JPH10223367A - Organic electric field luminescence element - Google Patents

Organic electric field luminescence element

Info

Publication number
JPH10223367A
JPH10223367A JP9021528A JP2152897A JPH10223367A JP H10223367 A JPH10223367 A JP H10223367A JP 9021528 A JP9021528 A JP 9021528A JP 2152897 A JP2152897 A JP 2152897A JP H10223367 A JPH10223367 A JP H10223367A
Authority
JP
Japan
Prior art keywords
array structure
substrate
microlens array
light
electroluminescent device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9021528A
Other languages
Japanese (ja)
Inventor
Tamae Karasawa
環江 唐沢
Hiroyuki Kanai
浩之 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9021528A priority Critical patent/JPH10223367A/en
Publication of JPH10223367A publication Critical patent/JPH10223367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable high brightness even during low voltage driving and enable compactness by providing a plastic-based micro-lens array structure in which an anode, an organic luminous layer, and a cathode are laminated on one plate face and the other face of a substrate provided with a luminous part is protruded on this face side. SOLUTION: To collect rays of light, a protrusion micro-lens array structure 1A is provided on an opposite face of a face of forming a luminous part 2 in which an anode of a substrate 1, an organic luminous layer, and a cathode are laminated. This micro-lens array structure 1A is shaped of shear arc, for example, a fine lens part 1a of 1 to 5000 microns in diameter R is arrays in pitches P of 1 to 5000 microns, and thickness W1 is 100 to 2000 microns. Here, in the micro-lens array structure 1A, one face of the substrate 1 may be plastic- molded or a sheet of the micro-lens array structure 1A additionally manufactured on a glass plate 1B may be laminated. Thereby, the ray of light 3 of a luminous part 2 is collected at a part of the protrusion type micro-lens array structure 1A, and high brightness is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機電界発光素子に
関する。詳しくは、高輝度化された有機電界発光素子に
関する。
[0001] The present invention relates to an organic electroluminescent device. More specifically, the present invention relates to an organic electroluminescent device with high brightness.

【0002】[0002]

【従来の技術】最近の有機電界発光素子は、耐久性の向
上、フルカラー化のための正孔輸送層、発光層等の材料
や層構造の開発により、かなり実用的となってきてい
る。しかし、耐久性向上のために、低電圧駆動とした
り、フルカラー化のためにカラーフィルター等を使用す
ると輝度が低下するという問題があった。近年、高発光
効率で安定性に優れた色素の探索が行われているが、色
素の改良だけでは充分なものが得られていないのが現状
である。
2. Description of the Related Art Recent organic electroluminescent devices have become quite practical due to the development of materials and layer structures such as a hole transport layer and a light emitting layer for improving durability and achieving full color. However, there is a problem that the luminance is reduced when driving at a low voltage to improve the durability or using a color filter or the like for full color. In recent years, dyes having high luminous efficiency and excellent stability have been searched for, but at present, sufficient dyes have not been obtained simply by improving the dyes.

【0003】また、有機電界発光素子の基板としては、
光学特性、機械的強度等の特性から、通常、ガラス基板
が使用されている。そのため、有機電界発光素子の軽量
化、薄膜化に限界がある上に、生産性の面でも成形性、
加工性に問題があった。
[0003] Further, as a substrate of an organic electroluminescent element,
A glass substrate is usually used because of characteristics such as optical characteristics and mechanical strength. Therefore, there is a limit to the weight reduction and thinning of the organic electroluminescent element, and also in terms of productivity, formability,
There was a problem in workability.

【0004】[0004]

【発明が解決しようとする課題】本発明は、低電圧駆動
においても高輝度を実現する有機電界発光素子を提供す
ることを目的とする。本発明はまた、有機電界発光素子
の軽量化を実現することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an organic electroluminescent device which realizes high luminance even at low voltage driving. Another object of the present invention is to reduce the weight of the organic electroluminescent device.

