JPH10227951A - Component for optical transmission and reception - Google Patents

Component for optical transmission and reception

Info

Publication number
JPH10227951A
JPH10227951A JP9288374A JP28837497A JPH10227951A JP H10227951 A JPH10227951 A JP H10227951A JP 9288374 A JP9288374 A JP 9288374A JP 28837497 A JP28837497 A JP 28837497A JP H10227951 A JPH10227951 A JP H10227951A
Authority
JP
Japan
Prior art keywords
optical
light
component
waveguide
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9288374A
Other languages
Japanese (ja)
Inventor
Hisashi Owada
寿 大和田
Michio Oba
道雄 大場
Toshihiko Takano
俊彦 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP9288374A priority Critical patent/JPH10227951A/en
Publication of JPH10227951A publication Critical patent/JPH10227951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease the number of components and to facilitate the assembly by fixing a light emitting element component or light receiving element component in a hole bored in a housing wall positioned on a line at the tip of a branch-side waveguide. SOLUTION: The light receiving element 13 and light emitting element components 14 to 16 are fixed at specific positions in a hole of the right wall of a housing respectively. Then an optical receptacle 12 is inserted into a hole of the left wall of the housing 1, an optical waveguide 11 is arranged in the housing, and those are held on an optical stage. Then light is guided in from the optical receptacle 12 and the light receiving element 13 is used as a monitor to obtain an optical receptacle 12 where the optical waveguide 11 and optical receptacle 12 are fixed. Then while the output light from the optical receptacle 12 is guided to an optical power meter, the light emitting element 14 is placed in operation, the optical axes of the light emitting element 14 and one tip of the branch waveguide are aligned with each other, and the optical receptacle 12 is adhered and fixed to the left wall part of the housing 1 at an optimum position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信、光LA
N、光計測制御等における機器装置間での光信号伝送に
用いる光電気信号変換用の光送受信用部品に関し、さら
に詳しくは、分岐光導波路と受発光素子を結合すること
により、1本の光ファイバにて双方向光伝送や光多重伝
送を可能とする光送受信用部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical communication and optical LA.
N. Optical transmission / reception components for optical / electrical signal conversion used for optical signal transmission between devices in optical measurement control and the like. More specifically, one optical device is formed by coupling a branch optical waveguide and a light receiving / emitting element. The present invention relates to an optical transmission / reception component that enables bidirectional optical transmission and optical multiplex transmission using a fiber.

【0002】[0002]

【従来の技術】電子機器装置間で光信号を送信または受
信するための部品(光送受信用部品)として、従来、ミ
ラーやレンズなどの光学部品と発光素子、受光素子を組
合せ、これに信号の入出力のための光ファイバが結合さ
れた構造の各種の光送受信用部品が開発されている。し
かしながら、これら従来の光送受信用部品は、多数の光
学部品を空間的に配置し、光軸合わせして製作する必要
があり、量産性に難があり、また、多数の光学部品を個
別に配置したものであるので、振動や衝撃、温度変化な
ど環境特性に問題があった。さらに、多数の光学部品を
空間的に配置することから、小型化が難しかった。
2. Description of the Related Art Conventionally, optical components such as mirrors and lenses, light emitting elements, and light receiving elements have been combined as components for transmitting or receiving optical signals between electronic equipment devices (optical transmitting and receiving components). Various optical transmitting and receiving components having a structure in which optical fibers for input and output are coupled have been developed. However, these conventional optical transmitting and receiving components require a large number of optical components to be spatially arranged and manufactured with their optical axes aligned, which makes mass production difficult, and a large number of optical components are individually arranged. Therefore, there was a problem in environmental characteristics such as vibration, impact, and temperature change. Furthermore, since a large number of optical components are spatially arranged, miniaturization has been difficult.

【0003】これらの従来の問題を解決し、より小型
で、信頼性の高い光送受信用部品として、高分子フィル
ムを用いた光導波路(高分子光導波路)を固定した基板
に、光信号入出力のための光ファイバと発光素子および
受光素子とを接続固定して一体となし、周囲を樹脂封止
してなり、光ファイバの他端に光コネクタを接続してな
るもの(特開平06-34833号公報)が提案され、また、光
レセプタクル付きの光導波路部品として、高分子光導波
路を固定した基板の光導波路のすべての端部に、内部に
光ファイバ素線付きのフェルールを配置した光レセプタ
クルを接続し、金属ケース(筐体)に固定し、ケース内
に樹脂を充填・硬化させて封止してなるものが提案され
(特開平06-75141号公報)、その図5には、上記特開平
06-34833号公報において、光レセプタクルを高分子光導
波路部に直接固定した場合の記載がある。
[0003] As a more compact and highly reliable component for optical transmission and reception, which solves these conventional problems, an optical signal input / output is mounted on a substrate on which an optical waveguide (polymer optical waveguide) using a polymer film is fixed. And a light emitting element and a light receiving element are connected and fixed to form an integral body, the periphery is sealed with a resin, and an optical connector is connected to the other end of the optical fiber (Japanese Patent Laid-Open No. 06-34833). Publication), and as an optical waveguide component with an optical receptacle, an optical receptacle in which a ferrule with an optical fiber is disposed inside all ends of an optical waveguide on a substrate to which a polymer optical waveguide is fixed. Is fixed to a metal case (housing), and the case is filled with resin, cured, and sealed (Japanese Patent Laid-Open No. 06-75141), and FIG. JP
Japanese Patent Application Laid-Open No. 06-34833 describes that an optical receptacle is directly fixed to a polymer optical waveguide.

【0004】本発明者らは、該特開平06-75141号公報の
図5に示されたと同様の光送受信用部品を作製し、その
発光素子および受光素子を制御するための電子回路基板
に接続一体化してなる光送受信用のモジュールとして、
試験を行った。その結果、光送受信用部品として試験し
た場合には何ら問題を発生しないものの、電子回路に接
続一体化した場合には、熱サイクル試験において、少数
ではあるが、機能が停止する場合が見られた。そして、
このトラブルは、電子回路基板への接続方法に大きく影
響されるものであった。そこで、電子回路基板への接続
方法に影響されない光送受信用部品を考案し、さらに、
分岐数の大きい光導波路を用いて多数の受光素子または
発光素子を結合した光送受信用部品であっても容易に製
造可能な構造について鋭意検討した結果、本発明に至っ
た。
[0004] The present inventors have manufactured an optical transmission / reception component similar to that shown in FIG. 5 of JP-A-06-75141 and connected it to an electronic circuit board for controlling the light emitting element and the light receiving element. As an integrated optical transceiver module,
The test was performed. As a result, when tested as an optical transmission / reception component, no problem occurred, but when integrated and connected to an electronic circuit, a small number of functions stopped in the heat cycle test. . And
This trouble was greatly affected by the connection method to the electronic circuit board. Therefore, we devised an optical transmission / reception component that is not affected by the connection method to the electronic circuit board.
As a result of earnestly studying a structure which can be easily manufactured even for an optical transmitting / receiving component in which a large number of light receiving elements or light emitting elements are coupled using an optical waveguide having a large number of branches, the present invention has been achieved.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、
1:N分岐型(Nは2以上の整数)の光導波路の分岐側
導波路先端に空間を隔てて発光素子部品または受光素子
部品を設けてなり、かつ該光導波路の1本側導波路に光
入出力部材を接合固定してなる光送受信用部品であっ
て、該光導波路は筐体中に固定してなり、該分岐側導波
路先端の線上に位置する筐体壁に該発光素子部品または
該受光素子部品に嵌合する孔を設け、該孔中に発光素子
部品または受光素子部品を固定してなる光送受信用部品
である。
That is, the present invention provides:
1: A light-emitting element or a light-receiving element is provided at the tip of a branch-side waveguide of an N-branch type optical waveguide (N is an integer of 2 or more) with a space therebetween, and is provided on one waveguide of the optical waveguide. An optical transmission / reception component comprising an optical input / output member bonded and fixed, wherein the optical waveguide is fixed in a housing, and the light emitting element component is mounted on a housing wall positioned on a line at the tip of the branch-side waveguide. Alternatively, it is an optical transmitting / receiving component in which a hole for fitting to the light receiving element is provided, and the light emitting element or the light receiving element is fixed in the hole.

【0006】ここで、該光導波路としては、ソルベント
キャスト法により製造された高分子光導波路であるこ
と、また、1本側導波路に接合固定する該光入出力部材
が光レセプタクルであり、該光レセプタクルを筐体に固
着したものであるか、または、該光入出力部材が導波路
との接続端部を補強材で支持した光ファイバであり、該
補強材を筐体に固着してなる光送受信用部品である。
Here, the optical waveguide is a polymer optical waveguide manufactured by a solvent casting method, and the optical input / output member to be bonded and fixed to one waveguide is an optical receptacle. Either the optical receptacle is fixed to the housing, or the optical input / output member is an optical fiber in which the connection end with the waveguide is supported by a reinforcing material, and the reinforcing material is fixed to the housing. It is a component for optical transmission and reception.

【0007】本発明の第一の特徴は、光導波路と受発光
素子部品とが空間を隔てて結合され、直接接触していな
い点にあり、これにより、従来の光導波路端部に直接受
発光素子部品を接着した場合に時々生じたコネクタの抜
き差しや温度変化によるストレスで光導波路端面を損傷
するなどのトラブルを回避したことにある。
A first feature of the present invention is that the optical waveguide and the light emitting / receiving element parts are coupled with each other with a space therebetween and are not in direct contact with each other. An object of the present invention is to avoid troubles such as damage to an end face of an optical waveguide due to stress caused by a change in temperature of a connector or insertion / removal of a connector that sometimes occurs when element components are bonded.

