JPH1022568A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH1022568A
JPH1022568A JP8174590A JP17459096A JPH1022568A JP H1022568 A JPH1022568 A JP H1022568A JP 8174590 A JP8174590 A JP 8174590A JP 17459096 A JP17459096 A JP 17459096A JP H1022568 A JPH1022568 A JP H1022568A
Authority
JP
Japan
Prior art keywords
semiconductor device
layer
substrate
crystal
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8174590A
Other languages
Japanese (ja)
Inventor
Toshiaki Tanaka
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8174590A priority Critical patent/JPH1022568A/en
Publication of JPH1022568A publication Critical patent/JPH1022568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing the defective density of a nuclear crystal layer constituting an electronic device and an optical device, which are composed of nitride materials, and to provide a semiconductor device which realizes the stripe structure of basic lateral mode control required by means of a semiconductor laser element, and which is applied as the light source of an applied field represented by an optical disk system and the like. SOLUTION: An insulating film is provided on the whole face on a silicon carbide (α-SiC) substrate 1, the surface is nitrided and a GaN buffer layer 4 and an n-type GaN optical waveguide layer 5 are crystal-grown. Then, insulating film masks 16 are formed and the layers from the layer 5 to the layer 12 are selectively grown. The insulating film 13 narrowing current is provided, a p-side electrode and an n-side electrode are evaporated and are split/opened. The face of a resonator is cut and the element is separated by a scriber. Thus, crystal defective density in the optical waveguide layer and the emission active layer in the semiconductor laser element is reduced compared with a conventional case and an inner light loss owing to a scattering loss can considerably be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光情報処理或は光
応用計測光源に適する半導体レーザ素子に適用して特に
有用な半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device which is particularly useful when applied to a semiconductor laser device suitable for optical information processing or an optical measurement light source.

【0002】[0002]

【従来の技術】従来技術では、サファイア基板上に窒化
物材料によるバッファ層を設けた後、窒化物半導体GaIn
N/GaN/AlGaN系からなる青紫色波長域の半導体レーザダ
イオードを作製した公知例1)ジャパン・ジャーナル・
アプライド・フィジックス1996年,35巻,L74-L76頁(Jpn
J. Appl. Phys., 35, L74-L76(1996).)が示されてい
る。
2. Description of the Related Art In the prior art, after a buffer layer made of a nitride material is provided on a sapphire substrate, a nitride semiconductor GaIn
Known example 1 of producing a semiconductor laser diode in the blue-violet wavelength region composed of N / GaN / AlGaN system 1) Japan Journal
Applied Physics 1996, 35, L74-L76 (Jpn
J. Appl. Phys., 35, L74-L76 (1996).).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、窒
化物材料を設ける基板材料を限定した基板上において、
半導体レーザダイオードを構成する窒化物系材料の発光
活性層や光導波層を結晶成長により設けており、他の基
板上に素子を設ける手法については言及していない。ま
た、従来技術よりも結晶欠陥密度を低減した結晶層を形
成する手法については言及していない。さらに、上記従
来技術は共振器面をドライ加工により作製しているが、
プロセスの容易な劈開法による共振器面の作製について
やレーザ素子の横モードを制御する導波路共振構造につ
いては説明していない。
In the above prior art, on a substrate on which a substrate material on which a nitride material is provided is limited,
A light emitting active layer and an optical waveguide layer of a nitride-based material constituting a semiconductor laser diode are provided by crystal growth, and there is no mention of a method of providing an element on another substrate. In addition, there is no mention of a method for forming a crystal layer with a reduced crystal defect density compared to the prior art. Further, in the above prior art, the resonator surface is manufactured by dry processing.
It does not describe the fabrication of a resonator surface by a cleavage method that is easy to process, or a waveguide resonant structure that controls the transverse mode of a laser device.

【0004】本発明の目的は、第1に窒化物材料を結晶
成長できる基板材料の選択範囲を拡大することである。
更に、絶縁膜上に低欠陥密度の結晶層を設ける手法を示
し、電界効果型トランジスタ等の電子デバイス、および
発光ダイオードやレーザ素子に代表された光デバイスを
良好に形成することにある。さらに、レーザ素子では基
本横モードを制御できるストライプ構造を達成し、窒化
物材料からなる半導体レーザの素子特性を向上させると
ともに、基本横モードの近視野像を必要とする光ディス
クシステム等に代表される応用分野へ光源として窒化物
半導体レーザの適用を可能とする。
It is an object of the present invention to firstly expand a selection range of a substrate material on which a crystal of a nitride material can be grown.
Another object of the present invention is to provide a method for providing a crystal layer with a low defect density on an insulating film, and to favorably form electronic devices such as field-effect transistors and optical devices typified by light-emitting diodes and laser devices. Furthermore, the laser device achieves a stripe structure capable of controlling the fundamental transverse mode, improves the device characteristics of a semiconductor laser made of a nitride material, and is represented by an optical disk system or the like that requires a near-field image of the fundamental transverse mode. Enables application of nitride semiconductor lasers as light sources to application fields.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の手段を以下に説明する。
Means for achieving the above object will be described below.

【0006】本発明では、基板上に設ける結晶層の成長
温度よりも高い融点を有した堅牢な基板であれば、任意
の基板を用いて主に窒化物半導体材料を従来技術よりも
低欠陥密度で結晶成長できることを考案した。基板材料
の構成は、Si基板に代表されるダイアモンド構造や、β
-SiC炭化珪素基板に代表される閃亜鉛鉱Zinc Blende構
造或いはα-Al2O3サファイアやα-SiC炭化珪素に代表さ
れる六方晶Wurtzite構造であってもよい。少なくともこ
れら基板上に絶縁膜を設けることを共通として、窒素原
料を用いて窒化処理することにより該絶縁膜の表面を改
質し、その上に窒化物材料のバッファ層やエピタキシャ
ル結晶層を設ける。本技術では、成長する結晶層の格子
定数が基板材料と大きく異なり格子定数差が大きい場合
であっても、絶縁膜上に結晶成長ができ、結晶欠陥密度
が小さいエピタキシャル結晶層を形成できることが特徴
である。
[0006] In the present invention, any substrate can be used as long as it is a robust substrate having a melting point higher than the growth temperature of the crystal layer provided on the substrate. It has been devised that crystal growth can be achieved. The composition of the substrate material is diamond structure represented by Si substrate, β
It may have a zinc blende Zinc Blende structure typified by a -SiC silicon carbide substrate or a hexagonal Wurtzite structure typified by α-Al 2 O 3 sapphire or α-SiC silicon carbide. In common with providing an insulating film on at least these substrates, the surface of the insulating film is modified by nitriding using a nitrogen source, and a buffer layer or an epitaxial crystal layer of a nitride material is provided thereon. According to the present technology, even when the lattice constant of the growing crystal layer is significantly different from the substrate material and the lattice constant difference is large, the crystal can be grown on the insulating film and an epitaxial crystal layer with a low crystal defect density can be formed. It is.

