパット酸化膜を形成す
る工程 (2)パット酸化膜の上に酸化防止膜を形成する工程 (3)半導体基板の回路形成面の所望の位置に前記酸化
防止膜及びパッド酸化膜を部分的に除去し,さらに半導
体基板表面に所定の深さの溝を形成する工程 (4)パット酸化膜を残留している酸化防止膜の端部か
ら5nm以上エッチング除去して後退させる工程 (5)半導体基板に形成した溝部分を、酸化雰囲気:H
2/O2ガス比0.5以下、酸化量:後退させたパット
酸化膜の空間(基板表面と酸化防止膜の間のすきま)が
埋まるまでの範囲で酸化させる工程 (7)前記酸化させた溝内部に埋め込み絶縁膜を埋め込
む工程 (8)前記酸化防止膜の上に形成された前記埋め込み絶
縁膜を除去する工程 (9)前記半導体基板の回路形成面の上に形成された前
記酸化防止膜を除去する工程 (10)前記半導体基板の回路形成面の上に形成された
前記パット酸化膜を除去する工程 また、上記目的を達成するために本発明に係る半導体装
置は、半導体基板の回路形成面に形成された素子分離酸
化膜構造が溝分離構造である半導体装置において、前記
溝分離構造の溝の中央部側面での酸化量が5〜70nm
の範囲であり、また、溝の前記半導体基板の上端部の曲
率半径が3〜35nmの範囲であるようにした。
The object of the present invention is to reduce the stress generated near the upper end of an element isolation groove on the surface of a semiconductor substrate,
This is achieved by preventing sharpening of the substrate shape. In order to achieve the above object, a method for manufacturing a semiconductor device according to the present invention includes the following steps. (1) a step of forming a pad oxide film on the circuit formation surface of the semiconductor substrate (2) a step of forming an antioxidant film on the pad oxide film (3) the antioxidation at a desired position on the circuit formation surface of the semiconductor substrate Step of partially removing the film and pad oxide film and forming a groove of a predetermined depth on the surface of the semiconductor substrate. (4) Etching and removing the pad oxide film from the end of the remaining antioxidant film by 5 nm or more. (5) The groove portion formed in the semiconductor substrate is formed in an oxidizing atmosphere: H
2 / O 2 gas ratio 0.5 or less, oxidation amount: a step of oxidizing in a range until the space of the recessed pad oxide film (gap between the substrate surface and the antioxidant film) is filled (7) The oxidized groove (8) removing the buried insulating film formed on the antioxidant film; (9) removing the oxidized film formed on the circuit forming surface of the semiconductor substrate. Step of removing (10) Step of removing the pad oxide film formed on the circuit forming surface of the semiconductor substrate. In order to achieve the above object, a semiconductor device according to the present invention comprises: In the semiconductor device in which the element isolation oxide film structure formed in the above is a trench isolation structure, the oxidation amount at the center side surface of the trench of the trench isolation structure is 5 to 70 nm.
And the radius of curvature of the trench at the upper end of the semiconductor substrate is in the range of 3 to 35 nm.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施形態の実施例
を図を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】[0010]

【実施例】本発明の第一実施例である半導体装置の溝分
離構造の製造工程を図2,図3を用いて説明する。図2
は本実施例における半導体装置の断面構造図,図3はそ
の製造工程の概略を示すフローチャートである。以下,
図3のフローチャートに添って製造工程を図2を参照し
ながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A manufacturing process of a trench isolation structure for a semiconductor device according to a first embodiment of the present invention will be described with reference to FIGS. FIG.
FIG. 3 is a sectional structural view of the semiconductor device according to the present embodiment, and FIG. 3 is a flowchart showing an outline of the manufacturing process. Less than,
The manufacturing process will be described with reference to FIG. 2 according to the flowchart of FIG.

【0011】(1)シリコン基板1の表面を熱酸化して
厚さ5〜数10nmのパット酸化膜2を形成する{図3
(101)、(102)}。 (2)パット酸化膜2の上に窒化珪素膜12を厚さ10
〜300nm程度堆積する。この窒化珪素膜12は、素
子分離熱酸化膜5を形成する時の酸化防止膜として使用
する{図3(103)}。 (3)窒化珪素膜12上にホトレジスト13を形成する
{図3(104)}。 (4)通常の露光法を使用して、所望の位置のホトレジ
スト13を除去した後、窒化珪素膜12、パット酸化膜
2及びシリコン基板1の一部をエッチング除去し、シリ
コン基板1の表面の側壁がシリコン基板1に対して所定
の角度(例えば図中A部の角度が90〜110度)を有
する浅溝を形成する{図3(105)〜(107)}。 (5)ホトレジスト13を除去した後、パット酸化膜2
を5〜40nm程度エッチング除去して後退させる{図
3(108)〜(109)}。 (6)その後、例えば900〜1100℃の酸化雰囲気
2/O2ガス比1ppm以下でシリコン基板1表面を熱
酸化し、溝部分に厚さ30nm程度の熱酸化膜5を形成
する{図3(110)}。 (7)この溝酸化では酸化膜の体積膨張起因応力を極力
緩和するため,溝内部が完全に埋め尽くされない範囲で
停止させる必要がある.結果として溝内に残留した空間
は、例えば、化学気相蒸着(CVD)法、スパッタ法等
でシリコン酸化膜等の絶縁膜を堆積し、埋め込む(以
下、埋め込み絶縁膜6)。また、これら化学気相蒸着
法、スパッタ法等で製作したシリコン酸化膜等は一般に
粗な膜であることから、埋め込み絶縁膜6堆積後、緻密
化を目的として,1000℃前後のアニールまたは酸化
雰囲気中でシリコン基板1を酸化させてもよい{図3
(111)}。 (8)埋め込み絶縁膜6を化学機械研磨法(CMP)法
あるいはドライエッチング法を使用してエッチバックす
る。この場合、酸化防止膜として用いた窒化珪素膜12
はエッチングストッパーとなり、窒化珪素膜12下のシ
リコン基板1がエッチングされることを防止する働きを
持つ{図3(112)}。 (9)そして、窒化珪素膜12及びパット酸化膜2を除
去することで溝埋め込み構造は完了する{図3(11
3)}。その後、トランジスタ構造製造に必要な,例え
ばゲート酸化膜,ゲート電極の形成,不純物の導入,配
線,層間絶縁膜等,多層配線構造の形成,表面保護膜の
形成等を経て、半導体装置が完成する。
(1) The surface of a silicon substrate 1 is thermally oxidized to form a pad oxide film 2 having a thickness of 5 to several tens nm.
(101), (102)}. (2) A silicon nitride film 12 having a thickness of 10
Deposit about 300 nm. This silicon nitride film 12 is used as an antioxidant film when forming the element isolation thermal oxide film 5 (FIG. 3 (103)). (3) A photoresist 13 is formed on the silicon nitride film 12 (FIG. 3 (104)). (4) After removing the photoresist 13 at a desired position by using a normal exposure method, the silicon nitride film 12, the pad oxide film 2 and a part of the silicon substrate 1 are removed by etching to remove the surface of the silicon substrate 1. A shallow groove whose side wall has a predetermined angle with respect to the silicon substrate 1 (for example, the angle of the portion A in the figure is 90 to 110 degrees) is formed {FIGS. 3 (105) to (107)}. (5) After removing the photoresist 13, the pad oxide film 2
Is removed by etching about 5 to 40 nm {FIGS. 3 (108) to (109)}. (6) Thereafter, the surface of the silicon substrate 1 is thermally oxidized in an oxidizing atmosphere of, for example, 900 to 1100 ° C. in an H 2 / O 2 gas ratio of 1 ppm or less, and a thermal oxide film 5 having a thickness of about 30 nm is formed in the groove portion. (110)}. (7) In this groove oxidation, it is necessary to stop as far as the inside of the groove is not completely filled, in order to reduce the stress caused by the volume expansion of the oxide film as much as possible. As a result, an insulating film such as a silicon oxide film is deposited and buried in the space remaining in the groove by, for example, a chemical vapor deposition (CVD) method, a sputtering method or the like (hereinafter, buried insulating film 6). Further, since the silicon oxide film or the like manufactured by the chemical vapor deposition method, the sputtering method or the like is generally a rough film, after the buried insulating film 6 is deposited, an annealing or oxidizing atmosphere at about 1000 ° C. is performed for the purpose of densification. The silicon substrate 1 may be oxidized inside.
(111)}. (8) The buried insulating film 6 is etched back by using a chemical mechanical polishing (CMP) method or a dry etching method. In this case, the silicon nitride film 12 used as an oxidation prevention film
Serves as an etching stopper and has a function of preventing the silicon substrate 1 under the silicon nitride film 12 from being etched {FIG. 3 (112)}. (9) Then, the trench filling structure is completed by removing the silicon nitride film 12 and the pad oxide film 2 {FIG.
3)}. Thereafter, the semiconductor device is completed through, for example, the formation of a gate oxide film and a gate electrode, the introduction of impurities, the formation of a wiring and an interlayer insulating film, the formation of a multilayer wiring structure, the formation of a surface protection film, and the like, which are necessary for manufacturing the transistor structure. .