【0008】さらに、本発明は、該発光素子部品が発光
素子と発光素子前方(光導波路側)の集光用レンズとを
支持体に一体化してなるものであり、好ましくは、その
集光点を該発光素子部品の前方(光導波路側)の所定の
位置に設定したものであること、該受光素子部品が受光
素子であるか、または受光面を所定の位置に設定して受
光素子を支持体に一体化してなるものであること、該分
岐側導波路先端部における光軸が互いに平行であり、該
筐体壁の孔位置を、分岐側導波路先端の間隔と等しい間
隔で直線状に設定してなること、および該光導波路の固
定位置を調整して調心してなることを特徴とし、これら
により、筐体壁の孔に受発光素子を固定するだけで、各
発光素子からの光の集光点、および各受光素子の受光面
の筐体に対する相対位置を所望の位置に設定可能であ
り、受発光素子の数が多数であっても一括して光導波路
との調心が可能となる。
Further, according to the present invention, the light-emitting element component is obtained by integrating a light-emitting element and a condensing lens in front of the light-emitting element (on the side of the optical waveguide) with a support, and preferably the light-condensing point is provided. Is set at a predetermined position in front of the light emitting element component (on the side of the optical waveguide), the light receiving element component is a light receiving element, or the light receiving surface is set at a predetermined position to support the light receiving element. The optical axis at the tip of the branch-side waveguide is parallel to each other, and the hole position of the housing wall is linearly spaced at an interval equal to the interval of the tip of the branch-side waveguide. It is characterized in that it is set, and the fixing position of the optical waveguide is adjusted and the centering is performed. With these, only by fixing the light receiving and emitting element in the hole of the housing wall, light from each light emitting element is Focus point and phase of light receiving surface of each light receiving element Position can be set to a desired position, even many number of optical element becomes possible centering the optical waveguide collectively.

【0009】(2分岐光導波路と受光素子、発光素子各
1個ずつを用いた光送受信用部品)本発明の理解を容易
にするために、本発明の最も簡単な具体例として、2分
岐の光導波路と受光素子、発光素子各1個を使用した例
を用いて説明する。図1は、本発明の光送受信用部品の
一例を示す平面図であり、図2はその正面図である。ま
た、図3は、個々の部品の構成を示す斜視図である。
(Optical Transmitting / Receiving Part Using Two-Branch Optical Waveguide, One Light-Receiving Element and One Light-Emitting Element) In order to facilitate understanding of the present invention, the simplest concrete example of the present invention is a two-branch optical waveguide. Description will be made using an example using one optical waveguide, one light receiving element, and one light emitting element. FIG. 1 is a plan view showing an example of the optical transmitting / receiving component of the present invention, and FIG. 2 is a front view thereof. FIG. 3 is a perspective view showing the configuration of each component.

【0010】図1、および図2において、筐体(1) の左
側壁に高分子光導波路(11)を固着した光レセプタクル(1
2)が固定され、それに対向する筐体(1) の右側壁で、光
導波路(11)の片側の分岐導波路先端に空間を隔てて受光
素子(13)が、反対側の分岐導波路先端に空間を隔ててレ
ンズ(15)および発光素子(14)が支持体(16)に一体化して
固定されている。そして、筐体(1) は、接着剤を用い
て、蓋(2) を取り付けることにより内部の気密性が保持
される。
In FIGS. 1 and 2, an optical receptacle (1) having a polymer optical waveguide (11) fixed to the left side wall of a housing (1).
2) is fixed, and on the right side wall of the housing (1) opposed thereto, the light receiving element (13) is spaced apart from the tip of the branch waveguide on one side of the optical waveguide (11) by a space, and the tip of the branch waveguide on the opposite side. A lens (15) and a light emitting element (14) are integrally fixed to a support (16) with a space therebetween. The housing (1) is kept airtight by attaching a lid (2) using an adhesive.

【0011】図1の光送受信用部品の組立は、以下のよ
うにして行う。まず、筐体(1) の右側壁の孔の所定位置
に、受光素子(13)と発光素子部品(14,15,16)とをそれぞ
れ固定する。次に、筐体(1) の左側壁の孔より光レセプ
タクル(12)を差し込み、一方、筐体内部に光導波路(11)
を配置してこれらを光学ステージ上に保持する。その
後、光レセプタクル(12)から光を導入し、受光素子(13)
をモニターとして光導波路(11)と光レセプタクル(12)と
を光軸合わせし、接着剤にて固定して光導波路(11)を固
着した光レセプタクル(12)とする。
The assembly of the optical transmitting / receiving component of FIG. 1 is performed as follows. First, the light receiving element (13) and the light emitting element components (14, 15, 16) are fixed at predetermined positions of the hole in the right side wall of the housing (1). Next, an optical receptacle (12) is inserted through a hole in the left side wall of the housing (1), while an optical waveguide (11) is inserted inside the housing.
And hold them on the optical stage. After that, light is introduced from the optical receptacle (12) and the light receiving element (13)
Is used as a monitor to align the optical waveguide (11) and the optical receptacle (12) with the optical axis, and is fixed with an adhesive to form an optical receptacle (12) to which the optical waveguide (11) is fixed.

【0012】次に、光レセプタクル(12)からの出力光を
光パワーメータへ導いた状態で、発光素子(14)を動作さ
せ、発光素子(14)と分岐導波路の一方の先端とを光軸合
わせして、最適な位置で光レセプタクル(12)を筐体(1)
の左側壁部に接着固定する。この際、受光素子は、受光
面積が大きいため、目視による水平位置合わせを行うだ
けで充分な受光を確保可能である。最後に、筐体(1) に
蓋を接着して密封し、光送受信用部品とする。
Next, with the output light from the optical receptacle (12) being guided to the optical power meter, the light emitting element (14) is operated, and the light emitting element (14) and one end of the branch waveguide are connected to each other. Align the optical receptacle (12) at the optimal position with the housing (1)
To the left side wall of. At this time, since the light receiving element has a large light receiving area, sufficient light reception can be ensured only by performing horizontal alignment by visual observation. Finally, a lid is adhered to the housing (1) and hermetically sealed to form an optical transmitting / receiving component.

【0013】本発明の筐体(1) としては、光コネクタの
抜き差し、温度変化などによる負荷に充分耐えるものと
の点からは、金属、樹脂、フィラー入り樹脂、セラミッ
クスなど特に限定されないが、発光素子の発熱を直ちに
吸収して、素子の温度の上昇をより少なくできる点か
ら、金属類が特に好ましく、例えば、アルミニウム、ア
ルミニウム合金、銅、銅合金、鉄、鉄合金(ステンレス
鋼など)が挙げられる。また、低コストの製造を目的と
する場合は、フィラー入りの樹脂などを用いてもよい。
The housing (1) of the present invention is not particularly limited to a metal, a resin, a resin containing a filler, a ceramic, etc., from the viewpoint that the housing (1) can sufficiently withstand a load due to insertion / removal of an optical connector, temperature change, and the like. Metals are particularly preferable because they can absorb the heat generated by the element immediately and reduce the rise in the temperature of the element, and examples thereof include aluminum, aluminum alloy, copper, copper alloy, iron, and iron alloy (such as stainless steel). Can be When the purpose is low-cost production, a resin containing a filler or the like may be used.

【0014】本発明の光レセプタクル(12)としては、通
常のものが使用できる。しかしながら、光コネクタの脱
着による光導波路端面の損傷を防止・回避し、また、光
コネクタとの嵌合のみで良好な接続を可能とする面か
ら、光導波路と光コネクタとの間に、光ファイバ付きフ
ェルールが挿入され、このフェルール端部と光コネクタ
側のフェルールの端部とが接触するように構成したもの
が好ましい。なお、上記の例は、光レセプタクル部分を
筐体に固着した例であるが、筐体中に台座を設けるなど
して、光導波路部分を筐体に固着することもできる。
As the optical receptacle (12) of the present invention, an ordinary one can be used. However, from the viewpoint of preventing and avoiding damage to the end face of the optical waveguide due to attachment and detachment of the optical connector and enabling good connection only by fitting with the optical connector, the optical fiber is connected between the optical waveguide and the optical connector. It is preferable that the ferrule with the attached ferrule is inserted so that the end of the ferrule comes into contact with the end of the ferrule on the optical connector side. Although the above example is an example in which the optical receptacle portion is fixed to the housing, the optical waveguide portion can be fixed to the housing by providing a pedestal in the housing.

【0015】また、1本側導波路に接合固定する光入出
力部材としては、上記の光レセプタクルの代わりに、光
ファイバの導波路との接続端部をガラスキャピラリ、ま
たは光ファイバアレイ基板などの補強材で補強したもの
を用いてもよい。この場合、上記補強材部分を筐体に固
着するのが好ましいが、光導波路部分を筐体に固着する
こともできる。
As an optical input / output member to be bonded and fixed to the single-sided waveguide, instead of the above-described optical receptacle, a connection end of the optical fiber with the waveguide is made of a glass capillary or an optical fiber array substrate. A material reinforced with a reinforcing material may be used. In this case, the reinforcing member is preferably fixed to the housing, but the optical waveguide portion may be fixed to the housing.