【0007】本発明によれば、上記基板上に絶縁膜とし
て酸化膜又は窒化膜或いは酸素と窒素への結合が混在し
た酸化窒化膜を設けておき、該絶縁膜の表面を窒化処理
することにより、窒化物半導体の核形成のために必要な
均一な表面を形成することができる。該絶縁膜の状態
は、単結晶又は多結晶或いは非晶質であってもよく、窒
化処理により表面から少なくとも数原子層オーダの深さ
まで窒化した状態としておく。この場合、均一な窒化し
た状態が好ましい。この窒化処理した均一な絶縁膜表面
には、窒化物材料のバッファ層成長時に均一な核を形成
でき、従来技術よりも低欠陥密度のエピタキシャル成長
層を設けることが可能であった。従来技術では、結晶層
に結晶欠陥密度が109〜1011/cm2の高い範囲であるのに
対し、本手法による絶縁膜上の結晶成長によると結晶欠
陥密度を104〜105/cm2の低いレベルに低減できた。これ
により、結晶層におけるキャリア移動度やキャリア再結
合発光強度が格段に増大した。
According to the present invention, an oxide film or a nitride film or an oxynitride film containing a mixture of oxygen and nitrogen is provided as an insulating film on the substrate, and the surface of the insulating film is nitrided. In addition, a uniform surface required for nucleation of a nitride semiconductor can be formed. The state of the insulating film may be single crystal, polycrystal, or amorphous, and is set to a state in which the surface is nitrided to a depth of at least several atomic layers from the surface by a nitriding treatment. In this case, a uniform nitrided state is preferable. A uniform nucleus can be formed on the surface of the uniform insulating film subjected to the nitriding treatment when the buffer layer of the nitride material is grown, so that an epitaxially grown layer having a lower defect density than in the prior art can be provided. In the prior art, the crystal defect density in the crystal layer is as high as 10 9 to 10 11 / cm 2 , whereas the crystal defect density is 10 4 to 10 5 / cm 2 could be reduced to a low level. Thereby, the carrier mobility and the carrier recombination luminescence intensity in the crystal layer were significantly increased.

【0008】さらに本発明では、選択成長技術を適用す
ることにより、絶縁膜マスク上において横方向に結晶層
をホモエピタキシャル成長が可能となる。本手法によ
り、結晶欠陥密度をさらに低減した導波路構造を形成で
きる。本技術では、絶縁膜マスク上ではホモエピタキシ
ャル成長し、結晶欠陥密度の小さい単結晶層を形成で
き、欠陥密度を上記よりさらに2〜3桁低い102〜103/c
m2範囲に減少させることが可能であった。これは、特に
半導体レーザの低損失導波路を形成する上で、レーザ光
の伝搬時における散乱損失を低減できるので重要とな
る。つまり、窒化物半導体からなる青色半導体レーザ素
子の基本特性や信頼性に関する性能を格段に改善するこ
とにつながる。
Further, in the present invention, by applying the selective growth technique, a crystal layer can be homoepitaxially grown laterally on an insulating film mask. According to this method, a waveguide structure with further reduced crystal defect density can be formed. According to the present technology, a single crystal layer having a small crystal defect density can be formed on the insulating film mask by homoepitaxial growth, and the defect density can be further reduced by two to three orders of magnitude to 10 2 to 10 3 / c.
It was possible to reduce it to the m 2 range. This is particularly important when forming a low-loss waveguide of a semiconductor laser because scattering loss during propagation of laser light can be reduced. That is, the performance of the blue semiconductor laser device made of the nitride semiconductor is improved significantly with respect to the basic characteristics and reliability.

【0009】本発明の選択成長による導波路構造では、
上記低欠陥密度の導波路形成だけではなく、半導体レー
ザにおける基本横モードの伝搬が可能となる導波路形状
を作製できる。活性層横方向に実屈折率差を設けた埋め
込みBH(Buried Heterostructure)ストライプ構造や複
素屈折率差を設けたリッジストライプ構造を形成し、基
本横モードを高出力動作まで安定に確保した屈折率導波
型構造を設けた素子が実現可能である。
In the waveguide structure by selective growth of the present invention,
In addition to the formation of a waveguide having a low defect density, a waveguide shape that allows propagation of a fundamental transverse mode in a semiconductor laser can be manufactured. An embedded BH (Buried Heterostructure) stripe structure with a real refractive index difference in the lateral direction of the active layer and a ridge stripe structure with a complex refractive index difference are formed, and a refractive index guide that stably secures the basic transverse mode up to high output operation. An element having a corrugated structure can be realized.

【0010】また、用いる基板の特徴を活かすことによ
り、例えばSi基板上では従来技術で作製されるFETや
バイポーラトランジスタ等の電子デバイスと上記半導体
レーザ素子等の光デバイスを集積化させることが可能で
あり、SiC基板上ではさらに数百度で動作する高温用の
電子デバイスとも光デバイスを集積化させることも達成
できる。光素子としては発光ダイオード、半導体レーザ
等の発光素子、光スイッチや変調器の導波路素子、PI
Nホトダイオードやアバランシェホトダイオードの受光
素子等を考えることが出来る。
Further, by utilizing the characteristics of the substrate to be used, for example, on a Si substrate, it is possible to integrate an electronic device such as a FET or a bipolar transistor manufactured by a conventional technique and an optical device such as the semiconductor laser device. In addition, it is also possible to achieve integration of an optical device with a high-temperature electronic device operating at several hundred degrees on a SiC substrate. Light emitting devices such as light emitting diodes and semiconductor lasers, waveguide devices for optical switches and modulators, PIs
Light receiving elements such as N photodiodes and avalanche photodiodes can be considered.