【0012】次に、本第一実施例の作用効果を図4、5
を用いて説明する。本第一実施例で従来技術と異なる点
は前記製造工程(5)のパット酸化膜2を後退させてい
る点にある。図4は第一実施例で述べた製造工程(5)
において,パッド酸化膜の後退量を変化させて溝上端近
傍の基板側の曲率半径の変化を解析した結果であり、横
軸にパット酸化膜2後退量、縦軸はシリコン基板1の溝
上端部の曲率半径をそれぞれ示めしている。図4から、
パット酸化膜2後退量を零から大きくするに従い基板上
端の曲率半径が大きくなることがわかる.後退量を5n
mとすると曲率半径は約25nmとなり,後退量を20
nmとすると曲率半径は約35nmまで増加する。しか
し,後退量をこれ以上増加させても、曲率半径の増加は
ほとんど認められない。これは以下の理由によるものと
考えられる。溝酸化時、酸化膜は窒化珪素膜12とシリ
コン基板1の間に約2倍の体積膨張をしながら成長して
いく(図5(a)(b)参照)。パット酸化膜2の後退
量が零の場合(図5(a))、この体積膨張により窒化
珪素膜12端部は持ち上げられ,結果として凹状に反
る.この窒化硅素膜12の反り変形の反力が生じる結
果、窒化珪素膜12下の酸化膜(パット酸化膜2の一部
を含む)とシリコン基板1には圧縮応力が発生する。課
題の項で説明したように、圧縮応力が酸化膜中に発生す
ると,酸化種の拡散,すなわち酸化反応の進行が抑制さ
れるため、溝上端部では酸化速度が著しく低下する。一
方、溝側壁においては、酸化膜の成長方向(側面法線方
向)には拘束が無いため,成長する酸化膜の体積膨張の
阻害因子がないことから,側壁面では酸化が相対的に抑
制されずに進行する.このため,シリコン基板1の溝上
端部近傍では,図5(a)中に破線で示したように酸化
の進行に伴い基板形状が先鋭化していく。しかし、パッ
ト酸化膜2を後退させる(図5(b)参照)と、シリコ
ン基板1の溝端部の一部が露出する。この露出した部分
においては,酸化初期には成長した酸化膜と上部窒化硅
素膜12が接触しないため,図5(a)を用いて説明し
たような窒化珪素膜12の反り変形による圧縮応力の発
生もほとんどないことから、酸化は抑制することなく進
行する。その結果として溝上端部が丸まり、曲率半径が
大きくなる。なお,前記製造工程(6)で酸化をさらに
継続すると,該露出部分で成長した酸化膜が窒化硅素膜
と接触してしまい,その後は先に述べたように圧縮応力
が急激に発生するので,形成された曲率は再び減少して
しまうので注意を要する。
Next, the operation and effect of the first embodiment will be described with reference to FIGS.
This will be described with reference to FIG. The first embodiment differs from the prior art in that the pad oxide film 2 in the manufacturing step (5) is recessed. FIG. 4 shows the manufacturing process (5) described in the first embodiment.
5 shows the results of analyzing the change in the radius of curvature of the substrate side near the upper end of the groove by changing the amount of retreat of the pad oxide film. Are shown respectively. From FIG.
It can be seen that the radius of curvature at the upper end of the substrate increases as the amount of recession of the pad oxide film 2 increases from zero. 5n retraction
m, the radius of curvature is about 25 nm, and the amount of retreat is 20
If nm, the radius of curvature increases to about 35 nm. However, even if the retreat amount is further increased, the radius of curvature hardly increases. This is considered to be due to the following reasons. During the groove oxidation, the oxide film grows while expanding the volume between the silicon nitride film 12 and the silicon substrate 1 about twice (see FIGS. 5A and 5B). When the retreat amount of the pad oxide film 2 is zero (FIG. 5A), the end of the silicon nitride film 12 is lifted by the volume expansion, and as a result, it warps concavely. As a result of the reaction force of the warpage deformation of the silicon nitride film 12, a compressive stress is generated in the oxide film (including a part of the pad oxide film 2) under the silicon nitride film 12 and the silicon substrate 1. As described in the subject, when a compressive stress is generated in the oxide film, the diffusion of the oxidized species, that is, the progress of the oxidation reaction is suppressed, so that the oxidation rate is significantly reduced at the upper end portion of the groove. On the other hand, on the trench side wall, there is no restriction in the growth direction of the oxide film (side normal direction), and there is no inhibitor of the volume expansion of the grown oxide film. Therefore, oxidation is relatively suppressed on the side wall surface. Proceed without progress. Therefore, in the vicinity of the upper end of the groove of the silicon substrate 1, the shape of the substrate becomes sharper as the oxidation progresses as shown by the broken line in FIG. However, when the pad oxide film 2 is retracted (see FIG. 5B), a part of the groove end of the silicon substrate 1 is exposed. In the exposed portion, since the grown oxide film and the upper silicon nitride film 12 do not come into contact with each other in the initial stage of the oxidation, the generation of the compressive stress due to the warp deformation of the silicon nitride film 12 described with reference to FIG. Since there is almost no oxidation, oxidation proceeds without suppression. As a result, the upper end of the groove is rounded, and the radius of curvature is increased. If the oxidation is further continued in the manufacturing step (6), the oxide film grown on the exposed portion comes into contact with the silicon nitride film, and thereafter the compressive stress is rapidly generated as described above. Care must be taken because the formed curvature is reduced again.

【0013】本第一実施例においては、溝分離構造の基
板側上端近傍の曲率半径を3nmよりも十分大きくする
ことができるので,MOS型トランジスタの製造工程に
おいて、溝分離構造を形成する際にシリコン基板の溝上
端部近傍に鋭角部が残留することを防止できるため、ゲ
ート電極膜端部近傍の電界集中に起因したトランジスタ
のリーク電流増加あるいは耐圧特性の低下を防止でき、
トランジスタの電気的信頼性を向上できるという効果が
ある。
In the first embodiment, the radius of curvature of the groove isolation structure near the upper end on the substrate side can be made sufficiently larger than 3 nm. Since it is possible to prevent an acute angle portion from remaining near the upper end portion of the groove of the silicon substrate, it is possible to prevent an increase in leakage current or a decrease in breakdown voltage characteristics of the transistor due to electric field concentration near the end portion of the gate electrode film.
There is an effect that the electrical reliability of the transistor can be improved.

【0014】次に、本発明の第二実施例である半導体装
置の溝分離構造の製造工程を図2,図6を使用して説明
する。図6に示した第二実施例の半導体装置の溝埋め込
み構造の製造方法(フローチャート)は,第一実施例の
製造工程(本文中)の(6)を変更したものである.第
一実施例と比較して大きく形状等は変わらないので、本
実施例における半導体装置の断面図は図2を使用して説
明する。以下,図4のフローチャートに添って本実施例
の製造工程を説明する。
Next, a manufacturing process of a trench isolation structure of a semiconductor device according to a second embodiment of the present invention will be described with reference to FIGS. The manufacturing method (flowchart) of the groove filling structure of the semiconductor device of the second embodiment shown in FIG. 6 is a modification of the manufacturing process (in the text) (6) of the first embodiment. Since the shape and the like are not largely changed as compared with the first embodiment, a cross-sectional view of the semiconductor device in this embodiment will be described with reference to FIG. Hereinafter, the manufacturing process of this embodiment will be described with reference to the flowchart of FIG.