【0016】光導波路(11)としては、高分子光導波路、
ガラス光導波路のいずれも使用可能であるが、高分子光
導波路がより好ましい。高分子光導波路は、光重合性モ
ノマーをポリマーマトリクス中で選択的に光重合させ、
重合していない部分の光重合性モノマーを除去すること
により屈折率分布を形成した高分子フィルムとし(特公
昭56-3522 号公報、特開平03-156407 号公報他)、この
高分子フィルムの両面にガラス板などを接着し、支持固
定・保護して作製される。なお、本発明に用いる2分岐
光導波路の分岐端の間隔は、受光素子、発光素子の大き
さから決定される。
As the optical waveguide (11), a polymer optical waveguide,
Although any of glass optical waveguides can be used, a polymer optical waveguide is more preferable. The polymer optical waveguide selectively photopolymerizes a photopolymerizable monomer in a polymer matrix,
A polymer film having a refractive index distribution formed by removing a photopolymerizable monomer in a non-polymerized portion (Japanese Patent Publication No. 56-3522, Japanese Patent Application Laid-Open No. 03-156407, etc.), and both surfaces of this polymer film It is manufactured by adhering a glass plate or the like, supporting, fixing and protecting. The distance between the branch ends of the two-branch optical waveguide used in the present invention is determined by the size of the light receiving element and the light emitting element.

【0017】受光素子および発光素子としては、工業的
に量産されている市販品、例えば、キャンタイプの製品
などを、そのまま使用できる。受光素子には、必要があ
れば、その受光面側に波長選別用フィルタなどを取り付
けて用いる。また、発光素子は、通常、集光用レンズを
組み合わせて用いるが、これらの集光用レンズとして
は、ロッドレンズ、球面レンズ、非球面レンズなどが例
示される。
As the light receiving element and the light emitting element, commercially available products mass-produced industrially, for example, can type products can be used as they are. If necessary, a wavelength selection filter or the like is attached to the light receiving surface of the light receiving element. The light-emitting element is usually used in combination with a condensing lens, and examples of these condensing lenses include a rod lens, a spherical lens, and an aspherical lens.

【0018】本発明の光送受信用部品において、分岐光
導波路先端部と受光素子との間隔は使用する受光素子の
有効な受光面積と分岐光導波路の開口数により、可能な
最大の隔離距離が設定されるため、これよりも小さい距
離範囲で任意に設定できる。また、分岐光導波路先端部
と発光素子との間隔は、使用する発光素子の形式に応じ
て適宜決定される。例えば、集光用レンズを使用したも
のの場合、その集光点が分岐光導波路先端部となるよう
にする。
In the optical transmitting / receiving component of the present invention, the maximum possible separation distance is set according to the effective light receiving area of the light receiving element to be used and the numerical aperture of the branched optical waveguide. Therefore, it can be set arbitrarily within a smaller distance range. Further, the distance between the tip of the branch optical waveguide and the light emitting element is appropriately determined according to the type of the light emitting element to be used. For example, in the case of using a condensing lens, the condensing point is set to the tip of the branch optical waveguide.

【0019】以上詳細に説明した本発明の光送受信用部
品は、本光送受信用部品の受光素子からの電気信号を処
理するため、また、発光素子への電気信号を処理するた
めの電子回路に実装して、好適に使用される。光送受信
用部品は、電子回路を収納したケースに、外部の光コネ
クタと接続する光レセプタクル(12)が付け根部分から先
が外部に出るように固定される。そして、受光素子、発
光素子の端子はそれぞれ、電子回路基板に半田付けなど
により接続して実装する。
The optical transmitting / receiving component of the present invention described in detail above is an electronic circuit for processing an electric signal from the light receiving element of the optical transmitting / receiving component and for processing an electric signal to the light emitting element. Implemented and used preferably. The optical transmitting / receiving component is fixed to a case containing an electronic circuit so that an optical receptacle (12) to be connected to an external optical connector projects outside from a base portion. Then, the terminals of the light receiving element and the light emitting element are respectively connected and mounted on the electronic circuit board by soldering or the like.

【0020】実装した状態にて、実用試験を行った場
合、光導波路と受光素子および発光素子とが直接接着さ
れていないので、温度変化によるストレス、コネクタの
抜き差しによるストレスなどは、筐体(1) にのみ負荷さ
れることとなる。筐体(1) は、特に、コネクタの抜き差
しによる負荷に充分耐える強度とする。この場合、温度
変化によるストレスは通常、この負荷よりも小さいので
充分耐えるものとなり、永久変形もなく、光接続不良は
発生しない。また、分岐光導波路端部、受光素子および
発光素子の露出面は、筐体(1) を蓋にて密封することに
より、直接外気にさらされることがなく、充分な信頼性
を確保できるものである。
When a practical test is performed in a mounted state, since the optical waveguide is not directly bonded to the light receiving element and the light emitting element, stress due to temperature change, stress due to insertion / removal of the connector, and the like are caused by the housing (1). ). The housing (1) is particularly strong enough to withstand the load caused by connecting and disconnecting the connector. In this case, since the stress due to the temperature change is usually smaller than this load, it can be sufficiently tolerated, there is no permanent deformation, and no optical connection failure occurs. The end of the branched optical waveguide, the exposed surface of the light-receiving element and the light-emitting element are sealed with the housing (1) so that they are not directly exposed to the outside air, and sufficient reliability can be secured. is there.

【0021】さらに、筐体(1) をステンレスなどの熱伝
導率が比較的高く、また、熱容量の大きいものとし、か
つ、発光素子などの発熱部品との接触を良好とすること
により、発光時の発熱を直ちに吸収して発光素子自体の
温度が上昇することを防止できる。この結果、通常のレ
ーザーダイオードなどの使用上限温度程度まで、密封し
た状態であるにもかかわらず使用可能とする。
Further, the housing (1) has a relatively high thermal conductivity such as stainless steel, has a large heat capacity, and has good contact with a heat-generating component such as a light-emitting element, so that light emission during light emission can be improved. Can be immediately absorbed to prevent the temperature of the light emitting element itself from rising. As a result, the laser diode can be used up to the maximum use temperature of a normal laser diode even though it is in a sealed state.

【0022】(4分岐光導波路と発光素子4個を用いた
光送受信用部品)次に、光導波路の分岐数N、および受
発光素子の数が大きい場合について、4分岐の光導波路
と4個の発光素子を用いた光送受信用部品を例として説
明する。このように、受発光素子、特に発光素子の数が
多い場合には、すべての発光素子部品と分岐導波路各先
端との位置関係が最適な位置で、空間を隔てて固定する
ことはそれほど容易ではない。それは、発光素子内部の
発光点の位置が個々の素子で一定でないこと、および発
光素子からの光は集光用レンズにより極めて細いビーム
状に集光されることによる。従って、発光素子自体の位
置とレンズにより集光されたその光の集光点の位置との
相対関係は、単にレンズと発光素子との位置関係を一定
にするだけでは、個々の発光素子部品で大幅に異なるこ
とになる。
(Optical Transmitting / Receiving Parts Using Four-Branch Optical Waveguide and Four Light-Emitting Elements) Next, when the number N of branches of the optical waveguide and the number of light-receiving / emitting elements are large, the four-branch optical waveguide and four light-emitting elements are used. An optical transmission / reception component using the above light emitting element will be described as an example. As described above, when the number of light emitting / receiving elements, particularly the number of light emitting elements, is large, it is not so easy to fix the light emitting element parts and the ends of the branch waveguides at an optimum position with a space therebetween. is not. This is because the position of the light emitting point inside the light emitting element is not constant for each element, and the light from the light emitting element is condensed into a very narrow beam by the condensing lens. Therefore, the relative relationship between the position of the light emitting element itself and the position of the light condensing point of the light condensed by the lens can be determined by individual light emitting element parts simply by keeping the positional relation between the lens and the light emitting element constant. Would be very different.

【0023】一つの方法として、発光素子部品を固定す
る位置に、ある程度の幅を持たせ、まず、光導波路を筐
体に固定した後、発光素子を一つずつ発光させながら順
次最適位置で筐体に固定することは可能である。しかし
ながら、この方法ではすべての素子を個々に調心する必
要があり、効率的ではない。
As one method, a certain width is provided at a position where the light emitting element component is fixed. First, the optical waveguide is fixed to the housing, and then the light emitting elements are emitted one by one, and the light emitting elements are sequentially emitted at the optimum position. It is possible to fix it on the body. However, this method requires that all elements be individually aligned and is not efficient.

【0024】上記の問題を解決し、合理的な製造手順を
可能とするには、本発明の以下の方法に従えばよい。す
なわち、発光素子と集光用レンズとを支持体に一体化し
て発光素子部品とする際に、集光点がその発光素子部品
の前方(光導波路側)の所定の位置となるように、発光
素子と集光用レンズの支持体への固定位置を調整するこ
とにより、発光素子部品を固定する筐体壁の孔位置に対
して集光点を常に一定位置とすることが可能となる。
In order to solve the above problems and enable a rational manufacturing procedure, the following method of the present invention may be followed. That is, when the light-emitting element and the condensing lens are integrated into a support to form a light-emitting element component, the light emission is performed such that the light-condensing point is at a predetermined position in front of the light-emitting element component (on the side of the optical waveguide). By adjusting the fixing positions of the element and the condensing lens to the support, the light converging point can always be kept at a fixed position with respect to the hole position of the housing wall for fixing the light emitting element component.