【0005】[0005]

【課題を解決するための手段】本発明の有機電界発光素
子は、基板の一方の板面上に、陽極、有機発光層及び陰
極が積層された有機電界発光素子であって、該基板がプ
ラスチック製マイクロレンズアレイ構造を有することを
特徴とする。
The organic electroluminescent device according to the present invention is an organic electroluminescent device having an anode, an organic luminescent layer and a cathode laminated on one surface of a substrate, wherein the substrate is made of plastic. It has a micro lens array structure made of.

【0006】本発明者らは、上記課題を解決すべく鋭意
検討した結果、プラスチック製マイクロレンズアレイ構
造を有機電界発光素子に組み込むことで、軽量で、高輝
度、低電圧の有機電界発光素子を実現できることを見出
し、本発明に到達した。
The inventors of the present invention have made intensive studies to solve the above problems, and as a result, by incorporating a plastic microlens array structure into an organic electroluminescent device, a lightweight, high-brightness, low-voltage organic electroluminescent device has been developed. The inventors have found that the present invention can be realized, and arrived at the present invention.

【0007】即ち、通常の平板状の基板を用いた場合に
は、発光部の発光光線はそのまま基板を通過するのに対
し、プラスチック製マイクロレンズアレイ構造の基板で
あれば、発光部の発光光線はマイクロレンズアレイ構造
の凸部に集光される。このため、高輝度化が図れる。ま
た、プラスチック製マイクロレンズアレイ構造であれば
軽量化が可能である。
That is, when an ordinary flat substrate is used, the light emitted from the light emitting portion passes through the substrate as it is, whereas when the substrate has a plastic microlens array structure, the light emitted from the light emitting portion is emitted. Is focused on the convex portion of the microlens array structure. Therefore, high luminance can be achieved. In addition, a plastic microlens array structure can reduce the weight.

【0008】このマイクロレンズアレイ構造は、光硬化
性樹脂、特に、多官能(メタ)アクリレート化合物含有
光硬化性液状モノマーを光硬化した光硬化性樹脂よりな
ることが好ましい。なお、本明細書において、「(メ
タ)アクリレート」は「アクリレート及び/又はメタク
リレート」を示す。後述の「(メタ)アクリロイル」に
ついても同様である。
This microlens array structure is preferably made of a photocurable resin, particularly a photocurable resin obtained by photocuring a photocurable liquid monomer containing a polyfunctional (meth) acrylate compound. In the present specification, “(meth) acrylate” indicates “acrylate and / or methacrylate”. The same applies to “(meth) acryloyl” described below.

【0009】また、マイクロレンズアレイ構造は、マス
クを介した露光により製造されることが好ましい。
Further, the microlens array structure is preferably manufactured by exposure through a mask.

【0010】本発明に係る基板は、ガラス基板上にマイ
クロレンズアレイシートを積層したものとすることがで
きる。
[0010] The substrate according to the present invention can be formed by laminating a microlens array sheet on a glass substrate.

【0011】[0011]

【発明の実施の形態】以下に、図面を参照して、本発明
の有機電界発光素子の実施の形態を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the organic electroluminescent device of the present invention will be described in detail with reference to the drawings.

【0012】まず、図1,2を参照して本発明に係るプ
ラスチック製マイクロレンズアレイ構造を有する基板に
ついて説明する。
First, a substrate having a plastic microlens array structure according to the present invention will be described with reference to FIGS.

【0013】図1(a)〜(c)は本発明に係る基板の
構造及び集光作用を説明する模式図であり、図2はマイ
クロレンズアレイ構造の形成方法の一例を示す斜視図で
ある。
FIGS. 1A to 1C are schematic views illustrating the structure and light-condensing function of a substrate according to the present invention, and FIG. 2 is a perspective view showing an example of a method for forming a microlens array structure. .