【0015】(1)シリコン基板1の表面を熱酸化して
厚さ5〜数10nmのパット酸化膜2を形成する{図6
(201)、(202)}。 (2)パット酸化膜2の上に窒化珪素膜12を厚さ10
〜300nm程度堆積する。この窒化珪素膜12は、素
子分離熱酸化膜5を形成する時の酸化防止膜として使用
する{図6(203)}。 (3)窒化珪素膜12上にホトレジスト13を形成する
{図6(204)}。 (4)通常の露光法を使用して、所望の位置のホトレジ
スト13を除去した後、窒化珪素膜12、パット酸化膜
2及びシリコン基板1の一部をエッチング除去し、シリ
コン基板1の表面の側壁がシリコン基板1に対して所定
の角度(例えば図中A部の角度が90〜110度)を有
する浅溝を形成する{図6(205)〜(207)}。 (5)ホトレジスト13を除去した後、パット酸化膜2
を10〜40nm程度エッチング除去して後退させる
{図6(208)〜(209)}。 (6)シリコン基板1に形成した溝部分をH2/O2ガス
混合酸化雰囲気(ガス流量比r:0<r≦0.5)で熱
酸化し、厚さ約30nmの素子分離熱酸化膜5を形成す
る{図6(210)}。 (7)この溝酸化では酸化膜の体積膨張起因応力を極力
緩和するため,溝内部が完全に埋め尽くされない範囲で
停止させる必要がある.結果として溝内に残留した空間
は、例えば、化学気相蒸着(CVD)法、スパッタ法等
でシリコン酸化膜等の絶縁膜を堆積し、埋め込む(以
下、埋め込み絶縁膜6)。また、これら化学気相蒸着
法、スパッタ法等で製作したシリコン酸化膜等は一般に
粗な膜であることから、埋め込み絶縁膜6堆積後、緻密
化を目的として,1000℃前後のアニールまたは酸化
雰囲気中でシリコン基板1を酸化させてもよい{図6
(211)}。 (8)埋め込み絶縁膜6を化学機械研磨法(CMP)法
あるいはドライエッチング法を使用してエッチバックす
る。この場合、酸化防止膜として用いた窒化珪素膜12
はエッチングストッパーとなり、窒化珪素膜12下のシ
リコン基板1がエッチングされることを防止する働きを
持つ{図6(212)}。 (9)そして、窒化珪素膜12及びパット酸化膜2を除
去することで溝埋め込み構造は完了する{図6(21
3)}。その後、トランジスタ構造製造に必要な,例え
ばゲート酸化膜,ゲート電極の形成,不純物の導入,配
線,層間絶縁膜等,多層配線構造の形成,表面保護膜の
形成等を経て、半導体装置が完成する。
(1) Thermal oxidation of the surface of silicon substrate 1 to form pad oxide film 2 having a thickness of 5 to several tens nm {FIG.
(201), (202)}. (2) A silicon nitride film 12 having a thickness of 10
Deposit about 300 nm. This silicon nitride film 12 is used as an anti-oxidation film when forming the element isolation thermal oxide film 5 (FIG. 6 (203)). (3) A photoresist 13 is formed on the silicon nitride film 12 (FIG. 6 (204)). (4) After removing the photoresist 13 at a desired position by using a normal exposure method, the silicon nitride film 12, the pad oxide film 2 and a part of the silicon substrate 1 are removed by etching to remove the surface of the silicon substrate 1. A shallow groove whose side wall has a predetermined angle with respect to the silicon substrate 1 (for example, the angle of the portion A in the figure is 90 to 110 degrees) is formed {FIGS. 6 (205) to (207)}. (5) After removing the photoresist 13, the pad oxide film 2
Is removed by etching about 10 to 40 nm (FIGS. 6 (208) to (209)). (6) The groove portion formed in the silicon substrate 1 is thermally oxidized in an H 2 / O 2 gas mixed oxidizing atmosphere (gas flow ratio r: 0 <r ≦ 0.5) to form a device isolation thermal oxide film having a thickness of about 30 nm. 5 (FIG. 6 (210)). (7) In this groove oxidation, it is necessary to stop as far as the inside of the groove is not completely filled, in order to reduce the stress caused by the volume expansion of the oxide film as much as possible. As a result, an insulating film such as a silicon oxide film is deposited and buried in the space remaining in the groove by, for example, a chemical vapor deposition (CVD) method, a sputtering method or the like (hereinafter, buried insulating film 6). Further, since the silicon oxide film or the like manufactured by the chemical vapor deposition method, the sputtering method or the like is generally a rough film, after the buried insulating film 6 is deposited, an annealing or oxidizing atmosphere at about 1000 ° C. is performed for the purpose of densification. The silicon substrate 1 may be oxidized in it.
(211)}. (8) The buried insulating film 6 is etched back by using a chemical mechanical polishing (CMP) method or a dry etching method. In this case, the silicon nitride film 12 used as an oxidation prevention film
Serves as an etching stopper and has a function of preventing the silicon substrate 1 under the silicon nitride film 12 from being etched {FIG. 6 (212)}. (9) Then, the trench filling structure is completed by removing the silicon nitride film 12 and the pad oxide film 2 {FIG.
3)}. Thereafter, a semiconductor device is completed through, for example, formation of a gate oxide film and a gate electrode, introduction of impurities, formation of a wiring, an interlayer insulating film, and the like, formation of a multilayer wiring structure, formation of a surface protection film, and the like necessary for manufacturing a transistor structure. .

【0016】次に図7を参照して本実施例の作用効果を
説明する。酸化雰囲気のH2/O2ガス比rは0≦r<2
まで変化することができる。rが2に達すると爆発的に
反応が進行するので,安全を考慮すると,実質的にはr
=1.8程度が上限となる。一般に、ガス比が前記範囲
内においては,酸化温度を一定と仮定すると,この比が
大きくなるに伴い、酸化速度が速くなり、小さいと酸化
速度は遅くなる。そこで,この酸化速度の半導体基板の
溝上端部の形状に及ぼす影響を解析した。その結果を図
7に示す。横軸にはH2/O2ガス比、縦軸は半導体基板
上端部の曲率半径を示す。図7より、酸化雰囲気の水素
(H2)流量比が大きくなるほど,形成される曲率半径
が急激に減少することがわかる。ガス比が0.5に達す
ると,曲率半径は約3nmにまで減少する。ガス比をこ
れ以上大きくすると,曲率半径はわずかずつではあるが
さらに減少する。
Next, the operation and effect of this embodiment will be described with reference to FIG. The H 2 / O 2 gas ratio r in the oxidizing atmosphere is 0 ≦ r <2.
Can change up to. Since the reaction explosively proceeds when r reaches 2, considering safety, it is substantially r
= 1.8 is the upper limit. Generally, assuming that the oxidation temperature is constant when the gas ratio is within the above range, the oxidation rate increases as this ratio increases, and the oxidation rate decreases as the ratio decreases. Therefore, the effect of this oxidation rate on the shape of the upper end of the groove of the semiconductor substrate was analyzed. FIG. 7 shows the result. The horizontal axis indicates the H 2 / O 2 gas ratio, and the vertical axis indicates the radius of curvature of the upper end of the semiconductor substrate. FIG. 7 shows that the larger the flow rate ratio of hydrogen (H2) in the oxidizing atmosphere, the more rapidly the formed radius of curvature decreases. When the gas ratio reaches 0.5, the radius of curvature decreases to about 3 nm. As the gas ratio is increased further, the radius of curvature decreases, albeit slightly.