【0025】ここで、発光素子部品の前方の所定の位置
とは、三次元的な位置を指す。例えば、図2に示される
ような円筒形支持体を用いた発光素子部品においては、
集光点Fの位置を円筒形の中心軸上、かつ支持体先端か
らの距離が一定の位置に設定すればよい。具体的な上記
発光素子部品の作製方法は、例えば以下のようにする。
まず、集光用レンズを内部に組み込み固定した支持体
(シース)を光学ステージ上に保持し、さらに集光点と
すべき所定の位置に光ファイバ先端を集光用レンズと対
向させて保持する。次いで、この光ファイバの他端を光
パワーメータに導いた状態で、発光素子を発光させなが
ら支持体中における発光素子の位置を調整し、光パワー
が最大になる位置で支持体に接着固定する。これらの操
作は容易であり、短時間で発光素子部品を作製可能であ
る。
Here, the predetermined position in front of the light emitting element component refers to a three-dimensional position. For example, in a light emitting device component using a cylindrical support as shown in FIG.
What is necessary is just to set the position of the condensing point F on the central axis of the cylindrical shape and at a position where the distance from the tip of the support is constant. A specific method for manufacturing the light emitting element component is, for example, as follows.
First, a support (sheath) in which a condensing lens is incorporated and fixed is held on an optical stage, and the tip of an optical fiber is held at a predetermined position to be a condensing point, facing the condensing lens. . Next, while the other end of the optical fiber is guided to the optical power meter, the position of the light emitting element in the support is adjusted while the light emitting element emits light, and the light emitting element is bonded and fixed to the support at a position where the optical power is maximized. . These operations are easy, and a light-emitting element component can be manufactured in a short time.

【0026】このようにして、所定位置に集光点を有す
る発光素子部品を用いた場合には、筐体壁に設けた発光
素子部品に嵌合する孔の位置精度が充分高く、かつ発光
素子部品の支持体の加工精度が充分高い場合には、各発
光素子部品を筐体壁の孔にはめ込み接着固定するだけ
で、各発光素子部品の光の集光点の筐体に対する相対位
置を任意に精度良く定めることが可能であり、この相対
位置を分岐導波路各先端に適合するようにしておくこと
により、後に光導波路の固定位置を調整することにより
一括して調心を行うことが可能となる。
As described above, when a light emitting element component having a light condensing point at a predetermined position is used, the position accuracy of the hole for fitting the light emitting element component provided on the housing wall is sufficiently high, and If the processing accuracy of the component support is sufficiently high, simply insert each light-emitting element component into the hole in the housing wall and fix it by bonding. By adjusting this relative position to each tip of the branch waveguide, it is possible to adjust the fixed position of the optical waveguide later and collectively perform centering. Becomes

【0027】一例として、分岐側導波路先端部における
光軸が互いに平行であるような光導波路の場合には、該
筐体壁の孔位置が分岐側導波路先端の間隔と等しい間隔
で直線状で、かつ各集光点が筐体壁から一定の距離とな
るように設定すればよい。
As an example, in the case of an optical waveguide in which the optical axes at the tip of the branch-side waveguide are parallel to each other, the positions of the holes in the housing wall are linear at intervals equal to the interval between the tips of the branch-side waveguide. In this case, it is only necessary to set such that each condensing point is at a fixed distance from the housing wall.

【0028】製造工程としては、まず、筐体壁の孔に発
光素子部品を固定した後、光導波路の固定位置を調整し
て調心する手順をとることができる。これは、光送受信
用部品の組立工程とは別個に、発光素子部品の製造、お
よび筐体壁へのこれらの固定を任意の時期に行うことが
可能である点で合理的な製造工程といえる。
In the manufacturing process, first, after fixing the light emitting element component to the hole in the housing wall, a procedure of adjusting the fixing position of the optical waveguide and performing centering can be adopted. This can be said to be a reasonable manufacturing process in that the manufacturing of the light-emitting element components and their fixing to the housing wall can be performed at any time separately from the assembly process of the optical transmitting and receiving components. .

【0029】以上の点は、上記の例において、一部また
は全部の素子を、発光素子部品の代わりに受光素子部品
に置き換えた場合にも同様に適用できる。受光素子部品
の場合にも、その受光面と分岐導波路先端とは適切な位
置関係が必要であるが、受光面は比較的大きいこと、受
光面と分岐導波路先端との距離も許容範囲が比較的大き
いことから、発光素子の場合ほど精密な位置合わせは必
要とされない。受光素子部品としては、受光素子をその
まま、または上記発光素子部品と同様に支持体に一体化
して用いる。支持体を用いる場合には、受光面が所定の
位置となるように受光素子を支持体に固定する。通常、
支持体中に受光素子に嵌合する孔を設け、この孔中に受
光素子を固定するだけで充分な位置精度を確保可能であ
る。受光素子部品には、必要に応じて、受光面側に波長
選別用フィルタを取り付けてもよい。筐体壁に、受光素
子部品に嵌合する孔を充分な位置精度で設け、この孔中
に受光素子部品を固定することにより、後に光導波路と
の位置合わせを一括して行うことが可能である。
The above points can be similarly applied to a case where some or all of the elements in the above example are replaced with light receiving element parts instead of light emitting element parts. In the case of a light receiving element component, an appropriate positional relationship between the light receiving surface and the tip of the branch waveguide is necessary. However, the light receiving surface is relatively large, and the distance between the light receiving surface and the tip of the branch waveguide has an allowable range. Due to their relatively large size, precise alignment is not required as in the case of light-emitting elements. As the light receiving element component, the light receiving element is used as it is or is integrated with the support in the same manner as the light emitting element component. When a support is used, the light receiving element is fixed to the support so that the light receiving surface is at a predetermined position. Normal,
Sufficient positional accuracy can be ensured only by providing a hole in the support for fitting the light receiving element and fixing the light receiving element in this hole. If necessary, a wavelength selecting filter may be attached to the light receiving element side of the light receiving element component. By providing a hole for fitting the light receiving element component with sufficient positional accuracy in the housing wall and fixing the light receiving element component in this hole, it is possible to perform the alignment with the optical waveguide collectively later. is there.

【0030】さらには、発光素子部品の支持体および受
光素子部品の支持体の外形を同一にするなどして、これ
らの部品を固定する筐体壁の孔を、すべて同一形状とし
ておくと、1種類の筐体を様々な素子構成の光送受信用
部品に利用可能となり、製造コストを低減できる。
Further, by making the outer shape of the support of the light emitting element component and the support of the light receiving element component the same, the holes in the housing wall for fixing these components are all made to have the same shape. Various types of housings can be used for optical transmitting and receiving components having various element configurations, and manufacturing costs can be reduced.

【0031】具体例を図4に示す。図4は、1:4分岐
の光導波路と4個の発光素子を用いた光送受信用部品の
一例を示す平面図である。図4においては、筐体(1a)の
左側壁に高分子光導波路(11a) を固着した光レセプタク
ル(12)が固定され、また、右側壁には、光導波路(11a)
の片側の分岐導波路各先端に空間を隔ててレンズ(15a,1
5b,15c,15d) および4個の発光素子(14a,14b,14c,14d)
が支持体(16a,16b,16c,16d) に一体化され、それぞれ固
定されている。この光導波路(11a) の各分岐導波路先端
部における光軸はすべて互いに平行であり、筐体(1a)の
右側壁の4カ所の孔は支持体(16a,16b,16c,16d)に嵌合
する形状を有し、分岐導波路先端の間隔と等しい間隔
で、各支持体先端が直線状に並ぶように設けられてい
る。各発光素子部品の集光点の支持体先端からの距離は
すべて一定としている。
FIG. 4 shows a specific example. FIG. 4 is a plan view showing an example of an optical transmission / reception component using a 1: 4 branch optical waveguide and four light emitting elements. In FIG. 4, an optical receptacle (12) to which a polymer optical waveguide (11a) is fixed is fixed to the left side wall of the housing (1a), and the optical waveguide (11a) is fixed to the right side wall.
The lens (15a, 1
5b, 15c, 15d) and four light-emitting elements (14a, 14b, 14c, 14d)
Are integrated with and fixed to the supports (16a, 16b, 16c, 16d). The optical axes at the ends of the branch waveguides of the optical waveguide (11a) are all parallel to each other, and four holes on the right side wall of the housing (1a) fit into the supports (16a, 16b, 16c, 16d). The supports are provided such that their tips are linearly arranged at intervals equal to the intervals between the tips of the branch waveguides. The distance from the tip of the support to the focal point of each light-emitting element component is all constant.

【0032】その他は、概略、図1の例と同様であり、
組立は以下のようにする。まず、各発光素子部品を、前
記説明のようにして、光の集光点が所定の位置となるよ
うに作製した後、筐体(1a)の右側壁の孔の所定位置にそ
れぞれ固定する。次に、図1の例と同様に筐体(1a)、光
導波路(11a) 、および光レセプタクル(12)を光学ステー
ジ上に保持し、光レセプタクル(12)から光ファイバを光
パワーメータに導いた状態で、いずれかの発光素子を発
光させ、その発光素子と分岐導波路との位置を粗調整し
た後、光導波路(11a) に対する光レセプタクル(12)の位
置を調整し、光強度が最大となる位置で両者を接着固定
して光導波路(11a) を固着した光レセプタクル(12)とす
る。次いで、両端の発光素子を発光させ、これらの光強
度が最大となる位置で光レセプタクル(12)を筐体(1a)に
接着固定する。最後に、蓋を接着して、光送受信用部品
とする。
The rest is substantially the same as the example of FIG.
Assembly is as follows. First, as described above, each light-emitting element component is manufactured so that the light converging point is at a predetermined position, and then is fixed to a predetermined position of a hole in the right side wall of the housing (1a). Next, similarly to the example of FIG. 1, the housing (1a), the optical waveguide (11a), and the optical receptacle (12) are held on the optical stage, and the optical fiber is guided from the optical receptacle (12) to the optical power meter. In this state, one of the light emitting elements emits light, and after roughly adjusting the position of the light emitting element and the branch waveguide, the position of the optical receptacle (12) with respect to the optical waveguide (11a) is adjusted so that the light intensity is maximized. The optical waveguide (11a) is fixed to the optical receptacle (12) by adhering and fixing the two at the following positions. Next, the light emitting elements at both ends are made to emit light, and the optical receptacle (12) is bonded and fixed to the housing (1a) at the position where the light intensity becomes maximum. Finally, the lid is bonded to form an optical transmitting / receiving component.