【0014】本発明に係るマイクロレンズアレイ構造と
は、図1(a)〜(c)に示す如く、断面円弧状の微小
レンズ部1aが平面状に配列した構造を指し、より具体
的には、例えば、直径(図1(a)のR)が0.1〜1
0,000μm、好ましくは1〜5,000μmの微小
レンズ部1aが、0.1〜10,000μm、好ましく
は1〜5,000μmのピッチ(図1(a)のP)で並
列されたものである。この厚み(図(a)のW1 )は1
0〜10,000μm、好ましくは100〜2,000
μmである。
The microlens array structure according to the present invention refers to a structure in which minute lens portions 1a having an arc-shaped cross section are arranged in a plane as shown in FIGS. 1 (a) to 1 (c), and more specifically. For example, the diameter (R in FIG. 1A) is 0.1 to 1
The microlens portions 1a of 0000 μm, preferably 1 to 5,000 μm are arranged in parallel at a pitch of 0.1 to 10,000 μm, preferably 1 to 5,000 μm (P in FIG. 1A). is there. This thickness (W 1 in FIG. 7A) is 1
0 to 10,000 μm, preferably 100 to 2,000
μm.

【0015】なお、発光光線の集光の目的には、図1
(a)〜(c)に示す如く、基板1の陽極、有機発光層
及び陰極が積層された発光部2形成面と反対側に凸とな
るマイクロレンズアレイ構造1Aとする。
The purpose of focusing the emitted light beam is as shown in FIG.
As shown in (a) to (c), the microlens array structure 1A has a convex shape on the side opposite to the surface on which the light emitting portion 2 on which the anode, the organic light emitting layer, and the cathode of the substrate 1 are laminated.

【0016】レンズ部1aの形状は、図1(a)〜
(c)に示す如く、断面半円形状のものに限らず、断面
円弧形状の凸レンズ状であれば良く、この場合には、曲
率半径が0.05〜13,000,000μm、好まし
くは0.5〜3,000,000μmでレンズ径が0.
1〜10,000μm、好ましくは1〜5,000μm
であれば良い。
The shape of the lens portion 1a is shown in FIGS.
As shown in (c), the shape is not limited to the one having a semicircular cross section, but may be a convex lens having an arc cross section. In this case, the radius of curvature is 0.05 to 13,000,000 μm, preferably 0.1 to 0.3,000,000 μm. The lens diameter is 0.5 to 3,000,000 μm.
1 to 10,000 μm, preferably 1 to 5,000 μm
Is fine.

【0017】本発明においては、図1(a),(b)に
示す如く、片面にマイクロレンズアレイ構造1Aを持つ
ように基板1そのものをプラスチックで成形してもよ
く、図1(c)に示す如く、ガラス板1B上にプラスチ
ック製マイクロレンズアレイ構造1Aを形成するか、或
いはガラス板1Bに別途製造したマイクロレンズアレイ
構造1Aのシートを積層して基板1としても良い。この
場合、ガラス板1Bの厚みW2 は300〜5,000μ
mであることが好ましい。
In the present invention, as shown in FIGS. 1A and 1B, the substrate 1 itself may be formed of plastic so as to have the microlens array structure 1A on one side. As shown, the substrate 1 may be formed by forming the plastic microlens array structure 1A on the glass plate 1B or by laminating a sheet of the microlens array structure 1A separately manufactured on the glass plate 1B. In this case, the thickness W 2 of the glass plate 1B is 300 to 5,000 μ
m is preferable.

【0018】図3に示す如く、従来の有機電界発光素子
における平板状の基板11であれば、発光部12からの
平面発光された発光光線13はそのまま通過するため、
拡散されたままである。これに対して、マイクロレンズ
アレイ構造を有する本発明に係る基板1であれば、図1
(a)〜(c)に示す如く、発光部2からの発光光線3
は凸型マイクロレンズアレイ構造1Aの部分で集光さ
れ、その結果として、有機電界発光素子の高輝度化が達
成される。
As shown in FIG. 3, in the case of a flat substrate 11 in a conventional organic electroluminescent device, the plane-emitting light beam 13 emitted from the light emitting section 12 passes through as it is.
It remains diffused. On the other hand, if the substrate 1 according to the present invention has a microlens array structure, FIG.
As shown in (a) to (c), the light beam 3 emitted from the light emitting unit 2
Is condensed at the portion of the convex microlens array structure 1A, and as a result, high brightness of the organic electroluminescent element is achieved.