【0017】この原因は,以下のように説明できる。酸
化は,既に述べたように、シリコンとシリコン酸化膜の
界面近傍でひずみ(応力)を発生させる。一方、シリコ
ン酸化膜は高温(950℃以上)で顕著な粘性挙動を示
すため、高温では時間と共に発生した応力が緩和されて
いく。したがって,酸化膜厚を一定と仮定すると,発生
歪み(応力)の値は一定であるが,酸化速度が速い(H
2/O2ガス比が大きい)ほど発生した応力が緩和される
時間が短くなるので,結果的に残留応力が高くなる。酸
化速度が遅い(H2/O2ガス比が小さい)場合には、シ
リコン酸化膜の粘性効果が働き、酸化膜厚一定条件で比
較すると相対的に応力の緩和が進む。酸化誘起応力が高
くなるほど,その近傍での酸化が抑制される。したがっ
て,シリコン基板の溝上端部近傍は,上面と側面からの
酸化膜の成長で応力が集中する場所であることから,残
留応力が高くなるとこの近傍の酸化が抑制され,結果的
に先端が尖る形状になっていく。以上のことから、H2
/O2ガス比を小さくすることで、半導体基板の溝上端
においては酸化がより低応力の状態で進行することにな
り、結果としてシリコン基板1の上端近傍の曲率化が図
られたものである。
The cause can be explained as follows. As described above, the oxidation generates strain (stress) near the interface between silicon and the silicon oxide film. On the other hand, since the silicon oxide film exhibits a remarkable viscous behavior at a high temperature (950 ° C. or higher), the stress generated with time is relaxed at a high temperature. Therefore, assuming that the oxide film thickness is constant, the value of the generated strain (stress) is constant, but the oxidation rate is high (H
The larger the ( 2 / O 2 gas ratio), the shorter the time during which the generated stress is relieved, resulting in a higher residual stress. When the oxidation rate is low (the H 2 / O 2 gas ratio is small), the viscous effect of the silicon oxide film acts, and the stress is relatively relaxed when compared under the condition of a constant oxide film thickness. As the oxidation-induced stress increases, oxidation in the vicinity of the stress is suppressed. Therefore, the vicinity of the upper end of the groove of the silicon substrate is a place where the stress is concentrated by the growth of the oxide film from the upper surface and the side surface. If the residual stress is increased, the oxidation in the vicinity is suppressed, and as a result, the tip becomes sharp. It becomes a shape. From the above, H 2
By reducing the / O 2 gas ratio, oxidation proceeds at a lower stress at the upper end of the groove of the semiconductor substrate, and as a result, a curvature near the upper end of the silicon substrate 1 is achieved. .

【0018】上記理由により、本第二実施例によれば、
溝分離構造の基板側上端近傍の曲率半径を3nmよりも
十分大きくすることができるので,トランジスタの製造
工程において、溝分離構造を形成する際にシリコン基板
の溝上端部近傍の鋭角部が残留することを防止できるた
め、ゲート電極膜端部近傍の電界集中に起因したトラン
ジスタのリーク電流増加あるいは耐圧特性の低下を防止
でき、トランジスタの電気的信頼性を向上できるという
効果がある。 次に、本発明の第三実施例である半導体
装置の溝埋め込み構造の製造工程を図2,図8を使用し
て説明する。図8に示した第三実施例の半導体装置の溝
埋め込み構造の製造方法(フローチャート)は,第一実
施例(本文中)の製造工程の(6)を変更したものであ
る。第一実施例と比較して大きく形状等は変わらないの
で、本実施例における半導体装置の断面図は図2を使用
して説明する以下,図8のフローチャートに添って本実
施例の製造工程を説明する。
For the above reasons, according to the second embodiment,
Since the radius of curvature near the upper end of the trench isolation structure on the substrate side can be made sufficiently larger than 3 nm, an acute angle portion near the upper end of the trench of the silicon substrate remains when the trench isolation structure is formed in the transistor manufacturing process. Therefore, it is possible to prevent an increase in leakage current or a decrease in breakdown voltage characteristics of the transistor due to the concentration of an electric field near the end of the gate electrode film, thereby improving the electrical reliability of the transistor. Next, a manufacturing process of a trench filling structure of a semiconductor device according to a third embodiment of the present invention will be described with reference to FIGS. The manufacturing method (flowchart) of the trench burying structure of the semiconductor device of the third embodiment shown in FIG. 8 is a modification of the manufacturing process (6) of the first embodiment (in the text). Since the shape and the like are not largely changed as compared with the first embodiment, a cross-sectional view of the semiconductor device according to the present embodiment will be described with reference to FIG. explain.

【0019】(1)シリコン基板1の表面を熱酸化して
厚さ5〜数10nmのパット酸化膜2を形成する{図8
(301)、(302)}。 (2)パット酸化膜2の上に窒化珪素膜12を厚さ10
〜300nm程度堆積する。この窒化珪素膜12は、素
子分離熱酸化膜5を形成する時の酸化防止膜として使用
する{図8(303)}。 (3)窒化珪素膜12上にホトレジスト13を形成する
{図8(304)}。 (4)通常の露光法を使用して、所望の位置のホトレジ
スト13を除去した後、窒化珪素膜12、パット酸化膜
2及びシリコン基板1の一部をエッチング除去し、シリ
コン基板1の表面の側壁がシリコン基板1に対して所定
の角度(例えば図中A部の角度が90〜110度)を有
する浅溝を形成する{図8(305)〜(307)}。 (5)ホトレジスト13を除去した後、パット酸化膜2
を5〜40nm程度エッチング除去して後退させる{図
8(308)〜(309)}。 (6)シリコン基板1に形成した溝部分をH2/O2ガス
混合酸化雰囲気(ガス流量比r:0<r≦0.5)で熱
酸化し、半導体基板1に形成した溝部分を、後退させた
パット酸化膜の空間が埋まるまで酸化させる。{図8
(310)}。 (7)この溝酸化では酸化膜の体積膨張起因応力を極力
緩和するため,溝内部が完全に埋め尽くされない範囲で
停止させる必要がある。結果として溝内に残留した空間
は、例えば、化学気相蒸着(CVD)法、スパッタ法等
でシリコン酸化膜等の絶縁膜を堆積し、埋め込む(以
下、埋め込み絶縁膜6)。また、これら化学気相蒸着
法、スパッタ法等で製作したシリコン酸化膜等は一般に
粗な膜であることから、埋め込み絶縁膜6堆積後、緻密
化を目的として,1000℃前後のアニールまたは酸化
雰囲気中でシリコン基板1を酸化させてもよい{図8
(311)}。 (8)埋め込み絶縁膜6を化学機械研磨法(CMP)法
あるいはドライエッチング法を使用してエッチバックす
る。この場合、酸化防止膜として用いた窒化珪素膜12
はエッチングストッパーとなり、窒化珪素膜12下のシ
リコン基板1がエッチングされることを防止する働きを
持つ{図8(312)}。 (9)そして、窒化珪素膜12及びパット酸化膜2を除
去することで溝埋め込み構造は完了する{図8(31
3)}。その後、トランジスタ構造製造に必要な,例え
ばゲート酸化膜,ゲート電極の形成,不純物の導入,配
線,層間絶縁膜等,多層配線構造の形成,表面保護膜の
形成等を経て、半導体装置が完成する。
(1) The surface of the silicon substrate 1 is thermally oxidized to form a pad oxide film 2 having a thickness of 5 to several tens nm.
(301), (302)}. (2) A silicon nitride film 12 having a thickness of 10
Deposit about 300 nm. This silicon nitride film 12 is used as an antioxidant film when forming the element isolation thermal oxide film 5 (FIG. 8 (303)). (3) A photoresist 13 is formed on the silicon nitride film 12 (FIG. 8 (304)). (4) After removing the photoresist 13 at a desired position by using a normal exposure method, the silicon nitride film 12, the pad oxide film 2 and a part of the silicon substrate 1 are removed by etching to remove the surface of the silicon substrate 1. 8 (305)-(307)}, a shallow groove whose side wall has a predetermined angle with respect to the silicon substrate 1 (for example, the angle of the portion A in the figure is 90-110 degrees). (5) After removing the photoresist 13, the pad oxide film 2
Is removed by etching about 5 to 40 nm {FIGS. 8 (308) to (309)}. (6) The groove portion formed in the silicon substrate 1 is thermally oxidized in an H 2 / O 2 gas mixed oxidizing atmosphere (gas flow ratio r: 0 <r ≦ 0.5), and the groove portion formed in the semiconductor substrate 1 is Oxidation is performed until the space of the recessed pad oxide film is filled. {Figure 8
(310)}. (7) In this groove oxidation, it is necessary to stop as far as the inside of the groove is not completely filled, in order to minimize the stress caused by the volume expansion of the oxide film as much as possible. As a result, an insulating film such as a silicon oxide film is deposited and buried in the space remaining in the groove by, for example, a chemical vapor deposition (CVD) method, a sputtering method or the like (hereinafter, buried insulating film 6). Further, since the silicon oxide film or the like manufactured by the chemical vapor deposition method, the sputtering method or the like is generally a rough film, after the buried insulating film 6 is deposited, an annealing or oxidizing atmosphere at about 1000 ° C. is performed for the purpose of densification. The silicon substrate 1 may be oxidized inside.
(311)}. (8) The buried insulating film 6 is etched back by using a chemical mechanical polishing (CMP) method or a dry etching method. In this case, the silicon nitride film 12 used as an oxidation prevention film
Serves as an etching stopper and has a function of preventing the silicon substrate 1 under the silicon nitride film 12 from being etched {FIG. 8 (312)}. (9) Then, the trench filling structure is completed by removing the silicon nitride film 12 and the pad oxide film 2 {FIG.
3)}. Thereafter, a semiconductor device is completed through, for example, formation of a gate oxide film and a gate electrode, introduction of impurities, formation of a wiring, an interlayer insulating film, and the like, formation of a multilayer wiring structure, formation of a surface protection film, and the like necessary for manufacturing a transistor structure. .