【0011】以上により、本発明の手法では、半導体素
子を形成する結晶層、特に窒化物半導体を低欠陥密度で
結晶成長できるとともに、電子デバイスや半導体レーザ
素子等の光デバイスの性能を向上させることが可能であ
った。
As described above, according to the method of the present invention, it is possible to grow a crystal layer forming a semiconductor element, particularly a nitride semiconductor, with a low defect density and to improve the performance of an optical device such as an electronic device or a semiconductor laser device. Was possible.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)本発明の一実施例を図1により説明する。
図1において、面方位(0001)C面のn型炭化珪素(α-Si
C)基板1上に、まず電子サイクロトロン共鳴プラズマ装
置を用いて絶縁膜としてAl2O3層2を一面に設ける。次
に、窒素原料であるアンモニア(NH3)を用いて層2
の表面を窒化処理する。有機金属気組成長装置を用い
て、アンモニア(NH3)雰囲気中で温度1030℃ま
で昇温し数分間アンモニア(NH3)にさらすことによ
って絶縁膜Al2O3層2の表面層にアルミニウムと窒素が
結合したAlNを含む表面窒化層3を形成させる。有機金
属気相成長装置内で連続して、低温GaNバッファ層4,
n型GaN層5まで有機金属気相成長法により結晶成長す
る。次に、絶縁膜6を設けて所定形状に加工する。この
絶縁膜をマスクとしてSiイオン打ち込みを行うことによ
り、高濃度のn+型GaN層7を形成する。この後、リソグ
ラフィーと電子ビーム蒸着により、Ti/Al電極8を形成
する。図1中の真中のTi/Al電極を電界効果型トランジ
スタ(FET)のドレイン電極とし、両端のTi/Al電極を
ソース電極とする。また、リソグラフィーを利用して、
多結晶Siゲート9を設ける。このようにして、図1の断
面に示した、六方晶Wurtzite構造窒化物半導体からなる
金属酸化膜(MOS)FETを作製した。
(Embodiment 1) An embodiment of the present invention will be described with reference to FIG.
In FIG. 1, n-type silicon carbide (α-Si
C) An Al 2 O 3 layer 2 is provided on an entire surface of a substrate 1 as an insulating film using an electron cyclotron resonance plasma apparatus. Next, layer 2 was formed using ammonia (NH 3 ) as a nitrogen raw material.
Is subjected to a nitriding treatment. By using an organometallic vapor composition lengthening apparatus, the temperature is raised to 1030 ° C. in an ammonia (NH 3 ) atmosphere and exposed to ammonia (NH 3 ) for several minutes, whereby aluminum is added to the surface layer of the insulating film Al 2 O 3 layer 2. A surface nitride layer 3 containing AlN to which nitrogen is bonded is formed. Continuously in the metal organic chemical vapor deposition apparatus, the low-temperature GaN buffer layer 4,
Crystal growth is performed up to the n-type GaN layer 5 by metal organic chemical vapor deposition. Next, the insulating film 6 is provided and processed into a predetermined shape. By performing Si ion implantation using this insulating film as a mask, a high-concentration n + -type GaN layer 7 is formed. Thereafter, a Ti / Al electrode 8 is formed by lithography and electron beam evaporation. The middle Ti / Al electrode in FIG. 1 is a drain electrode of a field effect transistor (FET), and the Ti / Al electrodes at both ends are source electrodes. Also, using lithography,
A polycrystalline Si gate 9 is provided. Thus, a metal oxide film (MOS) FET made of a hexagonal Wurtzite structure nitride semiconductor shown in the cross section of FIG. 1 was produced.

【0013】本実施例では、従来の結晶成長技術では達
成できなかった、低欠陥密度の窒化物半導体結晶層を絶
縁膜マスク上に形成できた。従来の技術では、結晶欠陥
密度が109〜1011/cm2範囲のレベルであるのに対し、本
手法による絶縁膜上の結晶成長では、結晶欠陥密度を10
4〜105/cm2のレベルに低減できた。このため、従来の結
晶成長技術で作製した結晶層に比べて、良好なドレイン
電流飽和特性と低い漏れ電流を実現できた。ゲート電圧
が−6Vでドレインソース間電圧が3Vの時に、閾値以
下の漏れ電流は室温で1μA以下であり、400℃にお
いても100μA以下の低い値を示した。ドレインソー
ス間電圧3Vとしたとき、5μmゲート長素子の相互コ
ンダクタンス最大値は、室温で0.6mS/mm,400℃に
おいて1.8mS/mmの高い値を得た。本素子は、650℃
の高温までトランジスタ動作を確認できた。
In this embodiment, a nitride semiconductor crystal layer having a low defect density, which cannot be achieved by the conventional crystal growth technique, can be formed on the insulating film mask. In the conventional technology, the crystal defect density is in the range of 10 9 to 10 11 / cm 2 , whereas in the crystal growth on the insulating film by this method, the crystal defect density is 10
It could be reduced to the level of 4 to 10 5 / cm 2 . Therefore, better drain current saturation characteristics and lower leakage current can be realized as compared with a crystal layer formed by a conventional crystal growth technique. When the gate voltage was −6 V and the drain-source voltage was 3 V, the leakage current below the threshold was 1 μA or less at room temperature, and showed a low value of 100 μA or less even at 400 ° C. When the voltage between the drain and the source is 3 V, the maximum value of the transconductance of the element having a gate length of 5 μm is as high as 0.6 mS / mm at room temperature and 1.8 mS / mm at 400 ° C. This element is 650 ° C
The transistor operation was confirmed up to the high temperature.

【0014】(実施例2)本発明の他実施例を図2によ
り説明する。実施例1と同様に層4まで形成した後、光
導波層としてn型GaN層5を設け、引き続いてAlGaN光分
離閉じ込め層とGaN量子障壁層及びGaInN圧縮歪量子井戸
層からなる圧縮歪多重量子井戸活性層10,p型GaN光
導波層11,p型GaInNコンタクト層12を順次有機金
属気相成長法により結晶成長する。次に、ホトリソグラ
フィーとエッチング加工により、図2に示すように、層
5に到るまで結晶層を除去する。この後、絶縁膜13を
設けて、ホトリソグラフィーと電子ビーム蒸着により、
Ni/Au電極14とTi/Al電極15を形成する。スクライブ
によって素子を切り出すことにより、図2に示す六方晶
Wurtzite構造窒化物半導体からなる発光素子断面を得
た。
(Embodiment 2) Another embodiment of the present invention will be described with reference to FIG. After forming up to the layer 4 in the same manner as in Example 1, an n-type GaN layer 5 is provided as an optical waveguide layer. The well active layer 10, the p-type GaN optical waveguide layer 11, and the p-type GaInN contact layer 12 are sequentially crystal-grown by metal organic chemical vapor deposition. Next, as shown in FIG. 2, the crystal layer is removed by photolithography and etching until the layer 5 is reached. Thereafter, an insulating film 13 is provided, and photolithography and electron beam evaporation are performed.
A Ni / Au electrode 14 and a Ti / Al electrode 15 are formed. By cutting out the element by scribing, the hexagonal crystal shown in FIG.
A light-emitting element cross section made of a Wurtzite nitride semiconductor was obtained.