【0019】本発明において、マイクロレンズアレイ構
造はプラスチック、特に好ましくは光硬化性樹脂で形成
される。
In the present invention, the microlens array structure is formed of a plastic, particularly preferably a photocurable resin.

【0020】光硬化性樹脂は、光硬化性液状モノマー及
び光重合開始剤等を含有する光硬化性液状モノマー組成
物を光硬化することで得られる。
The photocurable resin can be obtained by photocuring a photocurable liquid monomer composition containing a photocurable liquid monomer, a photopolymerization initiator, and the like.

【0021】この光硬化性液状モノマーとしては、光照
射によって重合硬化し、透明な重合体を形成するもので
あればよく、特に限定されないが、一般には、(メタ)
アクリレート系化合物が適している。その中でも、トリ
エチレングリコールジ(メタ)アクリレート、ヘキサン
ジオールジ(メタ)アクリレート、2,2−ビス〔4−
(メタ)アクリロイルオキシフェニル〕プロパン、2,
2−ビス〔4−(2−(メタ)アクリロイルオキシエト
キシ)〕フェニルプロパン、p−ビス〔β−(メタ)ア
クリロイルオキシエチルチオ〕キシリレン、4,4’−
ビス〔β−(メタ)アクリロイルオキシエチルチオ〕ジ
フェニルスルホン、トリメチロールプロパントリ(メ
タ)アクリレート、ウレタンアクリレート、エポキシア
クリレート等の多官能(メタ)アクリレート類、及びこ
れらのモノマーと共重合可能な単官能モノマーとの混合
物、またこれらの多官能(メタ)アクリレート化合物と
付加重合可能なポリチオールとの混合物等が好適であ
る。なお、上記単官能モノマーとしては、例えば、メチ
ル(メタ)アクリレート、ベンジル(メタ)アクリレー
トなどが挙げられ、ポリチオールとしては、例えば、ペ
ンタエリスリトールテトラキス(β−チオプロピオネー
ト)、トリス〔2−(β−チオプロピオニルオキシ)エ
チル〕イソシアヌレートなどが挙げられる。
The photocurable liquid monomer is not particularly limited as long as it is polymerized and cured by light irradiation to form a transparent polymer, and is not particularly limited.
Acrylate-based compounds are suitable. Among them, triethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, 2,2-bis [4-
(Meth) acryloyloxyphenyl] propane, 2,
2-bis [4- (2- (meth) acryloyloxyethoxy)] phenylpropane, p-bis [β- (meth) acryloyloxyethylthio] xylylene, 4,4′-
Polyfunctional (meth) acrylates such as bis [β- (meth) acryloyloxyethylthio] diphenyl sulfone, trimethylolpropane tri (meth) acrylate, urethane acrylate, epoxy acrylate, and monofunctional copolymerizable with these monomers Mixtures with monomers, and mixtures of these polyfunctional (meth) acrylate compounds with addition-polymerizable polythiols are preferred. The monofunctional monomer includes, for example, methyl (meth) acrylate and benzyl (meth) acrylate, and the polythiol includes, for example, pentaerythritol tetrakis (β-thiopropionate), tris [2- ( β-thiopropionyloxy) ethyl] isocyanurate.

【0022】これらのうち、特に、屈折率(対空気)が
1.50以上、好ましくは1.55以上、特に好ましく
は1.58以上の重合体を生成するモノマーが選択され
る。
Among these, monomers that form polymers having a refractive index (to air) of 1.50 or more, preferably 1.55 or more, particularly preferably 1.58 or more are selected.