【0020】本実施例の作用効果は、先ほど第一実施例
でも説明したように(図5参照)、後退させたパット酸
化膜の空間が埋まった後では、窒化珪素膜12に反り変
形が発生し、この膜の曲げによる力によって窒化珪素膜
12下のパット酸化膜2及びシリコン基板1には圧縮応
力が発生するため、この応力により酸化が抑制され、結
果として、溝上端部近傍のシリコン基板形状が尖ったも
のになる。上記のように、酸化量を後退させたパット酸
化膜の空間が埋まるまでとすることにより、反り変形に
よる圧縮応力が発生しなくなるため、シリコン基板1の
上端部の酸化が滑らかに進行し、結果としてシリコン基
板1の上端近傍の曲率化が図られることになる。
The effect of this embodiment is that, as described in the first embodiment (see FIG. 5), after the space of the recessed pad oxide film is filled, the silicon nitride film 12 is warped. However, the compressive stress is generated in the pad oxide film 2 and the silicon substrate 1 under the silicon nitride film 12 by the force of the bending of the film, so that the oxidation suppresses the stress, and as a result, the silicon substrate in the vicinity of the upper end of the groove is formed. The shape becomes sharp. As described above, by reducing the amount of oxidation until the space of the pad oxide film is filled, no compressive stress is generated due to the warpage deformation, so that the oxidation of the upper end portion of the silicon substrate 1 proceeds smoothly. As a result, a curvature near the upper end of the silicon substrate 1 is achieved.

【0021】上記理由により、本第三実施例によれば、
溝分離構造の基板側上端近傍の曲率半径を3nmよりも
十分大きくすることができるので,トランジスタの製造
工程において、溝分離構造を形成する際にシリコン基板
の溝上端部近傍の鋭角部が残留することを防止できるた
め、ゲート電極膜端部近傍の電界集中に起因したトラン
ジスタのリーク電流増加あるいは耐圧特性の低下を防止
でき、トランジスタの電気的信頼性を向上できるという
効果がある。 次に、本発明の第四実施例である半導体
装置の溝埋め込み構造とその製造工程を図2,図9を用
いて説明する。図2は本実施例における半導体装置の断
面構造図,図9はその製造工程の概略を示すフローチャ
ートである。以下,図9のフローチャートに添って製造
工程を図2を参照しながら説明する。
For the above reasons, according to the third embodiment,
Since the radius of curvature near the upper end of the trench isolation structure on the substrate side can be made sufficiently larger than 3 nm, an acute angle portion near the upper end of the trench of the silicon substrate remains when the trench isolation structure is formed in the transistor manufacturing process. Therefore, it is possible to prevent an increase in leakage current or a decrease in breakdown voltage characteristics of the transistor due to the concentration of an electric field near the end of the gate electrode film, thereby improving the electrical reliability of the transistor. Next, a trench embedding structure of a semiconductor device according to a fourth embodiment of the present invention and a manufacturing process thereof will be described with reference to FIGS. FIG. 2 is a sectional structural view of the semiconductor device according to the present embodiment, and FIG. 9 is a flowchart showing an outline of the manufacturing process. Hereinafter, the manufacturing process will be described with reference to FIG. 2 along the flowchart of FIG.

【0022】(1)シリコン基板1の表面を熱酸化して
厚さ5〜50nmのパット酸化膜2を形成する{図9
(401)、(402)}。 (2)パット酸化膜2の上に窒化珪素膜12を厚さ10
〜300nm程度堆積する。この窒化珪素膜12は、素
子分離熱酸化膜5を形成する時の酸化防止膜として使用
する{図9(403)}。 (3)窒化珪素膜12上にホトレジスト13を形成する
{図9(404)}。 (4)通常の露光法を使用して、所望の位置のホトレジ
スト13を除去した後、窒化珪素膜12、パット酸化膜
2及びシリコン基板1の一部をエッチング除去し、シリ
コン基板1の表面の側壁がシリコン基板1に対して所定
の角度(例えば図中A部の角度が90〜110度)を有
する浅溝を形成する{図9(405)〜(407)}。 (5)ホトレジスト13を除去した後、パット酸化膜2
を10〜40nm程度エッチング除去して後退させる
{図9(408)〜(409)}。 (6)その後、例えば900〜1100℃で酸化雰囲気
2/O2ガス比1ppm以下でシリコン基板1表面を熱
酸化し、熱酸化膜5を形成する{図9(410)}。 (7)この溝酸化では酸化膜の体積膨張起因応力を極力
緩和するため,溝内部が完全に埋め尽くされない範囲で
停止させる必要がある。結果として溝内に残留した空間
は、例えば、化学気相蒸着(CVD)法、スパッタ法等
でシリコン酸化膜等の絶縁膜を堆積し、埋め込む(以
下、埋め込み絶縁膜6)。また、これら化学気相蒸着
法、スパッタ法等で製作したシリコン酸化膜等は一般に
粗な膜であることから、埋め込み絶縁膜6堆積後、緻密
化を目的として,1000℃前後のアニールまたは酸化
雰囲気中でシリコン基板1を酸化させてもよい{図9
(411)}。 (8)埋め込み絶縁膜6を化学機械研磨法(CMP)法
あるいはドライエッチング法を使用してエッチバックす
る。この場合、酸化防止膜として用いた窒化珪素膜12
はエッチングストッパーとなり、窒化珪素膜12下のシ
リコン基板1がエッチングされることを防止する働きを
持つ{図9(412)}。 (9)そして、窒化珪素膜12及びパット酸化膜2を除
去することで溝埋め込み構造は完了する{図9(41
3)}。その後、トランジスタ構造製造に必要な,例え
ばゲート酸化膜,ゲート電極の形成,不純物の導入,配
線,層間絶縁膜等,多層配線構造の形成,表面保護膜の
形成等を経て、半導体装置が完成する。説明する。本実
施例の半導体装置の溝分離構造は、溝の中央部側面での
酸化量が5〜70nmの範囲であり、また、溝の半導体
基板の上端部の曲率半径が3〜35nmの範囲にあるも
のである。
(1) The surface of the silicon substrate 1 is thermally oxidized to form a pad oxide film 2 having a thickness of 5 to 50 nm {FIG.
(401), (402)}. (2) A silicon nitride film 12 having a thickness of 10
Deposit about 300 nm. This silicon nitride film 12 is used as an oxidation prevention film when forming the element isolation thermal oxide film 5 (FIG. 9 (403)). (3) A photoresist 13 is formed on the silicon nitride film 12 (FIG. 9 (404)). (4) After removing the photoresist 13 at a desired position by using a normal exposure method, the silicon nitride film 12, the pad oxide film 2 and a part of the silicon substrate 1 are removed by etching to remove the surface of the silicon substrate 1. 9 (405)-(407)}, a shallow groove whose sidewall has a predetermined angle with respect to the silicon substrate 1 (for example, the angle of the portion A in the figure is 90-110 degrees). (5) After removing the photoresist 13, the pad oxide film 2
Is etched away by about 10 to 40 nm and receded (FIGS. 9 (408) to (409)). (6) Thereafter, the surface of the silicon substrate 1 is thermally oxidized at, for example, 900 to 1100 ° C. in an oxidizing atmosphere H 2 / O 2 gas ratio of 1 ppm or less to form a thermal oxide film 5 (FIG. 9 (410)). (7) In this groove oxidation, it is necessary to stop as far as the inside of the groove is not completely filled, in order to minimize the stress caused by the volume expansion of the oxide film as much as possible. As a result, an insulating film such as a silicon oxide film is deposited and buried in the space remaining in the groove by, for example, a chemical vapor deposition (CVD) method, a sputtering method or the like (hereinafter, buried insulating film 6). Further, since the silicon oxide film or the like manufactured by the chemical vapor deposition method, the sputtering method or the like is generally a rough film, after the buried insulating film 6 is deposited, an annealing or oxidizing atmosphere at about 1000 ° C. is performed for the purpose of densification. The silicon substrate 1 may be oxidized inside.
(411)}. (8) The buried insulating film 6 is etched back by using a chemical mechanical polishing (CMP) method or a dry etching method. In this case, the silicon nitride film 12 used as an oxidation prevention film
Serves as an etching stopper and has a function of preventing the silicon substrate 1 under the silicon nitride film 12 from being etched {FIG. 9 (412)}. (9) Then, the trench filling structure is completed by removing the silicon nitride film 12 and the pad oxide film 2 {FIG. 9 (41)
3)}. Thereafter, the semiconductor device is completed through, for example, the formation of a gate oxide film and a gate electrode, the introduction of impurities, the formation of a wiring and an interlayer insulating film, the formation of a multilayer wiring structure, the formation of a surface protection film, and the like, which are necessary for manufacturing the transistor structure. . explain. In the trench isolation structure of the semiconductor device according to the present embodiment, the amount of oxidation at the center side surface of the trench is in the range of 5 to 70 nm, and the radius of curvature of the trench at the upper end of the semiconductor substrate is in the range of 3 to 35 nm. Things.