【0033】[0033]

【実施例】以下、実施例により本発明の光送受信用部品
についてさらに詳しく説明する。なお、以下の例は具体
的に説明するためのものであって、本発明の実施態様や
発明範囲を限定するものではない。
EXAMPLES Hereinafter, the optical transmission / reception component of the present invention will be described in more detail with reference to examples. The following examples are for the purpose of specifically explaining, and do not limit the embodiments and the scope of the present invention.

【0034】実施例1:コア径50μmの光ファイバ用2
分岐の光導波路と受光素子および発光素子各1個ずつを
用いた光送受信用部品の作製。 (筐体(1) の作製)図1〜3に示されるステンレス製筐
体(1) を作製した。外形は、図1の左右長23mm、上下幅
20mm、高さ 9mmであり、その左側壁は厚み3.5mmで、光
レセプタクル固定用の貫通孔を形成してなり、一方、右
側壁は厚み6mmで、受光素子および発光素子固定用の孔
を形成してなり、内部には、2分岐光導波路の収納部を
有する。そして、4隅には部品固定用のネジ孔を設けて
なる。組立後は、これらネジ孔より内側にステンレス製
の蓋(2) を接着固定し、内部の気密性を保持する構造と
なっている。
Embodiment 1: For an optical fiber having a core diameter of 50 μm 2
Fabrication of optical transmission / reception components using a branched optical waveguide, a light receiving element and a light emitting element. (Preparation of Case (1)) A case (1) made of stainless steel as shown in FIGS. The external dimensions are 23 mm left and right, and the top and bottom widths of Fig.
It is 20mm in height and 9mm in height.The left side wall is 3.5mm thick and has a through hole for fixing the optical receptacle, while the right side wall is 6mm thick and has holes for fixing the light receiving element and the light emitting element. In the inside, there is provided a storage portion for a two-branch optical waveguide. The four corners are provided with screw holes for fixing components. After assembling, a stainless steel lid (2) is adhered and fixed inside these screw holes to maintain the inside airtightness.

【0035】(2分岐光導波路(11)の作製)光導波路の
寸法は、フィルム厚み40μm、伝搬方向の長さ12mm、分
岐導波路の間隔 6mmとし、導波路端部における幅は1本
側、分岐側ともに40μmとして、以下のように作製し
た。すなわち、ビスフェノールZから合成されたポリカ
ーボネート樹脂(三菱ガス化学(株)製、商品名:ユー
ピロンZ)、光重合性モノマーとしてアクリル酸メチ
ル、および増感剤としてベンゾインエチルエーテルを用
いて、選択光重合法(特公昭56-3522 号公報、特開平03
-156407 号公報)により光導波路フィルムを作製した。
(Fabrication of Two-branch Optical Waveguide (11)) The dimensions of the optical waveguide were as follows: the film thickness was 40 μm, the length in the propagation direction was 12 mm, and the distance between the branch waveguides was 6 mm. It was manufactured as follows, with the branch side being 40 μm on both sides. That is, using a polycarbonate resin synthesized from bisphenol Z (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name: Iupilon Z), methyl acrylate as a photopolymerizable monomer, and benzoin ethyl ether as a sensitizer, a selective light weight is used. Legal (Japanese Patent Publication No. 56-3522,
-156407) to produce an optical waveguide film.

【0036】次いで、屈折率 1.56 の接着剤を用いて、
この光導波路フィルムの両面に厚さ1.5mmのガラス板を
接着固定した後、所定の大きさに切断し、両端面を光学
研磨して、2分岐光導波路とした。
Next, using an adhesive having a refractive index of 1.56,
A glass plate having a thickness of 1.5 mm was bonded and fixed to both surfaces of the optical waveguide film, cut into a predetermined size, and both end surfaces were optically polished to obtain a two-branch optical waveguide.

【0037】(光レセプタクル(12)の作製)全長18.5m
m、筐体(1) への差し込み部の外形5.99mm、長さ 7mmで
図3の外形を有する光レセプタクル(12)を作製した。こ
こに、光レセプタクル(12)内部には、光ファイバ付きフ
ェルールが挿入され、このフェルールの端部と光コネク
タ側のフェルール端部とが接触するように構成され、ま
た、反対側の端部も同様に、光導波路と接触するように
構成されたものである。また、光レセプタクル(12)を最
適な位置で筐体(1) に接着固定するため、図3のような
内径6.01mm、外形 9mm、厚さ 2.5mmの固定用リング(17)
を用意した。
(Preparation of Optical Receptacle (12)) Total Length 18.5m
An optical receptacle (12) having an outer diameter of 5.99 mm, a length of 7 mm, and an outer diameter of FIG. 3 was prepared. Here, a ferrule with an optical fiber is inserted inside the optical receptacle (12), and the end of the ferrule is configured to be in contact with the ferrule end on the optical connector side, and the opposite end is also provided. Similarly, it is configured to be in contact with the optical waveguide. In addition, to fix the optical receptacle (12) to the housing (1) at the optimal position, a fixing ring (17) with an inner diameter of 6.01mm, an outer diameter of 9mm, and a thickness of 2.5mm as shown in Fig. 3 is used.
Was prepared.

【0038】(受光素子(13)および発光素子(14))受光
素子(13)は、キャンタイプのフォトダイオード(PD:
浜松ホトニクス(株)製 S5972)を用いた。また、発光
素子(14)は、波長0.78μmのキャンタイプのレーザーダ
イオード(LD:ローム(株)製RLD78PIT、動作温度定
格値 -10℃〜 +80℃)を用い、集光用レンズ(15)として
の 2mmφのロッドレンズ(15)(0.78μm用、 0.25 ピッ
チ)とともに、支持体(16)(ステンレス製シース:外形
6mmφ、長さ 8.3mm)内部に納めて用いた。
(Light receiving element (13) and light emitting element (14)) The light receiving element (13) is a can type photodiode (PD:
Hamamatsu Photonics S5972) was used. The light-emitting element (14) uses a can-type laser diode (LD: RLD78PIT manufactured by ROHM Co., Ltd., operating temperature rating: -10 ° C to + 80 ° C) with a wavelength of 0.78 µm, and a condensing lens (15). 2mmφ rod lens (15) (for 0.78μm, 0.25 pitch) and support (16) (stainless steel sheath:
6mmφ, length 8.3mm)

【0039】なお、この例では、前記の4分岐光導波路
と4個の発光素子を用いた光送受信用部品の説明におけ
るような発光素子部品の集光点の位置調整は行わず、支
持体に集光用レンズと発光素子をはめ込み接着固定する
だけの操作にて作製した。本例においても、集光点の位
置調整を行っても何ら差し障りはなく、むしろ、後の調
心の工程がより円滑に行える点から好ましいが、発光素
子の数が1個の光送受信用部品では、集光点の位置調整
をしなくても製造可能である。
In this example, the position adjustment of the light-condensing point of the light-emitting element component as described in the description of the optical transmission / reception component using the four-branch optical waveguide and four light-emitting elements is not performed. The light-emitting device was manufactured by simply inserting the light-collecting lens and the light-emitting element and fixing them by bonding. Also in this example, there is no problem even if the position of the light-condensing point is adjusted, but rather it is preferable in that the subsequent alignment process can be performed more smoothly. Then, it is possible to manufacture without adjusting the position of the focal point.

【0040】(光送受信用部品の組立)まず、上記PD
(13)、およびLD(14)と一体となった支持体(16)を、図
1のように筐体の貫通孔部分に接着固定した。次に、光
レセプタクル(12)に予め固定用リング(17)を通してお
き、その光導波路(11)に接続する側を外側から筐体(1)
の貫通孔に挿入し、筐体内部に配置した光導波路(11)と
対向させ、これらを光学ステージ上に保持した。その
後、波長0.85μmのLED光源からの光を50/125GI光フ
ァイバを用いて光レセプタクル(12)に接続し、筐体(1)
に固定されたPD(13)をモニターとして光レセプタクル
(12)と光導波路(11)の相対位置を調整し、光強度が最も
大きくなる位置で両者を接着固定した。
(Assembly of Optical Transmitting / Receiving Parts) First, the PD
(13) and the support (16) integrated with the LD (14) were bonded and fixed to the through hole of the housing as shown in FIG. Next, the fixing ring (17) is passed through the optical receptacle (12) in advance, and the side to be connected to the optical waveguide (11) is placed on the housing (1) from the outside.
The optical waveguide (11) disposed inside the housing was opposed to the optical waveguide (11), and these were held on the optical stage. Then, the light from the LED light source with a wavelength of 0.85 μm is connected to the optical receptacle (12) using a 50 / 125GI optical fiber, and the housing (1)
Optical receptacle with PD (13) fixed to the monitor
The relative positions of (12) and the optical waveguide (11) were adjusted, and the two were bonded and fixed at the position where the light intensity became maximum.