【0015】本実施例によると、実施例1と同様に低結
晶欠陥密度の窒化物半導体結晶層を得ることができたた
め、光素子としても従来にない発光強度や特性を達成
し、高出力高効率で動作する青色発光ダイオードを実現
できた。青色波長領域では40mW以上の光出力と10
カンデラ以上の輝度を達成し、緑色波長域では少なくと
も25mWの光出力と20カンデラ以上の輝度を得た。
本素子の量子効率は、従来素子の2倍以上である10%
を達成できた。色純度も従来に比べて改善でき、発光ス
ペクトル半値幅を従来の半分以下である10nm以下に
することができた。また、本素子の室温における発光波
長は、発光活性層の禁制帯幅を設計して材料の組成や量
子井戸層膜厚により、青紫色から赤色の波長域まで変化
させることが可能であり、各波長を有する発光ダイオー
ド素子を作製できた。
According to the present embodiment, a nitride semiconductor crystal layer having a low crystal defect density can be obtained in the same manner as in the first embodiment. A blue light emitting diode that operates with high efficiency was realized. In the blue wavelength region, light output of 40 mW or more and 10
Luminance of at least candela was achieved, and light output of at least 25 mW and luminance of at least 20 candela were obtained in the green wavelength region.
The quantum efficiency of the device is 10%, which is more than twice that of the conventional device.
Was achieved. The color purity could be improved as compared with the conventional case, and the half width of the emission spectrum could be reduced to 10 nm or less, which is half or less of the conventional case. The emission wavelength of the device at room temperature can be changed from the blue-violet to red wavelength range by designing the forbidden band width of the light-emitting active layer and changing the material composition and the quantum well layer thickness. A light emitting diode device having a wavelength was produced.

【0016】(実施例3)本発明の他実施例を図3によ
り説明する。実施例2と同様に層5まで結晶成長した
後、有機金属気相成長法により選択成長するための絶縁
膜マスク16を設ける。次に、n型GaN光導波層5,AlG
aN光分離閉じ込め層とGaN量子障壁層及びGaInN圧縮歪量
子井戸層からなる圧縮歪多重量子井戸活性層10,p型
GaN光導波層11,p型GaInNコンタクト層12を結晶成
長する。その後、実施例2と同様のプロセスを経て、図
3に示す素子縦断面を得た。
(Embodiment 3) Another embodiment of the present invention will be described with reference to FIG. After crystal growth up to the layer 5 as in the second embodiment, an insulating film mask 16 for selective growth by metal organic chemical vapor deposition is provided. Next, the n-type GaN optical waveguide layer 5, AlG
Compression strained multiple quantum well active layer 10, consisting of aN optical isolation confinement layer, GaN quantum barrier layer and GaInN compression strained quantum well layer, p-type
A GaN optical waveguide layer 11 and a p-type GaInN contact layer 12 are crystal-grown. Thereafter, through the same process as in Example 2, an element longitudinal section shown in FIG. 3 was obtained.

【0017】本実施例によると、発光活性層幅を1〜4
μmの範囲に設定することにより、実屈折率差で導波す
るBHストライプ屈折率導波型構造を設けることができ
た。本素子では、低閾値高効率で連続動作するレーザ特
性を達成し、閾値電流は従来の利得導波型構造の素子に
おける300〜600mAより1/3〜1/4に低減でき、1
00mA以下の閾値電流を得た。また、量子効率は従来
素子の5倍以上を達成し、50〜60%の内部量子効率
を得た。本素子は、室温において発振波長410〜43
0nmの範囲でレーザ動作したが、発光活性層の禁制帯
幅を設計して材料の組成や量子井戸層膜厚により、青紫
色から緑色の波長域まで変化させることが可能であり、
各発振波長を有した半導体レーザを作製できた。
According to this embodiment, the width of the light emitting active layer is 1 to 4
By setting it in the range of μm, it was possible to provide a BH stripe refractive index waveguide type structure that guides light at the actual refractive index difference. This device achieves a laser characteristic that operates continuously with low threshold and high efficiency, and the threshold current can be reduced to 1/3 to 1/4 from 300 to 600 mA in the conventional gain-guided device.
A threshold current of 00 mA or less was obtained. The quantum efficiency was at least five times that of the conventional device, and an internal quantum efficiency of 50 to 60% was obtained. This device has an oscillation wavelength of 410 to 43 at room temperature.
Although the laser operated in the range of 0 nm, it is possible to change the band gap of the light emitting active layer from the blue-violet to green wavelength range by designing the material band gap and the quantum well layer thickness,
Semiconductor lasers having each oscillation wavelength could be manufactured.

【0018】(実施例4)本発明の他実施例を図4によ
り説明する。実施例3と同様に層5まで結晶成長した
後、有機金属気相成長法により選択成長するための絶縁
膜マスク16を設ける。このとき、ストライプ中央部に
相当する領域に絶縁膜マスクを設け、開口部を図4に示
すように二つ形成する。その後、実施例3と同様のプロ
セスを経て、図4に示す素子断面を得た。
(Embodiment 4) Another embodiment of the present invention will be described with reference to FIG. After crystal growth up to the layer 5 as in the third embodiment, an insulating film mask 16 for selective growth by metal organic chemical vapor deposition is provided. At this time, an insulating film mask is provided in a region corresponding to the center of the stripe, and two openings are formed as shown in FIG. Thereafter, through the same process as in Example 3, an element cross section shown in FIG. 4 was obtained.

【0019】本実施例では、選択成長した光導波層5に
おいて、中央部の絶縁膜マスク上で横方向にホモエピタ
キシャル成長させることが可能であり、合体させること
により一つの結晶層を形成している。中央部の絶縁膜上
の領域における光導波層では、さらに低欠陥密度で形成
でき102〜103/cm2のレベルに低減できた。これにより、
低損失でレーザ光を導波できるようになり、内部光損失
を格段に低減できた。実施例3に比べて、少なくとも閾
値電流を1/2以下に低減可能であり、30〜50mAの
素子を得た。量子効率も実施例3の素子よりも高い値を
示し、70〜80%の内部量子効率を得た。本素子は、
室温において発振波長410〜430nmの範囲でレー
ザ動作したが、発光活性層の禁制帯幅を設計して材料の
組成や量子井戸層膜厚により、青紫色から緑色の波長域
まで変化させることが可能であり、各発振波長を有した
半導体レーザを作製できた。
In this embodiment, in the optical waveguide layer 5 that has been selectively grown, homoepitaxial growth can be performed in the lateral direction on the insulating film mask in the central portion, and one crystal layer is formed by being united. . In the optical waveguide layer in the region on the insulating film in the central part, it could be formed with a further lower defect density and could be reduced to a level of 10 2 to 10 3 / cm 2 . This allows
The laser light can be guided with a low loss, and the internal light loss can be significantly reduced. Compared with Example 3, at least the threshold current can be reduced to half or less, and an element of 30 to 50 mA was obtained. The quantum efficiency also showed a higher value than the device of Example 3, and an internal quantum efficiency of 70 to 80% was obtained. This element is
Laser operation was performed at room temperature within the oscillation wavelength range of 410 to 430 nm. However, the bandgap of the light emitting active layer can be designed to change the wavelength from blue-violet to green depending on the material composition and the quantum well layer thickness. Thus, a semiconductor laser having each oscillation wavelength could be manufactured.