【0023】これらの光硬化性液状モノマーを硬化させ
る際に使用される光重合開始剤としては公知のものが挙
げられ、これらは2種以上を併用しても良い。光重合開
始剤としては、例えば、2,4,6−トリメチルベンゾ
イルジフェニルホスフィンオキシド、トリメチルベンゾ
イルフェニルホスフィン酸メチルエステル、1−ヒドロ
キシシクロヘキシルフェニルケトン、ベンゾフェノン、
ジフェノキシベンゾフェノンなどが挙げられる。
Known photopolymerization initiators can be used for curing these photocurable liquid monomers, and two or more of them may be used in combination. Examples of the photopolymerization initiator include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, trimethylbenzoylphenylphosphinic acid methyl ester, 1-hydroxycyclohexylphenyl ketone, benzophenone,
And diphenoxybenzophenone.

【0024】硬化を速やかに完結させる目的で、光硬化
と熱硬化を併用する場合には、ベンゾイルパーオキシ
ド、ジイソプロピルパーオキシカーボネート、t−ブチ
ルパーオキシ(2−エチルヘキサノエート)等公知の熱
重合開始剤を添加することができる。
When photocuring and thermal curing are used in combination for the purpose of rapidly completing curing, a known thermal curing agent such as benzoyl peroxide, diisopropylperoxycarbonate, t-butylperoxy (2-ethylhexanoate) is used. A polymerization initiator can be added.

【0025】また、必要に応じ、光硬化性液状モノマー
組成物に酸化防止剤、紫外線吸収剤、着色剤などを配合
することもできる。
[0025] If necessary, an antioxidant, an ultraviolet absorber, a coloring agent, and the like can be added to the photocurable liquid monomer composition.

【0026】光硬化させることで、光硬化性樹脂よりな
るマイクロレンズアレイ構造を形成するには、例えば、
上記光硬化性液状モノマー組成物をマイクロレンズアレ
イ構造を一部に有する板状形状の金型に流し込み、露光
することによって行うことができる。より具体的には、
マイクロレンズアレイ形状の板と平板状の板との間に、
光硬化性液状モノマー組成物を流し込み、平板状の板側
から光照射することで光硬化させる。光硬化して得られ
た光硬化性樹脂成形体には、マイクロレンズアレイ状の
板側にマイクロレンズアレイ構造が形成される(以下、
この方法を「金型転写法」と称す。)。
In order to form a microlens array structure made of a photocurable resin by photocuring, for example,
The photocurable liquid monomer composition can be poured into a plate-shaped mold having a microlens array structure in part, and then exposed. More specifically,
Between the microlens array-shaped plate and the flat plate,
The photocurable liquid monomer composition is poured, and light is irradiated from the side of the flat plate to perform photocuring. A microlens array structure is formed on the microlens array-shaped plate side of the photocurable resin molded product obtained by photocuring (hereinafter, referred to as “microlens array structure”).
This method is called "mold transfer method". ).

【0027】この場合、図2に示すように、レンズ部形
成部に対応する部分4Aのみが光が透過するネガ型マス
クパターン4をマイクロレンズアレイ状の板の代わりに
用いて光硬化性液状モノマー組成物5を露光すること
で、より小さなレンズ部5Aを有するマイクロレンズア
レイ形状を形成することもできる。即ち、このようなネ
ガ型マスクパターン4を用いて、光硬化性液状モノマー
組成物5のレンズ5A形成部のみにそれ以外の部分より
も多い光を当てることで、後述する如く、この部分が凸
状に膨らんだレンズ5Aを形成することができる(以
下、この方法を「部分的光照射法」と称す場合があ
る。)。このネガ型マスクパターン4を使用して部分的
照射する方法としては、1段目に、このネガ型マスクパ
ターン4を介して露光し、更に2段目に全面露光(マス
クパターン4をはずした露光或いは、裏面側からの露
光)する2段階露光方法、或いは、マスクパターン4側
と裏面側から同時露光する方法などが挙げられる。
In this case, as shown in FIG. 2, a photo-curable liquid monomer is formed by using a negative mask pattern 4 in which only a portion 4A corresponding to the lens portion forming portion transmits light instead of a microlens array plate. By exposing the composition 5, a microlens array shape having a smaller lens portion 5A can be formed. That is, by using such a negative mask pattern 4, more light is applied to only the lens 5A forming portion of the photocurable liquid monomer composition 5 than the other portions, so that this portion is convex as described later. The lens 5A can be formed into a convex shape (hereinafter, this method may be referred to as a "partial light irradiation method"). As a method of partially irradiating using the negative mask pattern 4, exposure is performed through the negative mask pattern 4 in the first stage, and further, the entire surface is exposed (exposure excluding the mask pattern 4) in the second stage. Alternatively, a two-step exposure method of performing exposure from the back side) or a method of performing simultaneous exposure from the mask pattern 4 side and the back side may be used.