【0041】次に、光レセプタクル(12)に接続したLE
D光源からの光ファイバを外し、光パワーメーターから
導いた光ファイバにつなぎ替えた。この状態でLD(14)
を発光させ、光レセプタクル(12)と一体になった光導波
路(11)とLD(14)との相対位置を調整して、光強度が最
も大きくなる位置で、固定用リング(17)を介して筐体
(1) と光レセプタクル(12)を接着固定した。その後、筐
体上部にステンレス製の蓋(2) を接着し、光送受信用部
品(以下「本部品」と記す)とした。
Next, the LE connected to the optical receptacle (12)
The optical fiber from the D light source was removed and replaced with an optical fiber led from an optical power meter. In this state LD (14)
To adjust the relative position between the optical waveguide (11) integrated with the optical receptacle (12) and the LD (14), and through the fixing ring (17) at the position where the light intensity becomes maximum. Housing
(1) and the optical receptacle (12) were bonded and fixed. Thereafter, a stainless steel lid (2) was adhered to the upper part of the housing to form an optical transmission / reception component (hereinafter referred to as "the component").

【0042】また、比較として、上記と同一の光導波
路、受光素子、および発光素子を用い、受光素子、およ
び発光素子を最適位置に位置合わせしつつ直接光導波路
に接着固定し、各素子の端子を外部に導出して、筐体内
を樹脂封止した以外は概略上記作製例と同様にして、筐
体/光レセプタクル/光導波路/受発光素子が連続的に
接着された光送受信用部品(以下「比較部品」と記す)
を作製した。
For comparison, the same optical waveguide, light receiving element, and light emitting element as described above were used, and the light receiving element and the light emitting element were bonded and fixed directly to the optical waveguide while being positioned at the optimum positions. And a light transmitting / receiving component (hereinafter, referred to as a “light transmitting / receiving element”) in which a housing, an optical receptacle, an optical waveguide, and a light emitting / receiving element are continuously bonded, except that the housing is sealed with a resin. "Comparative parts")
Was prepared.

【0043】(光送受信用部品の評価)上記に従って、
本部品および比較部品をそれぞれ20台ずつ作製した。そ
の後、LD、およびPDの端子を制御用電子回路基板に
半田付けして一体化し、これら光送受信用部品を動作さ
せながら、 -10℃〜 +50℃で 100サイクルのヒートサイ
クルテスト(3時間/サイクル)を行った。その結果、
本部品は、すべて最後まで良好な動作を示したのに対し
て、比較部品は、20台中2台が異常を示した。不良とな
った比較部品2台を分解して調べた結果、いずれも光導
波路とレンズ収納シース(発光素子と結合)の接着面が
剥離したためであることが判った。
(Evaluation of Optical Transmitting and Receiving Components)
20 parts each of this part and comparative parts were produced. Thereafter, the terminals of the LD and PD are soldered and integrated with the control electronic circuit board, and a heat cycle test of 100 cycles at -10 ° C to + 50 ° C (3 hours / Cycle). as a result,
All of the parts showed good operation to the end, while two of the comparative parts showed abnormalities. As a result of disassembling and examining the two defective comparative parts, it was found that both were due to peeling of the adhesive surface between the optical waveguide and the lens housing sheath (coupled to the light emitting element).

【0044】次に、同様に作製した本部品および比較部
品それぞれ20台ずつを、温度60℃、湿度90%の環境下に
1,000時間保持した後、制御電子回路基板に接続して動
作試験を行ったところ、いずれの部品も異常は見られな
かった。
Next, 20 parts each of the same parts and comparative parts manufactured in the same manner were placed in an environment at a temperature of 60 ° C. and a humidity of 90%.
After holding for 1,000 hours, an operation test was performed by connecting to the control electronic circuit board, and no abnormality was found in any of the components.

【0045】これらのことから、本発明の光送受信用部
品は、実装した状態にて充分な信頼性を確保できること
が判る。
From these facts, it is understood that the optical transmission / reception component of the present invention can secure sufficient reliability in a mounted state.

【0046】実施例2:50μmの光ファイバ用4分岐の
光導波路とそれぞれ波長の異なる発光素子4個を用いた
光送受信用部品(送信専用)の作製。 (筐体(1a)の作製)実施例1の筐体作製と概略同様に、
図4に示されるステンレス製筐体(1a)を作製した。 外
形は、左右長31mm、上下幅39mm、高さ 9mmであり、右側
壁には発光素子部品固定用に4箇所の孔を形成してな
る。これらの孔のピッチは、分岐導波路先端部の間隔と
合わせてすべて 6mmとし、各発光素子部品の支持体先端
が直線状に並ぶように配置した。
Example 2: Production of an optical transmission / reception component (transmission only) using a 4-branch optical waveguide for a 50 μm optical fiber and four light emitting elements having different wavelengths. (Preparation of the housing (1a))
A stainless steel case (1a) shown in FIG. 4 was produced. The outer shape is 31 mm left and right, 39 mm vertically, and 9 mm high. Four holes are formed on the right side wall for fixing light emitting element components. The pitch of these holes was set to 6 mm in accordance with the interval between the tip portions of the branch waveguides, and the holes were arranged so that the tips of the supports of the light emitting element components were linearly arranged.

【0047】(4分岐光導波路(11a) の作製)光導波路
の寸法は、フィルム厚み40μm、伝搬方向の長さ22mm、
各分岐導波路先端における間隔 6mmかつ光路はすべて互
いに平行とし、導波路端部における導波路幅は1本側、
分岐側ともに40μmとして、実施例1と同様にして作製
した。
(Fabrication of 4-branch optical waveguide (11a)) The dimensions of the optical waveguide are as follows: the film thickness is 40 μm, the length in the propagation direction is 22 mm,
The distance at the end of each branch waveguide is 6 mm and the optical paths are all parallel to each other.
It was produced in the same manner as in Example 1 except that the branch side was 40 μm.

【0048】光レセプタクル(12)、およびその固定用リ
ング(17)は、実施例1と同一のものを用いた。
The same optical receptacle (12) and its fixing ring (17) as in Example 1 were used.

【0049】(発光素子部品)発光素子(14a,14b,14c,1
4d) は、次の4種類のキャンタイプのLDを用いた。 14a : 波長0.78μm、ローム(株)製RLD78PIT、動作温
度定格値 -10℃〜 +80℃ 14b : 波長0.85μm、ローム(株)製RLD85PC 、動作温
度定格値 -10℃〜 +80℃ 14c : 波長1.31μm、三菱電機(株)製ML701B8R、動作
温度定格値 -40℃〜 +85℃ 14d :波長1.55μm、三菱電機(株)製ML901B6R、動作
温度定格値 -40℃〜 +85℃ また、集光用レンズ(15a,15b,15c,15d) としては、 2mm
φのロッドレンズ(各波長において0.25ピッチ)、支持
体(16a,16b,16c,16d) としては、ステンレス製シース
(外形 5.6mmφ、長さは a,bは 8.3mm、 c,dは 8.8mm)
を用いた。4種類の発光素子部品すべて、その集光点を
円筒形支持体の中心軸上、かつ支持体先端から前方 3.5
mmとするように、ロッドレンズ、および支持体の構造を
設計し、微調整は発光素子の取付位置調整により行うこ
ととした。
(Light emitting element parts) Light emitting elements (14a, 14b, 14c, 1
In 4d), the following four types of can-type LDs were used. 14a: Wavelength 0.78 μm, Rohm's RLD78PIT, operating temperature rated value -10 ° C to + 80 ° C 14b: Wavelength 0.85 μm, Rohm's RLD85PC, operating temperature rated value -10 ° C to + 80 ° C 14c: 1.31 μm wavelength, ML701B8R manufactured by Mitsubishi Electric Corporation, rated operating temperature -40 ° C to + 85 ° C 14d: 1.55 μm wavelength, ML901B6R manufactured by Mitsubishi Electric Corporation, rated operating temperature -40 ° C to + 85 ° C 2mm for focusing lens (15a, 15b, 15c, 15d)
φ rod lens (0.25 pitch at each wavelength), stainless steel sheath (outer diameter 5.6mmφ, length a, b 8.3mm, c, d 8.8mm) as support (16a, 16b, 16c, 16d) )
Was used. All four types of light emitting element parts are focused on the central axis of the cylindrical support and in front of the support tip.
The structure of the rod lens and the support was designed to be mm, and the fine adjustment was performed by adjusting the mounting position of the light emitting element.

【0050】(発光素子部品の作製)集光用レンズ(15
a) を内部に組み込み固定した支持体(16a) を光学ステ
ージ上に保持し、支持体(16a) の中心軸上かつ支持体先
端から前方 3.5mmの位置に50/125GI光ファイバ先端を集
光用レンズ(15a) と対向させて保持した。次いで、この
光ファイバの他端を光パワーメータに導いた状態で、L
D(14a) を支持体(16a)にはめ込み、これを発光させな
がら支持体中におけるLD(14a) の位置を調整し、光パ
ワーが最大になる位置で支持体(16a) に接着固定した。
他の3種類の発光素子部品も、同様にして作製した。
(Production of Light Emitting Element Parts) Condensing lens (15
The support (16a), which incorporates and fixes a) inside, is held on an optical stage, and the tip of the 50/125 GI optical fiber is focused on the center axis of the support (16a) and 3.5 mm forward from the tip of the support. And held opposite to the lens for use (15a). Next, with the other end of the optical fiber being led to an optical power meter, L
D (14a) was fitted into the support (16a), and while emitting light, the position of the LD (14a) in the support was adjusted, and the light was bonded and fixed to the support (16a) at the position where the optical power became maximum.
Other three types of light emitting element parts were produced in the same manner.