【0020】(実施例5)本発明の他実施例を図5によ
り説明する。実施例4と同様に素子を作製するが、層1
2を設けた後に、リソグラフィーとエッチング加工によ
り中央に図5に示すリッジストライプを形成する。次
に、n型GaN電流狭窄層或いは誘電体絶縁膜17を選択
成長する。その後、実施例3や4と同様のプロセスを経
て、図5に示す素子断面を得た。
(Embodiment 5) Another embodiment of the present invention will be described with reference to FIG. An element is manufactured in the same manner as in Example 4, except that the layer 1
After the formation of 2, the ridge stripe shown in FIG. 5 is formed at the center by lithography and etching. Next, an n-type GaN current confinement layer or a dielectric insulating film 17 is selectively grown. Thereafter, through the same process as in Examples 3 and 4, the element cross section shown in FIG. 5 was obtained.

【0021】本実施例では、活性層横方向においてリッ
ジストライプを形成することにより、実施例4における
低欠陥密度の領域にのみ電流を有効に注入でき、漏れ電
流を極端に抑制できる。これにより、利得損失等によっ
て生ずる、内部光損失を小さくすることが可能であっ
た。実施例4に比べてさらに閾値電流を1/2以下に低減
可能であり、5〜10mAの素子を得た。量子効率も実
施例4の素子よりも高い値を示し、80〜90%の内部
量子効率を得た。本素子では、活性層横方向に複素屈折
率差を設けた屈折率導波構造を設けたストライプ構造に
より、実施例3や4よりも3〜5倍の光出力が得られる
高出力動作を達成できた。本素子は、室温において発振
波長410〜430nmの範囲でレーザ動作したが、発
光活性層の禁制帯幅を設計して材料の組成や量子井戸層
膜厚により、青紫色から緑色の波長域まで変化させるこ
とが可能であり、各発振波長を有した半導体レーザを作
製できた。
In this embodiment, by forming the ridge stripe in the lateral direction of the active layer, the current can be effectively injected only into the low defect density region in the embodiment 4, and the leakage current can be extremely suppressed. As a result, it was possible to reduce internal light loss caused by gain loss and the like. Compared with Example 4, the threshold current can be further reduced to 1/2 or less, and an element of 5 to 10 mA was obtained. The quantum efficiency also showed a higher value than the device of Example 4, and an internal quantum efficiency of 80 to 90% was obtained. In this element, a high-output operation in which an optical output three to five times higher than that in Examples 3 and 4 is achieved by the stripe structure in which the refractive index waveguide structure in which the complex refractive index difference is provided in the lateral direction of the active layer is achieved. did it. This device operated with laser at room temperature in the oscillation wavelength range of 410 to 430 nm. However, the bandgap of the light emitting active layer was designed to change from blue-violet to green depending on the material composition and quantum well layer thickness. It was possible to produce a semiconductor laser having each oscillation wavelength.

【0022】(実施例6)本発明の他実施例を説明す
る。実施例1から5までの素子を同様に作製するが、炭
化珪素基板1の代わりにSi基板を用いてその上に素子を
作製する。実施例1から5までの各々素子作製プロセス
を経て、同様の素子を作製することができた。
(Embodiment 6) Another embodiment of the present invention will be described. The devices of Examples 1 to 5 are manufactured in the same manner, except that a silicon substrate is used instead of the silicon carbide substrate 1, and the devices are manufactured thereon. Through the device fabrication processes of Examples 1 to 5, similar devices could be fabricated.

【0023】本実施例では、Diamond構造のSi基板上に
絶縁膜を介して、六方晶系Wurtzite構造の窒化物半導体
を結晶成長させることができた。本手法では、実施例1
から5までの素子と同様の特性を達成することが可能で
あった。また、Si基板上に設けた電子デバイスとの集積
化ができるので、半導体レーザや受光素子を駆動する回
路も集積化させて動作させることも可能であった。
In the present embodiment, a nitride semiconductor having a hexagonal Wurtzite structure could be grown on a diamond-structured Si substrate via an insulating film. In this method, the first embodiment
To 5 were able to achieve the same characteristics. In addition, since integration with an electronic device provided on a Si substrate can be performed, a circuit for driving a semiconductor laser or a light receiving element can be integrated and operated.

【0024】(実施例7)本発明の他実施例を説明す
る。実施例1から5までの素子を同様に作製するが、炭
化珪素基板1の代わりにサファイア(α-Al2O3)基板を用
いてその上に素子を作製する。実施例1から5までの各
々素子作製プロセスを経て、同様の素子を作製すること
ができた。
(Embodiment 7) Another embodiment of the present invention will be described. The devices of Examples 1 to 5 are manufactured in the same manner, except that the sapphire (α-Al 2 O 3 ) substrate is used instead of the silicon carbide substrate 1 to manufacture the devices thereon. Through the device fabrication processes of Examples 1 to 5, similar devices could be fabricated.

【0025】本実施例によると、従来より用いられてい
るサファイア(α-Al2O3)基板上に比べ、結晶層の欠陥密
度を従来技術の4桁から5桁低減でき、102〜103/cm2
囲にまで減少させた。これにより、実施例1から5まで
の素子と同様の特性を達成可能であった。従来技術に比
べて、実施例1から5に示すように、電子デバイスでは
漏れ電流を低減できかつ相互コンダクタンスを高めるこ
とが可能であり、光デバイスでは発光ダイオードの量子
効率や光出力を増大し、半導体レーザにおいては閾値電
流を格段に低減し量子効率や光出力を飛躍的に増大でき
た。
According to the present embodiment, the defect density of the crystal layer can be reduced by 4 to 5 orders of the prior art, and 10 2 to 10 2 , as compared with the conventional sapphire (α-Al 2 O 3 ) substrate. Reduced to the 3 / cm 2 range. Thereby, the same characteristics as those of the devices of Examples 1 to 5 could be achieved. Compared to the prior art, as shown in Examples 1 to 5, in the electronic device, the leakage current can be reduced and the transconductance can be increased. In the optical device, the quantum efficiency and light output of the light emitting diode can be increased. In semiconductor lasers, the threshold current was significantly reduced, and quantum efficiency and light output were able to be dramatically increased.

【0026】[0026]

【発明の効果】本発明により、窒化物半導体の成長温度
よりも高い融点を有した任意の基板上に設けた絶縁膜の
上に、従来技術では達成できなかった低欠陥密度の窒化
物半導体結晶層を設けることを実現した。従来技術では
結晶層中の欠陥密度が109〜1011/cm2範囲であったのに
対して、本手法では絶縁膜上の結晶成長により欠陥密度
を104〜105/cm2の低いレベルに低減できた。これによ
り、電子デバイスでは、漏れ電流を低減しかつ相互コン
ダクタンスを高めることが可能となり、光デバイスで
は、量子効率や光出力を向上させることが可能となり、
素子の性能を改善させる効果が顕著であった。
According to the present invention, a nitride semiconductor crystal having a low defect density, which cannot be achieved by the prior art, is formed on an insulating film provided on an arbitrary substrate having a melting point higher than the growth temperature of the nitride semiconductor. The provision of layers was realized. In the prior art, the defect density in the crystal layer was in the range of 10 9 to 10 11 / cm 2 , whereas in the present method, the defect density was as low as 10 4 to 10 5 / cm 2 due to crystal growth on the insulating film. Reduced to the level. This makes it possible to reduce leakage current and increase transconductance in electronic devices, and to improve quantum efficiency and optical output in optical devices.
The effect of improving the performance of the device was remarkable.