【0023】次に図10を参照して本実施例の作用効果
を説明する。
Next, the operation and effect of this embodiment will be described with reference to FIG.

【0024】図10は溝中央部側面での素子分離熱酸化
膜の酸化量と曲率半径の関係を本実施例に沿ってシミュ
レーションした結果あり、図中のaはパット酸化膜厚を
示している。図10より、シリコン基板上端部の曲率半
径Rは,溝側壁の酸化量とともに大きくなり、その後、
さらに最大値をとってほぼ一定値に飽和することがわか
る。また、その極大値はパット酸化膜aが厚いほど大き
くなるが,10nm以上ではほぼ一定値(約35nm)
となっている。曲率半径が最大値をとる理由としては、
溝の酸化と共に曲率半径は大きくなるが、徐々に、後退
させたパット酸化膜の空間が埋まり、その後図5で示し
たように、酸化の進入とともに、窒化珪素膜の反り変形
が発生(シリコン基板及び酸化膜には圧縮応力が発生)
し、この圧縮応力により酸化が抑制されたものと考えら
れる。
FIG. 10 is a simulation result of the relationship between the oxidation amount of the element isolation thermal oxide film and the radius of curvature on the side surface of the central portion of the groove in accordance with the present embodiment. In FIG. 10, a indicates the thickness of the pad oxide film. . According to FIG. 10, the radius of curvature R at the upper end of the silicon substrate increases with the oxidation amount of the groove side wall.
Further, it can be seen that the maximum value is reached and the value is saturated to a substantially constant value. The maximum value becomes larger as the thickness of the pad oxide film a becomes larger, but becomes substantially constant (about 35 nm) at 10 nm or more.
It has become. The reason for the maximum radius of curvature is
Although the radius of curvature increases with the oxidation of the groove, the space of the recessed pad oxide film gradually fills up, and then, as shown in FIG. And compressive stress on the oxide film)
However, it is considered that oxidation was suppressed by this compressive stress.

【0025】曲率半径Rは実験により、約3nm以上あ
ればトランジスタ特性に悪影響を与えないことが我々の
実験により判明している。そのため、この曲率半径を確
保できる溝側壁の酸化量は図10より、5nm以上とな
り、また、30nm以上酸化させても曲率半径は大きく
ならない。したがって,曲率半径を最大にするために
は,パッド酸化膜厚は10nm以上,側壁酸化量は30
nm以上とすることが好ましい。
From experiments, it has been found by experiments that the radius of curvature R does not adversely affect transistor characteristics if the radius of curvature is about 3 nm or more. Therefore, the oxidation amount of the groove side wall that can secure this radius of curvature is 5 nm or more from FIG. 10, and the radius of curvature does not increase even if it is oxidized to 30 nm or more. Therefore, in order to maximize the radius of curvature, the pad oxide film thickness should be 10 nm or more and the side wall oxidation amount should be 30.
It is preferably at least nm.

【0026】本実施例においては,本構造,製造方法を
採用することで,溝上端近傍の曲率半径を約35nmま
で大きくすることが可能であり,ゲート電極膜端部近傍
の電界集中に起因したトランジスタのリーク電流増加あ
るいは耐圧特性の低下を防止でき、トランジスタの電気
的信頼性を向上できるという効果がある。
In this embodiment, by adopting this structure and the manufacturing method, it is possible to increase the radius of curvature near the upper end of the groove to about 35 nm, which is caused by the electric field concentration near the end of the gate electrode film. This has the effect of preventing an increase in leakage current or a decrease in breakdown voltage characteristics of the transistor, and improving the electrical reliability of the transistor.

【0027】[0027]

【発明の効果】本発明によれば、溝分離構造を有する半
導体装置において、回路を構成するトランジスタや容量
の耐圧特性を劣化させることのない半導体装置及び製造
方法を提供することができる。
According to the present invention, in a semiconductor device having a trench isolation structure, it is possible to provide a semiconductor device and a manufacturing method which do not deteriorate the breakdown voltage characteristics of transistors and capacitors constituting a circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の選択酸化法における溝分離構造の製造工
程の模式図である。
FIG. 1 is a schematic view of a manufacturing process of a trench isolation structure in a conventional selective oxidation method.

【図2】本願に係る第一実施例の溝分離構造の製造工程
の模式図である。
FIG. 2 is a schematic view of a manufacturing process of the groove separation structure of the first embodiment according to the present invention.

【図3】本願に係る第一実施例の製造工程を示すフロー
チャートである。
FIG. 3 is a flowchart showing a manufacturing process of the first embodiment according to the present application.

【図4】本願に係る第一実施例の作用効果を説明する図
である。
FIG. 4 is a diagram illustrating the operation and effect of the first embodiment according to the present application.

【図5】本願に係る第一実施例の作用効果を説明する図
である。
FIG. 5 is a diagram illustrating the operation and effect of the first embodiment according to the present application.

【図6】本願に係る第二実施例の製造工程を示すフロー
チャートである。
FIG. 6 is a flowchart showing a manufacturing process of a second embodiment according to the present application.

【図7】本願に係る第二実施例の作用効果を説明する図
である。
FIG. 7 is a diagram illustrating the operation and effect of the second embodiment according to the present application.