【0051】(光送受信用部品の組立) 発光素子部品の取り付け 作製した4個の発光素子部品をそれぞれ筐体(1a)の壁に
設けた孔中の所定位置に固定した。 光導波路と光レセプタクルとの位置合わせ 次に、実施例1と同様に、光レセプタクル(12)に予め固
定用リング(17)を通しておき、その光導波路(11a) に接
続する側を外側から筐体(1a)の貫通孔に挿入し、筐体内
部に配置した光導波路(11a) と対向させ、これらを光学
ステージ上に保持した。光レセプタクル(12)には50/125
GI光ファイバを接続し、光ファイバの他端を光パワーメ
ータに導いた。その後、LD(14b: 他のLDでもよい)
を発光させた状態で、光導波路(11a)と光レセプタクル
(12)の位置を調整して、LD(14b) からの光が分岐導波
路に入射し、光レセプタクル(12)を通じて光パワーメー
タで検知できるように概略の位置合わせを行った。次い
で、筐体(1a)と光導波路(11a) は固定したまま、光レセ
プタクル(12)の位置を微調整して、光強度が最大となる
位置で、光導波路(11a)と光レセプタクル(12)とを接着
固定した。
(Assembly of Light Transmitting / Receiving Parts) Attaching of Light Emitting Element Parts The four light emitting element parts thus produced were fixed at predetermined positions in holes formed in the wall of the housing (1a). Next, as in the first embodiment, a fixing ring (17) is passed through the optical receptacle (12) in advance, and the side connected to the optical waveguide (11a) is placed on the housing from outside. It was inserted into the through hole of (1a) and opposed to the optical waveguide (11a) arranged inside the housing, and these were held on the optical stage. 50/125 for optical receptacle (12)
A GI optical fiber was connected, and the other end of the optical fiber was led to an optical power meter. After that, LD (14b: other LD may be used)
The optical waveguide (11a) and the optical receptacle are
The position of (12) was adjusted, and rough alignment was performed so that light from the LD (14b) was incident on the branch waveguide and could be detected by the optical power meter through the optical receptacle (12). Next, while the housing (1a) and the optical waveguide (11a) are fixed, the position of the optical receptacle (12) is finely adjusted so that the optical waveguide (11a) and the optical receptacle (12 ) Was fixed by bonding.

【0052】光導波路と発光素子部品との位置合わせ 次に、両端の2個のLD(14a,14d)を発光させ、光レセ
プタクル(12)と一体となった光導波路(11a) の位置を調
整して、2個のLD(14a,14d)からの光強度が最大とな
る位置で、固定用リング(17)を介して筐体(1a)に光レセ
プタクル(12)を接着固定した。
Next, the position of the optical waveguide (11a) integrated with the optical receptacle (12) is adjusted by causing the two LDs (14a, 14d) at both ends to emit light. Then, the optical receptacle (12) was bonded and fixed to the housing (1a) via the fixing ring (17) at the position where the light intensity from the two LDs (14a, 14d) was maximized.

【0053】以上の工程により作製した光送受信用部品
について、位置合わせに用いなかった残りのLD(14b,
14c)と光導波路(11a) との位置関係が適正であるかどう
かを確認するため、LD(14b,14c)をそれぞれ発光さ
せ、光レセプタクル(12)から導いた光パワーメータによ
り光強度を測定したところ、いずれも充分な強度を示し
た。
With respect to the optical transmitting / receiving component manufactured by the above steps, the remaining LDs (14b, 14b,
In order to confirm whether the positional relationship between the optical waveguide (11c) and the optical waveguide (11a) is appropriate, the LDs (14b, 14c) are made to emit light, respectively, and the light intensity is measured by an optical power meter guided from the optical receptacle (12). As a result, all showed sufficient strength.

【0054】実施例3:実施例2の受信用の4分岐の光
導波路と受光素子4個を用いた光送受信用部品の作製。 (筐体(1b)の作製)実施例2の筐体と同一の外形で、概
略同様に、図5に示されるステンレス製筐体(1b)を作製
した。右側壁には受光素子部品固定用に4箇所の孔を形
成してなる。これらの孔のピッチは、分岐導波路先端部
の間隔と合わせてすべて 6mmとし、直線状に並ぶように
配置した。なお、4分岐の光導波路としては、実施例2
の光導波路(11a) と同一のものを用いた。また、光レセ
プタクル(12)、およびその固定用リング(17)も、実施例
1と同一のものを用いた。
Embodiment 3 Production of an optical transmission / reception component using the four-branch optical waveguide for reception and the four light receiving elements of the second embodiment. (Preparation of Case (1b)) A case (1b) made of stainless steel shown in FIG. Four holes are formed on the right side wall for fixing light receiving element components. The pitch of these holes was set to 6 mm in accordance with the interval between the tip portions of the branch waveguides, and the holes were arranged in a straight line. The four-branch optical waveguide is the same as that of the second embodiment.
The same optical waveguide (11a) was used. The same optical receptacle (12) and its fixing ring (17) as in Example 1 were used.

【0055】(受光素子部品)受光素子(13a,13b,13c,1
3d) は、次の2種類のキャンタイプのPDの受光面に、
それぞれ波長に対応したバンドパスフィルタ(18a:0.78
μm,18b:0.85μm,18c:1.31μm,18d:1.55μm) を
接着して用いた。 13a,13b :浜松ホトニクス(株)製 S5972、動作温度定
格値 -40℃〜+100℃ 13c,13d :浜松ホトニクス(株)製G3476-05、動作温度
定格値 -40℃〜 +85℃ また、各PDに嵌合する支持体(19a,19b,19c,19d) とし
て、外形 5.6φ、長さ3.5mmの円筒状のステンレス製シ
ースを用いた。PDの受光面は支持体の中心軸上、かつ
支持体内部で先端から 1.8mmの位置となるように設計し
た。
(Light receiving element parts) Light receiving elements (13a, 13b, 13c, 1
3d) is on the light receiving surface of the following two types of can-type PDs.
Bandpass filters (18a: 0.78
μm, 18b: 0.85 μm, 18c: 1.31 μm, 18d: 1.55 μm). 13a, 13b: S5972, manufactured by Hamamatsu Photonics Co., Ltd. Operating temperature rating: -40 ° C to + 100 ° C 13c, 13d: G3476-05, manufactured by Hamamatsu Photonics Co., Ltd. Operating temperature rated value: -40 ° C to + 85 ° C As a support (19a, 19b, 19c, 19d) fitted to each PD, a cylindrical stainless sheath having an outer diameter of 5.6φ and a length of 3.5mm was used. The light receiving surface of the PD was designed so as to be on the central axis of the support and 1.8 mm from the tip inside the support.

【0056】(受光素子部品の作製)バンドパスフィル
タ(18a) を接着したPD(13a) を支持体(19a) の所定の
位置に納め、接着固定し、受光素子部品とした。他の3
種類の受光素子部品も、同様にして作製した。
(Preparation of Light-receiving Element Component) The PD (13a) to which the band-pass filter (18a) was adhered was placed in a predetermined position on the support (19a), and was fixed by adhesion to form a light-receiving element component. The other three
Various types of light receiving element components were produced in the same manner.

【0057】(光送受信用部品の組立) 受光素子部品の取り付け 作製した4個の受光素子部品をそれぞれ筐体(1b)の壁に
設けた孔中の所定位置に固定した。 光導波路と光レセプタクルとの位置合わせ 次に、実施例1と同様に、光レセプタクル(12)に予め固
定用リング(17)を通しておき、その光導波路(11a) に接
続する側を外側から筐体(1b)の貫通孔に挿入し、筐体内
部に配置した光導波路(11a) と対向させ、これらを光学
ステージ上に保持した。その後、波長0.85μmのLED
光源からの光を50/125GI光ファイバを用いて光レセプタ
クル(12)に接続し、筐体(1b)に固定されたPD(13b) を
モニターとして(他のPDでもよい)光レセプタクル(1
2)と光導波路(11a) の相対位置を調整し、光強度が最大
となる位置で両者を接着固定した。
(Assembly of Optical Transmitting / Receiving Parts) Attaching of Light Receiving Element Parts The four light receiving element parts thus produced were fixed at predetermined positions in holes formed in the wall of the housing (1b). Next, as in the first embodiment, a fixing ring (17) is passed through the optical receptacle (12) in advance, and the side connected to the optical waveguide (11a) is placed on the housing from outside. It was inserted into the through hole of (1b) and opposed to the optical waveguide (11a) arranged inside the housing, and these were held on the optical stage. Then, 0.85μm wavelength LED
The light from the light source is connected to the optical receptacle (12) using a 50/125 GI optical fiber, and the PD (13b) fixed to the housing (1b) is used as a monitor (or another PD).
The relative position between 2) and the optical waveguide (11a) was adjusted, and the two were bonded and fixed at the position where the light intensity became maximum.

【0058】光導波路と受光素子部品との位置合わせ 次に、両端の2個のPD(13a,13d)をモニターとして、
光レセプタクル(12)と一体となった光導波路(11a) の位
置を調整して、2個のPD(13a,13d)が充分な光強度を
示す最適位置で、固定用リング(17)を介して筐体(1b)に
光レセプタクル(12)を接着固定した。
Next, the two PDs (13a, 13d) at both ends are used as monitors,
The position of the optical waveguide (11a) integrated with the optical receptacle (12) is adjusted, and the two PDs (13a, 13d) are positioned via the fixing ring (17) at the optimum position where sufficient light intensity is obtained. The optical receptacle (12) was bonded and fixed to the housing (1b).

【0059】以上の工程により作製した光送受信用部品
について、位置合わせに用いなかった残りのPD(13b,
13c)と光導波路(11a) との位置関係が適正であるかどう
かを確認するため、PD(13b,13c)をそれぞれモニター
として光強度を測定したところ、いずれも充分な強度を
示した。
With respect to the optical transmission / reception component manufactured by the above steps, the remaining PDs (13b, 13b,
The light intensity was measured using the PDs (13b, 13c) as monitors to confirm whether the positional relationship between the optical waveguide (13c) and the optical waveguide (11a) was proper.