【0027】本発明の選択成長技術では、半導体レーザ
素子の光導波層や発光活性層における結晶欠陥密度をさ
らに低減し、散乱損失による内部光損失を格段に減少さ
せることが可能であった。絶縁膜上の結晶成長と選択成
長による横方向ホモエピタキシャル成長によって、欠陥
密度を102〜103/cm2範囲のレベルに減少させることがで
きた。これにより、結晶欠陥に起因した利得損失によっ
て生ずる内部光損失を格段に下げることが可能となっ
た。同時に、選択成長用の絶縁膜マスクパターンによっ
て、活性層横方向に実屈折率差を設けて基本横モードを
安定に導波できるBHストライプ屈折率導波構造を作製
することができた。また、導波路の加工により複素屈折
率差を設けて基本横モードを安定に導波できるリッジス
トライプ屈折率導波構造の作製も可能であった。これら
の半導体レーザ素子構造では、閾値電流を従来技術によ
る素子よりも1/10から1/20にまで低減でき、かつ量子効
率や光出力を5倍以上に増大させることができた。閾値
電流や動作電流を実用上必要となる100mA以下に設
定することも可能であった。本発明の素子では、青紫色
から緑色波長域の短波長でレーザ発振する低閾値高効率
動作の窒化物半導体レーザを達成した。
According to the selective growth technique of the present invention, it was possible to further reduce the crystal defect density in the optical waveguide layer and the light emitting active layer of the semiconductor laser device, and to significantly reduce the internal light loss due to scattering loss. Defect density was reduced to a level in the range of 10 2 to 10 3 / cm 2 by lateral homoepitaxial growth by crystal growth and selective growth on the insulating film. As a result, internal light loss caused by gain loss due to crystal defects can be significantly reduced. At the same time, a BH stripe refractive index waveguide structure capable of stably guiding the fundamental transverse mode by providing a real refractive index difference in the lateral direction of the active layer by the insulating film mask pattern for selective growth was produced. Also, it was possible to produce a ridge stripe refractive index waveguide structure capable of stably guiding the fundamental transverse mode by providing a complex refractive index difference by processing the waveguide. In these semiconductor laser device structures, the threshold current can be reduced from 1/10 to 1/20 that of the device according to the prior art, and the quantum efficiency and the optical output can be increased more than 5 times. It was possible to set the threshold current and the operating current to 100 mA or less, which is required for practical use. In the device of the present invention, a nitride semiconductor laser having a low threshold value and a high efficiency operation that oscillates at a short wavelength in a blue-violet to green wavelength region has been achieved.

【0028】また本発明では、単体デバイスや集積デバ
イスの用途に応じて、基板材料を選択し使い分けができ
る。Si基板を用いると、従来のSi電子デバイスと窒化物
半導体光デバイスを集積化することが可能となる。ま
た、SiC基板を用いることにより、数百度の高温でも動
作する電子デバイスと光デバイスを集積化でき、単体デ
バイスでは劈開によって共振器面を作製した半導体レー
ザ素子を容易に実現できる。サファイア基板他の高融点
であるセラミックス基板も用途に応じて使用可能であ
り、高抵抗であることを利用して電子デバイス用に使用
したり或いは透明性を利用して光デバイス用に使用する
ことを可能にした。
Further, according to the present invention, a substrate material can be selected and used depending on the use of a single device or an integrated device. Using a Si substrate makes it possible to integrate a conventional Si electronic device and a nitride semiconductor optical device. In addition, by using the SiC substrate, an electronic device and an optical device that operate even at a high temperature of several hundred degrees can be integrated, and a semiconductor laser device in which a resonator surface is formed by cleavage in a single device can be easily realized. Sapphire substrates and other ceramic substrates with high melting points can also be used depending on the application, and can be used for electronic devices due to their high resistance or used for optical devices due to their transparency. Enabled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における素子構造縦断面図。FIG. 1 is a longitudinal sectional view of an element structure according to an embodiment of the present invention.

【図2】本発明の他実施例における素子構造縦断面図。FIG. 2 is a longitudinal sectional view of an element structure according to another embodiment of the present invention.

【図3】本発明の他実施例における素子構造縦断面図。FIG. 3 is a longitudinal sectional view of an element structure according to another embodiment of the present invention.

【図4】本発明の他実施例における素子構造縦断面図。FIG. 4 is a longitudinal sectional view of an element structure according to another embodiment of the present invention.