【図8】本願に係る第三実施例の製造工程を示すフロー
チャートである。
FIG. 8 is a flowchart showing a manufacturing process of a third embodiment according to the present application.

【図9】本願に係る第四実施例の製造工程を示すフロー
チャートである。
FIG. 9 is a flowchart showing a manufacturing process of a fourth embodiment according to the present application.

【図10】本願に係る第四実施例の作用効果を説明する
図である。
FIG. 10 is a diagram illustrating the operation and effect of the fourth embodiment according to the present application.

【符号の説明】[Explanation of symbols]

1・・・シリコン基板、2・・・パット酸化膜、3・・
・酸化防止膜、4・・・基板鋭角部、5・・・素子分離
熱酸化膜、6・・・埋め込み絶縁膜、7・・・ゲート酸
化膜、8・・・ゲート電極膜、9・・・絶縁膜、10・
・・配線、11・・・層間絶縁膜、12・・・窒化珪素
膜、13・・・ホトレジスト。
1 ... silicon substrate, 2 ... pat oxide film, 3 ...
An oxidation prevention film, 4 ... a substrate acute angle portion, 5 ... a device isolation thermal oxide film, 6 ... a buried insulating film, 7 ... a gate oxide film, 8 ... a gate electrode film, 9 ...・ Insulating film, 10 ・
··· Wiring, 11: interlayer insulating film, 12: silicon nitride film, 13: photoresist.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 範夫 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 松田 安司 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 吉田 安子 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Norio Suzuki 5-2-1, Josuihonmachi, Kodaira-shi, Tokyo Inside the Semiconductor Division, Hitachi, Ltd. (72) Inventor Yasushi Matsuda Yasushi Josuihoncho, Kodaira-shi, Tokyo 20-1 Chome, Semiconductor Division, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】次の工程を含む半導体装置の製造方法 (1)半導体基板の回路形成面にパット酸化膜を5nm
以上,好ましくは10nm以上形成する工程 (2)前記パット酸化膜の上に酸化防止膜を形成する工
程 (3)前記半導体基板の回路形成面の所望の位置に所定
の深さの溝を形成する工程 (4)前記パット酸化膜を5nm以上,好ましくは10
nm以上後退させる工程 (5)前記半導体基板に形成した溝部分を酸化する工程 (6)前記酸化させた溝内部に埋め込み絶縁膜を埋め込
む工程 (7)前記酸化防止膜の上に形成された前記埋め込み絶
縁膜を除去する工程 (8)前記半導体基板の回路形成面の上に形成された前
記酸化防止膜を除去する工程 (9)前記半導体基板の回路形成面の上に形成された前
記パット酸化膜を除去する工程
1. A method of manufacturing a semiconductor device including the following steps: (1) A pad oxide film is formed to a thickness of 5 nm on a circuit formation surface of a semiconductor substrate.
As described above, a step of preferably forming a layer having a thickness of 10 nm or more. (2) A step of forming an antioxidant film on the pad oxide film. (3) A groove having a predetermined depth is formed at a desired position on a circuit forming surface of the semiconductor substrate. Step (4) The pad oxide film has a thickness of 5 nm or more, preferably 10 nm or more.
(5) Step of oxidizing a groove portion formed in the semiconductor substrate (6) Step of burying a buried insulating film in the oxidized groove (7) Step of forming on the antioxidant film Removing the buried insulating film; (8) removing the antioxidant film formed on the circuit forming surface of the semiconductor substrate; and (9) removing the pad oxidation formed on the circuit forming surface of the semiconductor substrate. Step of removing film
【請求項2】次の工程を含む半導体装置の製造方法 (1)半導体基板の回路形成面にパット酸化膜を5nm
以上,好ましくは10nm以上形成する工程 (2)前記パット酸化膜の上に酸化防止膜を形成する工
程 (3)前記半導体基板の回路形成面の所望の位置に所定
の深さの溝を形成する工程 (4)前記パット酸化膜を5nm以上,好ましくは10
nm以上後退させる工程 (5)前記半導体基板に形成した溝部分をH2/O2ガス
比0.5以下の酸化雰囲気中で酸化する工程 (6)前記酸化させた溝内部に埋め込み絶縁膜を埋め込
む工程 (7)前記酸化防止膜の上に形成された前記埋め込み絶
縁膜を除去する工程 (8)前記半導体基板の回路形成面の上に形成された前
記酸化防止膜を除去する工程 (9)前記半導体基板の回路形成面の上に形成された前
記パット酸化膜を除去する工程
2. A method of manufacturing a semiconductor device including the following steps: (1) A pad oxide film having a thickness of 5 nm is formed on a circuit forming surface of a semiconductor substrate.
As described above, a step of preferably forming a layer having a thickness of 10 nm or more. (2) A step of forming an antioxidant film on the pad oxide film. (3) A groove having a predetermined depth is formed at a desired position on a circuit forming surface of the semiconductor substrate. Step (4) The pad oxide film has a thickness of 5 nm or more, preferably 10 nm or more.
(5) a step of oxidizing a groove portion formed in the semiconductor substrate in an oxidizing atmosphere having an H 2 / O 2 gas ratio of 0.5 or less (6) a buried insulating film in the oxidized groove Embedding step (7) Step of removing the embedded insulating film formed on the antioxidant film (8) Step of removing the antioxidant film formed on the circuit formation surface of the semiconductor substrate (9) Removing the pad oxide film formed on the circuit forming surface of the semiconductor substrate
【請求項3】次の工程を含む半導体装置の製造方法 (1)半導体基板の回路形成面にパット酸化膜を5nm
以上,好ましくは10nm以上形成する工程 (2)前記パット酸化膜の上に酸化防止膜を形成する工
程 (3)前記半導体基板の回路形成面の所望の位置に所定
の深さの溝を形成する工程 (4)前記パット酸化膜を5nm以上,好ましくは10
nm以上後退させる工程 (5)前記半導体基板に形成した溝部分を、後退させた
パット酸化膜の空間がうまるまで酸化する工程 (6)前記酸化させた溝内部に埋め込み絶縁膜を埋め込
む工程 (7)前記酸化防止膜の上に形成された前記埋め込み絶
縁膜を除去する工程 (8)前記半導体基板の回路形成面の上に形成された前
記酸化防止膜を除去する工程 (9)前記半導体基板の回路形成面の上に形成された前
記パット酸化膜を除去する工程
3. A method for manufacturing a semiconductor device including the following steps: (1) A pad oxide film having a thickness of 5 nm is formed on a circuit forming surface of a semiconductor substrate.
As described above, a step of preferably forming a layer having a thickness of 10 nm or more. (2) A step of forming an antioxidant film on the pad oxide film. (3) A groove having a predetermined depth is formed at a desired position on a circuit forming surface of the semiconductor substrate. Step (4) The pad oxide film has a thickness of 5 nm or more, preferably 10 nm or more.
(5) Step of oxidizing the groove portion formed in the semiconductor substrate until the space of the recessed pad oxide film fills (6) Step of burying a buried insulating film in the oxidized groove (7) A) removing the buried insulating film formed on the antioxidant film; (8) removing the antioxidant film formed on the circuit forming surface of the semiconductor substrate. Removing the pad oxide film formed on the circuit forming surface
【請求項4】次の工程を含む半導体装置の製造方法 (1)半導体基板の回路形成面にパット酸化膜を5nm
以上,好ましくは10nm以上形成する工程 (2)前記パット酸化膜の上に酸化防止膜を形成する工
程 (3)前記半導体基板の回路形成面の所望の位置に所定
の深さの溝を形成する工程 (4)前記パット酸化膜を5nm以上,好ましくは10
nm以上後退させる工程 (5)前記半導体基板に形成した溝部分を次の条件で酸
化する工程 酸化雰囲気:H2/O2ガス比0.5以下 酸化量:後退させたパット酸化膜の空間が埋まるまで (6)前記酸化させた溝内部に埋め込み絶縁膜を埋め込
む工程 (7)前記酸化防止膜の上に形成された前記埋め込み絶
縁膜を除去する工程 (8)前記半導体基板の回路形成面の上に形成された前
記酸化防止膜を除去する工程 (9)前記半導体基板の回路形成面の上に形成された前
記パット酸化膜を除去する工程
4. A method of manufacturing a semiconductor device including the following steps: (1) A pad oxide film having a thickness of 5 nm is formed on a circuit forming surface of a semiconductor substrate.
As described above, a step of preferably forming a layer having a thickness of 10 nm or more. (2) A step of forming an antioxidant film on the pad oxide film. (3) A groove having a predetermined depth is formed at a desired position on a circuit forming surface of the semiconductor substrate. Step (4) The pad oxide film has a thickness of 5 nm or more, preferably 10 nm or more.
(5) Step of oxidizing the groove formed in the semiconductor substrate under the following conditions Oxidizing atmosphere: H2 / O2 gas ratio of 0.5 or less Oxidation amount: Until the space of the recessed pad oxide film is filled (6) a step of burying a buried insulating film in the oxidized groove; (7) a step of removing the buried insulating film formed on the antioxidant film; and (8) a step of removing the buried insulating film on the circuit formation surface of the semiconductor substrate. Removing the formed antioxidant film (9) removing the pad oxide film formed on the circuit forming surface of the semiconductor substrate
【請求項5】半導体基板の回路形成面に形成された素子
分離酸化膜構造が溝分離構造である半導体装置におい
て、前記溝分離構造の溝の中央部側面での酸化量が5
(好ましくは30)〜70nmの範囲であり、また、溝
の前記半導体基板の上端部の曲率半径が3〜35nmの
範囲であることを特徴とする半導体装置
5. A semiconductor device in which an element isolation oxide film structure formed on a circuit formation surface of a semiconductor substrate has a trench isolation structure, wherein the amount of oxidation at the center side surface of the trench of the trench isolation structure is 5%.
(Preferably 30) to 70 nm, and a radius of curvature of an upper end of the semiconductor substrate in the groove is in a range of 3 to 35 nm.
JP03359797A 1997-02-18 1997-02-18 Method for manufacturing semiconductor device Expired - Lifetime JP3547279B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP03359797A JP3547279B2 (en) 1997-02-18 1997-02-18 Method for manufacturing semiconductor device
TW087102181A TW388100B (en) 1997-02-18 1998-02-17 Semiconductor deivce and process for producing the same
US09/367,524 US6242323B1 (en) 1997-02-18 1998-02-18 Semiconductor device and process for producing the same
PCT/JP1998/000671 WO1998036452A1 (en) 1997-02-18 1998-02-18 Semiconductor device and process for producing the same
CNB021571880A CN1284224C (en) 1997-02-18 1998-02-18 Semiconductor device and mfg. technology thereof
CNB031306020A CN100521146C (en) 1997-02-18 1998-02-18 Manufacturing technology of semiconductor device
CNB2006100943951A CN100474558C (en) 1997-02-18 1998-02-18 Process for producing the semiconductor device
MYPI98000689A MY121321A (en) 1997-02-18 1998-08-11 Semiconductor device and process for producing the same
KR1019997007482A KR100307000B1 (en) 1997-02-18 1999-08-18 Semiconductor device and process for producing the same
US09/845,338 US6559027B2 (en) 1997-02-18 2001-05-01 Semiconductor device and process for producing the sme
US10/392,916 US6881646B2 (en) 1997-02-18 2003-03-21 Semiconductor device and process for producing the same
US11/108,827 US7402473B2 (en) 1997-02-18 2005-04-19 Semiconductor device and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03359797A JP3547279B2 (en) 1997-02-18 1997-02-18 Method for manufacturing semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004009970A Division JP2004146849A (en) 2004-01-19 2004-01-19 Semiconductor device and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH10229119A true JPH10229119A (en) 1998-08-25
JP3547279B2 JP3547279B2 (en) 2004-07-28