【0028】この部分的光照射法に使用されるネガ型マ
スクパターンは、写真撮影法、蒸着法、印刷等の適宜な
方式で得ることができる。マスクパターンをのせる基材
としてはガラス板が好ましいが、ポリマーフィルムや紙
製のものを用いても良いし、それらをガラス等の固い透
明材に貼り合わせても良い。パターンが描かれたマスク
面は、注液型の内面に配置されても、外側の面に配置さ
れても良いが、パターンの良好な転写性を得るために
は、内部側即ち光硬化性液状モノマー組成物と接する面
に配置されるのが好ましい。この場合、光硬化性液状モ
ノマー組成物に侵されることのないようマスクのリサイ
クルを考慮して、ガラス製のクロム蒸着マスクを使用す
ることが望ましい。
The negative type mask pattern used in the partial light irradiation method can be obtained by an appropriate method such as a photographing method, a vapor deposition method, and printing. As the substrate on which the mask pattern is to be placed, a glass plate is preferable, but a polymer film or paper may be used, or they may be bonded to a hard transparent material such as glass. The mask surface on which the pattern is drawn may be arranged on the inner surface of the injection mold or on the outer surface.However, in order to obtain good transferability of the pattern, the inner side, that is, the photocurable liquid Preferably, it is arranged on the surface in contact with the monomer composition. In this case, it is desirable to use a chromium vapor deposition mask made of glass in consideration of recycling of the mask so as not to be affected by the photocurable liquid monomer composition.

【0029】光硬化性液状モノマー組成物の光重合の際
の硬化収縮は、光照射による重合度の増加に伴って進行
する。従って、ネガ型マスクパターンを通して部分的光
照射を行うと、光照射されたマスクされていない部分が
まず硬化し、その硬化収縮の影響を受けて、マスクされ
ている光照射されていない或いは光照射量の少ない部分
がくぼむ。即ち、マスクされていない部分が凸状の突起
部を形成する。この凸状部の形状は、照射光がマスクを
通る際の回折現象により、マスクされている部分にも光
が回り込むため、球面或いは非球面状(球面類似形状)
のレンズ部となる。
Curing shrinkage during photopolymerization of the photocurable liquid monomer composition proceeds with an increase in the degree of polymerization due to light irradiation. Therefore, when partial light irradiation is performed through the negative type mask pattern, the light-irradiated unmasked portion first cures and is affected by the curing shrinkage, and thus the masked light is not irradiated or light-irradiated. The low-volume part is hollow. That is, the unmasked portion forms a convex protrusion. The shape of the convex portion is spherical or aspherical (spherical-like shape) because the light goes around the masked portion by the diffraction phenomenon when the irradiation light passes through the mask.
Lens section.

【0030】従って、部分的光照射することによって、
表面の凹凸を形成した後、ネガ型マスクパターンをはず
して全面に光照射を行うことにより硬化を完了させて、
最終的なマイクロレンズアレイ構造を得ることができ
る。或いは、光硬化性液状モノマー組成物を介してネガ
型マスクパターンと反対側の型に光を透過するガラス等
の材質を用い、この面より全面に光照射して硬化を完了
することができ、この場合には、片面の凹凸形成と全面
の硬化を同時に行うこともできる。
Therefore, by partially irradiating light,
After forming the surface irregularities, complete the curing by removing the negative mask pattern and irradiating the entire surface with light,
A final microlens array structure can be obtained. Alternatively, a material such as glass that transmits light to the mold on the side opposite to the negative-type mask pattern through the photocurable liquid monomer composition can be used to irradiate light from the entire surface to complete curing. In this case, the formation of unevenness on one side and the curing of the entire surface can be performed simultaneously.