【図5】本発明の他実施例における素子構造縦断面図。FIG. 5 is a longitudinal sectional view of an element structure according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…(0001)C面α-SiC単結晶基板、2…絶縁膜、3…絶
縁膜表面窒化層、4…GaNバッファ層、5…n型GaN層、
6…絶縁膜マスク、7…Siイオン打ち込みn+型GaN層、
8…Ti/Al電極、9…多結晶Si、10…GaInN/GaN/AlGaN
多重量子井戸構造活性層、11…p型GaN光導波層、1
2…p型GaInNコンタクト層、13…絶縁膜、14…Ni/
Au電極、15…Ti/Al電極、16…選択成長用絶縁膜マ
スク、17…n型GaN電流狭窄層或いは誘電体絶縁膜。
DESCRIPTION OF SYMBOLS 1 ... (0001) C-plane alpha-SiC single crystal substrate, 2 ... insulating film, 3 ... insulating film surface nitride layer, 4 ... GaN buffer layer, 5 ... n-type GaN layer,
6 ... insulating film mask, 7 ... Si ion implanted n + type GaN layer,
8 Ti / Al electrode, 9 Polycrystalline Si, 10 GaInN / GaN / AlGaN
Multiple quantum well structure active layer, 11 ... p-type GaN optical waveguide layer, 1
2 ... p-type GaInN contact layer, 13 ... insulating film, 14 ... Ni /
Au electrode, 15: Ti / Al electrode, 16: insulating film mask for selective growth, 17: n-type GaN current confinement layer or dielectric insulating film.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】窒化処理がなされた絶縁物層を有する所定
基板とこの絶縁物層を覆うように設けられた窒素を含有
する半導体層とを有し、窒素を含有するこの半導体層に
少なくとも電子素子部あるいは光素子部のいずれか一者
が設けられていることを特徴とする半導体装置。
1. A semiconductor device comprising: a predetermined substrate having an insulating layer subjected to a nitriding treatment; and a semiconductor layer containing nitrogen provided so as to cover the insulating layer. A semiconductor device provided with one of an element part and an optical element part.
【請求項2】請求項1に記載の半導体装置において、窒
素を含有する前記半導体層には少なくとも電子素子部お
よび光素子部の両者が設けられていることを特徴とする
半導体装置。
2. The semiconductor device according to claim 1, wherein at least both an electronic element portion and an optical element portion are provided in said nitrogen-containing semiconductor layer.
【請求項3】請求項1及び請求項2のいずれかに記載の
半導体装置において、前記窒化処理がなされた絶縁物層
はアルミニウムおよびガリウムの群より選ばれた少なく
とも一者を構成元素として有していることを特徴とする
半導体装置。
3. The semiconductor device according to claim 1, wherein the nitrided insulating layer has at least one selected from the group consisting of aluminum and gallium as a constituent element. A semiconductor device characterized in that:
【請求項4】請求項1より請求項3のいずれかに記載の
半導体装置において、前記窒化処理がなされた絶縁物層
は少なくともその表面に窒化アルミニウムおよび窒化ガ
リウムの群から選ばれた少なくとも一者を有することを
特徴とする半導体装置。
4. The semiconductor device according to claim 1, wherein said nitrided insulating layer has at least one surface selected from the group consisting of aluminum nitride and gallium nitride. A semiconductor device comprising:
【請求項5】請求項1より請求項4のいずれかに記載の
半導体装置において、前記窒化処理がなされた絶縁物層
はアルミニウムおよびガリウムの群より選ばれた少なく
とも一者の酸化物あるいは窒化物のいずれかを少なくと
も有することを特徴とする半導体装置。
5. The semiconductor device according to claim 1, wherein said nitrided insulating layer is an oxide or nitride of at least one selected from the group consisting of aluminum and gallium. A semiconductor device having at least one of the following.
【請求項6】請求項4及び請求項5のいずれかに記載の
半導体装置において、基板上に設けてある該絶縁膜はア
ルミニウムまたはガリウムが少なくとも構成元素であ
り、絶縁膜がそれらの酸化物または窒化物または酸化窒
化物からなっており、AlOx, Al2O3,AlO1-xNx, AlN, GaO
x, Ga2O3, GaO1-xNx, GaN, AlGaOx, (AlGa)2O3, (AlGa)
O1-xNx, AlGaNの形からなるいずれかの材料により形成
してある絶縁膜上に設けてあることを特徴とする半導体
装置。
6. The semiconductor device according to claim 4, wherein said insulating film provided on said substrate comprises at least aluminum or gallium as a constituent element, and said insulating film comprises an oxide thereof or Made of nitride or oxynitride, AlOx, Al 2 O 3 , AlO 1 -xNx, AlN, GaO
x, Ga 2 O 3 , GaO 1 -xNx, GaN, AlGaOx, (AlGa) 2 O 3 , (AlGa)
A semiconductor device provided on an insulating film formed of any one of O 1 -xNx and AlGaN.
【請求項7】請求項1に記載の半導体装置において、該
絶縁膜を設ける基板は少なくともその上に結晶成長する
窒化物材料の成長温度よりも高い融点を有している材料
から構成されており、該高融点を有していることを満足
した材料からなる基板であることを特徴とする半導体装
置。
7. The semiconductor device according to claim 1, wherein the substrate on which the insulating film is provided is made of a material having a melting point higher than a growth temperature of at least a nitride material for crystal growth thereon. And a substrate made of a material satisfying the high melting point.
【請求項8】請求項7に記載の半導体装置において、該
基板の融点或いは軟化点が望ましくは窒化物材料の結晶
成長温度の少なくとも1.5倍以上を有している半導体
装置。
8. The semiconductor device according to claim 7, wherein the melting point or softening point of the substrate is desirably at least 1.5 times the crystal growth temperature of the nitride material.
【請求項9】請求項1記載の半導体装置において、前記
基板はダイアモンド構造、閃亜鉛鉱ジンク・ブレンド
(Zinc Blende)構造および六方晶ウルツ鉱型(Wurtzit
e)構造のいずれかの結晶構造を有することを特徴とす
る半導体装置。
9. The semiconductor device according to claim 1, wherein said substrate has a diamond structure, a zinc blende zinc blend (Zinc Blende) structure, and a hexagonal wurtzite type.
e) A semiconductor device having any one of the following crystal structures.
【請求項10】請求項9記載の半導体装置において、前
記基板はダイアモンド構造のSi基板、或いは閃亜鉛鉱Zi
nc Blende構造の炭化珪素(β-SiC)または窒化ガリウム
(β-GaN)または窒化アルミニウム(β-AlN)、或いは六方
晶Wurtzite構造である単結晶サファイア(α-Al2O3)また
は炭化珪素(α-SiC)または窒化ガリウム(α-GaN)または
窒化アルミニウム(α-AlN)のいずれか一者を少なくとも
含むことを特徴とする半導体装置。
10. The semiconductor device according to claim 9, wherein said substrate is a diamond-structured Si substrate or a zinc blende Zi.
nc Blende structure silicon carbide (β-SiC) or gallium nitride
(β-GaN) or aluminum nitride (β-AlN), or single crystal sapphire (α-Al 2 O 3 ) having a hexagonal Wurtzite structure or silicon carbide (α-SiC) or gallium nitride (α-GaN) or nitrided A semiconductor device comprising at least one of aluminum (α-AlN).
【請求項11】請求項9又は請求項10記載の半導体装
置において、前記基板が単結晶基板であり、特定の結晶
面において劈開性を有していることをを特徴とする半導
体装置。
11. The semiconductor device according to claim 9, wherein said substrate is a single crystal substrate, and has a cleavage property on a specific crystal plane.
【請求項12】請求項1から請求項8のいずれかに記載
の半導体装置において、前記光素子部は劈開によって共
振器面を形成した半導体レーザ素子を含むことを特徴と
する半導体装置。
12. The semiconductor device according to claim 1, wherein said optical element portion includes a semiconductor laser element having a resonator surface formed by cleavage.
【請求項13】請求項1請求項2及び請求項11のいず
れかに記載の半導体装置において、該基板上に設けた結
晶層の上に、絶縁膜マスクパターンを設けて選択成長を
適用することにより、光導波路を形成し、該光導波路に
は発光活性層と光導波層からなる異種二重接合構造を構
成してある半導体レーザ素子であることを特徴とする半
導体装置。
13. The semiconductor device according to claim 1, wherein an insulating film mask pattern is provided on a crystal layer provided on said substrate, and selective growth is applied. A semiconductor laser device having a heterojunction structure comprising a light emitting active layer and an optical waveguide layer formed in the optical waveguide.
【請求項14】請求項13に記載の半導体装置におい
て、該半導体レーザ素子の基本横モードのみを安定に導
波できる屈折率導波構造として、活性層横方向に実屈折
率差を設けた埋め込みBH(Buried Heterostructure)ス
トライプ構造を設けてあることを特徴とする半導体レー
ザ装置。
14. The semiconductor device according to claim 13, wherein said semiconductor laser device has a refractive index waveguide structure capable of stably guiding only a fundamental transverse mode, and has an embedded real refractive index difference in a lateral direction of the active layer. A semiconductor laser device having a BH (Buried Heterostructure) stripe structure.
【請求項15】請求項13に記載の半導体装置におい
て、該半導体レーザ素子の基本横モードのみを安定に導
波できる屈折率導波構造として、活性層横方向に複素屈
折率差を設けて形成できるリッジストライプ構造を有す
ることを特徴とする半導体レーザ装置。
15. The semiconductor device according to claim 13, wherein a refractive index waveguide structure capable of stably guiding only the fundamental transverse mode of the semiconductor laser element is formed by providing a complex refractive index difference in a lateral direction of the active layer. A semiconductor laser device having a ridge stripe structure that can be used.
【請求項16】請求項12から請求項15のいずれかに
記載の半導体装置において、該半導体レーザ素子の発光
活性層は量子井戸層により構成してある単一或は多重量
子井戸構造であることを特徴とする半導体装置。
16. The semiconductor device according to claim 12, wherein said light emitting active layer of said semiconductor laser device has a single or multiple quantum well structure comprising a quantum well layer. A semiconductor device characterized by the above-mentioned.
【請求項17】請求項16に記載の半導体装置におい
て、該半導体レーザ素子の発光活性層は格子歪を導入し
た歪量子井戸層により構成してある単一或は多重歪量子
井戸構造であることを特徴とする半導体装置。
17. The semiconductor device according to claim 16, wherein the light emitting active layer of the semiconductor laser device has a single or multiple strained quantum well structure constituted by a strained quantum well layer in which lattice strain is introduced. A semiconductor device characterized by the above-mentioned.
【請求項18】請求項1から請求項17のいずれかに記
載の半導体装置において、素子を構成する結晶層は窒化
物半導体AlGaInN材料からなることを特徴とする半導体
装置。
18. The semiconductor device according to claim 1, wherein the crystal layer forming the element is made of a nitride semiconductor AlGaInN material.
JP8174590A 1996-07-04 1996-07-04 Semiconductor device Pending JPH1022568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8174590A JPH1022568A (en) 1996-07-04 1996-07-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8174590A JPH1022568A (en) 1996-07-04 1996-07-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH1022568A true JPH1022568A (en) 1998-01-23