Family

ID=12390907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03359797A Expired - Lifetime JP3547279B2 (en) 1997-02-18 1997-02-18 Method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JP3547279B2 (en)
CN (1) CN100474558C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190515A (en) * 2000-12-21 2002-07-05 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
US6469345B2 (en) 2000-01-14 2002-10-22 Denso Corporation Semiconductor device and method for manufacturing the same
US6482701B1 (en) 1999-08-04 2002-11-19 Denso Corporation Integrated gate bipolar transistor and method of manufacturing the same
US6864532B2 (en) 2000-01-14 2005-03-08 Denso Corporation Semiconductor device and method for manufacturing the same
KR100873358B1 (en) * 2002-10-31 2008-12-10 매그나칩 반도체 유한회사 Method for forming the Isolation Layer of Semiconductor Device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140167206A1 (en) * 2012-12-17 2014-06-19 Macronix International Co., Ltd. Shallow trench isolation structure and method of manufacture
CN104555893B (en) * 2013-10-17 2017-06-06 上海华虹宏力半导体制造有限公司 The method that inductive material film is formed in deep trench

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842675A (en) * 1986-07-07 1989-06-27 Texas Instruments Incorporated Integrated circuit isolation process
KR960006714B1 (en) * 1990-05-28 1996-05-22 가부시끼가이샤 도시바 Semiconductor device fabrication process
JP3167457B2 (en) * 1992-10-22 2001-05-21 株式会社東芝 Semiconductor device
JP2955459B2 (en) * 1993-12-20 1999-10-04 株式会社東芝 Method for manufacturing semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482701B1 (en) 1999-08-04 2002-11-19 Denso Corporation Integrated gate bipolar transistor and method of manufacturing the same
US6469345B2 (en) 2000-01-14 2002-10-22 Denso Corporation Semiconductor device and method for manufacturing the same
US6864532B2 (en) 2000-01-14 2005-03-08 Denso Corporation Semiconductor device and method for manufacturing the same
US7354829B2 (en) 2000-01-14 2008-04-08 Denso Corporation Trench-gate transistor with ono gate dielectric and fabrication process therefor
JP2002190515A (en) * 2000-12-21 2002-07-05 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
KR100873358B1 (en) * 2002-10-31 2008-12-10 매그나칩 반도체 유한회사 Method for forming the Isolation Layer of Semiconductor Device

Also Published As

Publication number Publication date
CN1881556A (en) 2006-12-20
JP3547279B2 (en) 2004-07-28
CN100474558C (en) 2009-04-01

Similar Documents

Publication Publication Date Title
JP4592837B2 (en) Manufacturing method of semiconductor device
KR100249025B1 (en) Semiconductor element isolating method
JPH10229119A (en) Semiconductor device and manufacturing method thereof
KR100425064B1 (en) Semiconductor device and method of fabricating the same
JP3523048B2 (en) Semiconductor device manufacturing method and semiconductor device
JP3571236B2 (en) Method for manufacturing semiconductor device
US7018927B2 (en) Method for forming isolation film for semiconductor devices
JPH11284060A (en) Semiconductor device and manufacturing method thereof
US6261966B1 (en) Method for improving trench isolation
US11488837B2 (en) Method for fabricating high-voltage (HV) transistor
JP2004146849A (en) Semiconductor device and its manufacturing method
KR19990006000A (en) Device Separation Method of Semiconductor Device
KR100271802B1 (en) A mothod of isolation in semicondcutor device
KR100344765B1 (en) Method for isolating semiconductor devices
JP3277957B2 (en) Method for manufacturing SOI semiconductor device
KR100269623B1 (en) A method of isolating semiconductor devices
KR100474588B1 (en) Device isolation method of semiconductor device
KR20000020911A (en) Structure and method of trench isolation having nitride liner of thin film protected with spacer
KR19990070373A (en) Device isolation method of semiconductor device
US6436831B1 (en) Methods of forming insulative plugs and oxide plug forming methods
KR100519511B1 (en) Method of forming device isolation film in semiconductor device
KR20000019068A (en) Method for isolating semiconductor devices
KR19990057375A (en) Device Separating Method of Semiconductor Device
US20180076282A1 (en) Semiconductor devices and methods for forming the same
KR20060066390A (en) Method of forming a isolation layer in a semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term