【0060】実施例3は、受光素子部品として支持体に
一体化したものを用いたが、PDそのものを筐体に固定
する構造でも作製可能である。また、実施例2と実施例
3において、それぞれのLDまたはPDを保持する支持
体の外形をすべて同一にするなどして、これらの部品を
固定する筐体壁の孔をすべて同一形状とすると、1種類
の筐体を異なる素子構成の光送受信用部品に対して共通
に用いることも可能となり、製造コストを低減できる。
In the third embodiment, a light receiving element component integrated with a support is used. However, a structure in which the PD itself is fixed to a housing can also be manufactured. Further, in the second embodiment and the third embodiment, if all the holes of the housing wall for fixing these parts are made to have the same shape, for example, by making the outer shape of the support holding each LD or PD the same, One type of housing can be used in common for optical transmission / reception components having different element configurations, and manufacturing costs can be reduced.

【0061】[0061]

【発明の効果】以上、実施例および発明の詳細な説明か
ら明らかなように、本発明の光送受信用部品は、実装し
た状態にて、充分な信頼性を確保できる。また、受発光
素子の様々な構成にも対応可能であり、その部品点数も
少なく、組立も容易であり、実用的な光送受信用部品を
提供できる。
As described above, as is clear from the embodiments and the detailed description of the invention, the optical transmitting / receiving component of the present invention can secure sufficient reliability in a mounted state. Further, it is possible to cope with various configurations of the light receiving / emitting element, the number of the components is small, the assembling is easy, and a practical optical transmitting / receiving component can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光送受信用部品の一例を示す平面図FIG. 1 is a plan view showing an example of an optical transceiver component of the present invention.

【図2】本発明の光送受信用部品の一例を示す正面図FIG. 2 is a front view showing an example of the optical transceiver component of the present invention.

【図3】本発明の実施例で用いた個々の部品の構成を示
す斜視図
FIG. 3 is a perspective view showing a configuration of individual components used in the embodiment of the present invention.

【図4】本発明の光送受信用部品の一例を示す平面図FIG. 4 is a plan view showing an example of the optical transceiver component of the present invention.

【図5】本発明の光送受信用部品の一例を示す平面図FIG. 5 is a plan view showing an example of the optical transceiver component of the present invention.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 1:N分岐型(Nは2以上の整数)の光
導波路の分岐側導波路先端に空間を隔てて発光素子部品
または受光素子部品を設けてなり、かつ該光導波路の1
本側導波路に光入出力部材を接合固定してなる光送受信
用部品であって、該光導波路は筐体中に固定してなり、
該分岐側導波路先端の線上に位置する筐体壁に該発光素
子部品または該受光素子部品に嵌合する孔を設け、該孔
中に発光素子部品または受光素子部品を固定してなる光
送受信用部品。
1. A light-emitting element or a light-receiving element is provided at an end of a branch-side waveguide of a 1: N branch-type optical waveguide (N is an integer of 2 or more) with a space therebetween.
An optical transmission / reception component having an optical input / output member bonded and fixed to the main waveguide, wherein the optical waveguide is fixed in a housing,
An optical transmission / reception device in which a hole for fitting the light emitting element component or the light receiving element component is provided in a housing wall positioned on the line at the tip of the branch side waveguide, and the light emitting element component or the light receiving element component is fixed in the hole. Parts.
【請求項2】 該光導波路が、ソルベントキャスト法に
より製造された高分子光導波路である請求項1記載の光
送受信用部品。
2. The optical transmitting / receiving component according to claim 1, wherein the optical waveguide is a polymer optical waveguide manufactured by a solvent casting method.
【請求項3】 該光入出力部材が、光レセプタクルであ
り、該光レセプタクルを筐体に固着してなる請求項1記
載の光送受信用部品。
3. The optical transmitting / receiving component according to claim 1, wherein said optical input / output member is an optical receptacle, and said optical receptacle is fixed to a housing.
【請求項4】 該光入出力部材が、導波路との接続端部
を補強材で支持した光ファイバであり、該補強材を筐体
に固着してなる請求項1記載の光送受信用部品。
4. The optical transmission / reception component according to claim 1, wherein the optical input / output member is an optical fiber having a connection end with the waveguide supported by a reinforcing material, and the reinforcing material is fixed to a housing. .
【請求項5】 該発光素子部品が、発光素子と発光素子
前方(光導波路側)の集光用レンズとを支持体に一体化
してなるものである請求項1記載の光送受信用部品。
5. The optical transmission / reception component according to claim 1, wherein the light emitting element component is formed by integrating a light emitting element and a condensing lens in front of the light emitting element (on the optical waveguide side) with a support.
【請求項6】 該発光素子部品の集光点を該発光素子部
品の前方(光導波路側)の所定の位置に設定したもので
ある請求項5記載の光送受信用部品。
6. The optical transmission / reception component according to claim 5, wherein the light-collecting point of the light-emitting device component is set at a predetermined position in front of the light-emitting device component (on the side of the optical waveguide).
【請求項7】 該受光素子部品が、受光素子である請求
項1記載の光送受信用部品。
7. The optical transmitting / receiving component according to claim 1, wherein said light receiving element component is a light receiving element.
【請求項8】 該受光素子部品が、受光面を所定の位置
に設定して受光素子を支持体に一体化してなるものであ
る請求項1記載の光送受信用部品。
8. The optical transmission / reception component according to claim 1, wherein the light receiving element component has a light receiving surface set at a predetermined position and the light receiving element is integrated with a support.
【請求項9】 該分岐側導波路先端部における光軸が互
いに平行であり、該筐体壁の孔位置を、分岐側導波路先
端の間隔と等しい間隔で直線状に設定してなる請求項1
記載の光送受信用部品。
9. An optical axis at the tip of the branch-side waveguide is parallel to each other, and the positions of the holes in the housing wall are set linearly at an interval equal to the interval between the tips of the branch-side waveguides. 1
An optical transmission / reception component as described in the above.
【請求項10】 該光導波路の固定位置を調整して調心
してなる請求項1記載の光送受信用部品。
10. The optical transmission / reception component according to claim 1, wherein the optical waveguide is adjusted by adjusting a fixed position of the optical waveguide.
【請求項11】 該筐体壁に設けた発光素子部品および
受光素子部品を固定する孔がすべて同一形状である請求
項1記載の光送受信用部品。
11. The optical transmission / reception component according to claim 1, wherein all the holes provided on the housing wall for fixing the light emitting element component and the light receiving element component have the same shape.
JP9288374A 1996-12-10 1997-10-21 Component for optical transmission and reception Pending JPH10227951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9288374A JPH10227951A (en) 1996-12-10 1997-10-21 Component for optical transmission and reception

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-329779 1996-12-10
JP32977996 1996-12-10
JP9288374A JPH10227951A (en) 1996-12-10 1997-10-21 Component for optical transmission and reception

Publications (1)

Publication Number Publication Date
JPH10227951A true JPH10227951A (en) 1998-08-25

Family

ID=26557153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9288374A Pending JPH10227951A (en) 1996-12-10 1997-10-21 Component for optical transmission and reception

Country Status (1)

Country Link
JP (1) JPH10227951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481578B1 (en) * 2002-09-18 2005-04-08 포테나 옵틱스 코포레이션 Bidirectional optical transceiver module using a single optical fiber, and an optical waveguide used in the same
US7394952B1 (en) 2005-01-18 2008-07-01 Fuji Xerox Co., Ltd. Optical transmission device and optical module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481578B1 (en) * 2002-09-18 2005-04-08 포테나 옵틱스 코포레이션 Bidirectional optical transceiver module using a single optical fiber, and an optical waveguide used in the same
US7394952B1 (en) 2005-01-18 2008-07-01 Fuji Xerox Co., Ltd. Optical transmission device and optical module

Similar Documents

Publication Publication Date Title
US10598873B2 (en) Optical alignment of an optical subassembly to an optoelectronic device
JP4690963B2 (en) Manufacturing method of multi-channel optical module
US6217231B1 (en) Optical fiber assembly, optical module including an optical fiber assembly, and a manufacturing process thereof
US5661835A (en) Optical composite module and method of assembling the same
US6748143B2 (en) Optical transceiver module and optical communications system using the same
WO2013125283A1 (en) Lens component and optical module provided therewith
KR20170012339A (en) Vision-based passive alignment of an optical fiber subassembly to an optoelectronic device
US5011247A (en) Uptapered single-mode optical fiber package for optoelectronic components
WO2013099753A1 (en) Optical module
EP0848270A1 (en) Optical transmitter and receiver device
US5018820A (en) Method of optically coupling an uptapered single-mode optical fiber to optoelectronic components
US7850374B2 (en) Optical transmitter module with an integrated lens and method for making the module
JP3022724B2 (en) Optical semiconductor module
JP2015225980A (en) Optical communication module and manufacturing method thereof
JP2009053280A (en) Optical module
JPH10227951A (en) Component for optical transmission and reception
KR20130031471A (en) All passive aligned optical module and manufacturing method thereof
JP5910080B2 (en) Optical module
JP3022725B2 (en) Optical semiconductor module
JP3452120B2 (en) Optical module and optical transceiver
JP2007094145A (en) Optical module
JP2004341370A (en) Optical module
JP2021043469A (en) Optical coupling method
JPH0566333A (en) Parallel optical transmission module and its assembling method
JP2004317626A (en) Mount and optical transmitting module