Family

ID=15981233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8174590A Pending JPH1022568A (en) 1996-07-04 1996-07-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH1022568A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475882B1 (en) 1999-12-20 2002-11-05 Nitride Semiconductors Co., Ltd. Method for producing GaN-based compound semiconductor and GaN-based compound semiconductor device
US6610606B2 (en) 2001-03-27 2003-08-26 Shiro Sakai Method for manufacturing nitride compound based semiconductor device using an RIE to clean a GaN-based layer
US6861270B2 (en) 2000-06-01 2005-03-01 Shiro Sakai Method for manufacturing gallium nitride compound semiconductor and light emitting element
US6884647B2 (en) 2000-09-22 2005-04-26 Shiro Sakai Method for roughening semiconductor surface
US7005685B2 (en) 2002-02-28 2006-02-28 Shiro Sakai Gallium-nitride-based compound semiconductor device
US7015511B2 (en) 2001-06-29 2006-03-21 Nitride Semiconductors Co., Ltd. Gallium nitride-based light emitting device and method for manufacturing the same
CN1302519C (en) * 1998-11-26 2007-02-28 索尼株式会社 Manufacturing method of semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302519C (en) * 1998-11-26 2007-02-28 索尼株式会社 Manufacturing method of semiconductor device
US6475882B1 (en) 1999-12-20 2002-11-05 Nitride Semiconductors Co., Ltd. Method for producing GaN-based compound semiconductor and GaN-based compound semiconductor device
US6861270B2 (en) 2000-06-01 2005-03-01 Shiro Sakai Method for manufacturing gallium nitride compound semiconductor and light emitting element
US6884647B2 (en) 2000-09-22 2005-04-26 Shiro Sakai Method for roughening semiconductor surface
US6610606B2 (en) 2001-03-27 2003-08-26 Shiro Sakai Method for manufacturing nitride compound based semiconductor device using an RIE to clean a GaN-based layer
US7015511B2 (en) 2001-06-29 2006-03-21 Nitride Semiconductors Co., Ltd. Gallium nitride-based light emitting device and method for manufacturing the same
US7005685B2 (en) 2002-02-28 2006-02-28 Shiro Sakai Gallium-nitride-based compound semiconductor device

Similar Documents

Publication Publication Date Title
JP3455512B2 (en) Substrate for epitaxial growth and method of manufacturing the same
JP3160914B2 (en) Gallium nitride based compound semiconductor laser diode
US7718450B2 (en) Method for manufacturing nitride semiconductor device
US8030682B2 (en) Zinc-blende nitride semiconductor free-standing substrate, method for fabricating same, and light-emitting device employing same
JPH11204778A (en) Nitride-based iii-v compd. semiconductor device
JP2001230497A (en) Nitride semiconductor device
JP3449116B2 (en) Semiconductor device
JPH11135770A (en) Iii-v compd. semiconductor, manufacture thereof and semiconductor element
JPH11214800A (en) Semiconductor device and manufacture thereof
JP2004047764A (en) Method for manufacturing nitride semiconductor, semiconductor wafer and semiconductor device
JPH11243253A (en) Growth of nitride-based iii-v compound semiconductor, manufacture of semiconductor device, substrate for growth of nitride-based iii-v compound semiconductor, manufacture of the substrate for growth of nitride-based iii-v compound semiconductor
JPH08264894A (en) Semiconductor element and manufacture thereof
US6466597B1 (en) Semiconductor laser device
JPH09139543A (en) Semiconductor laser element
JPH09129974A (en) Semiconductor laser device
JPH1022568A (en) Semiconductor device
JP3447920B2 (en) Gallium nitride based compound semiconductor laser and method of manufacturing the same
JP4465890B2 (en) Manufacturing method of semiconductor device
JP2000243947A (en) Nitride compound semiconductor device
JP2003229413A (en) Dry etching method
JP2008135768A (en) Growing method of nitride-based group iii-v compound semiconductor layer and manufacturing method of semiconductor device
JPH09186363A (en) Semiconductor light emitting element and fabrication thereof
JPH11204885A (en) Growing method of nitride iii-v group compound semiconductor layer and manufacture of semiconductor layer
JPH09232675A (en) Semiconductor laser
JPH10261614A (en) Selective etching method of nitride base compound semiconductor, and semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091225

LAPS Cancellation because of no payment of annual fees