【0031】前記金型転写法、及び上記部分的光照射法
のどちらにおいても、光照射の光源としては、光硬化性
液状モノマー組成物や光重合開始剤の特性波長に応じて
適宜選択することができる。光照射の光源は、一般に
は、高圧水銀灯、メタルハライドランプ、ショートアー
クランプ等の紫外線光源を用いて、平行光、散乱光、の
形で使用されるが、光増感剤との併用でレーザー等の可
視、赤外光源の使用も可能である。
In both the mold transfer method and the partial light irradiation method, a light source for light irradiation is appropriately selected according to the characteristic wavelength of the photocurable liquid monomer composition and the photopolymerization initiator. Can be. A light source for light irradiation is generally used in the form of parallel light or scattered light using an ultraviolet light source such as a high-pressure mercury lamp, a metal halide lamp, or a short arc lamp, but a laser or the like is used in combination with a photosensitizer. It is also possible to use visible and infrared light sources.

【0032】光照射に際しては、硬化を速やかに完了さ
せる目的で、注液された型全体を加熱してもよく、更に
熱重合開始剤を添加して硬化を促進することも可能であ
る。
At the time of light irradiation, the entire poured mold may be heated in order to complete the curing promptly, and the curing may be promoted by adding a thermal polymerization initiator.

【0033】また、光学歪を更に低減させるために、硬
化後若干の加熱によるアニール等の処理を行ってもよ
い。また、ハードコート、反射防止コート等の表面処理
を行うことも可能である。
Further, in order to further reduce optical distortion, treatment such as annealing by slight heating after curing may be performed. Further, a surface treatment such as a hard coat and an antireflection coat can be performed.

【0034】次に、図4〜6を参照して、このようなプ
ラスチック製マイクロレンズアレイ構造を有する基板を
用いた本発明の有機電界発光素子の構成を説明する。
Next, the structure of the organic electroluminescent device of the present invention using such a substrate having a plastic microlens array structure will be described with reference to FIGS.

【0035】図4〜6は本発明の有機電界発光素子の構
造例を示す模式的断面図であり、図中、1は基板、6は
陽極、7は有機発光層、7aは正孔輸送層、7bは電子
輸送層、7cは正孔注入層、8は陰極、10,10A,
10Bは有機電界発光素子である。
4 to 6 are schematic sectional views showing examples of the structure of the organic electroluminescent device of the present invention. In the figures, 1 is a substrate, 6 is an anode, 7 is an organic light emitting layer, and 7a is a hole transport layer. , 7b are an electron transport layer, 7c is a hole injection layer, 8 is a cathode, 10, 10A,
10B is an organic electroluminescent element.

【0036】基板1は有機電界発光素子の支持体となる
ものであり、光学特性、耐熱性、表面精度、機械的強
度、軽量性、ガスバリア性などの特性に優れていること
が要求される。
The substrate 1 serves as a support for the organic electroluminescent device, and is required to have excellent properties such as optical properties, heat resistance, surface accuracy, mechanical strength, light weight, and gas barrier properties.

【0037】本発明においては、この基板1として、図
1(a)〜(c)に示す如く、これらの特性に優れたプ
ラスチック製マイクロレンズアレイ構造或いはガラス板
とマイクロレンズアレイ構造との積層体を用いる。
In the present invention, as this substrate 1, as shown in FIGS. 1A to 1C, a plastic microlens array structure or a laminate of a glass plate and a microlens array structure having excellent characteristics. Is used.

【0038】なお、基板は、ガスバリア性をより高める
目的で、少なくともその片面に緻密なシリコン酸化膜等
を設けても良い。
The substrate may be provided with a dense silicon oxide film or the like on at least one side for the purpose of further enhancing gas barrier properties.

【0039】基板1上に形成された陽極6は、有機発光
層7への正孔注入の役割を果たすものである。この陽極
6は、通常、アルミニウム、金、銀、白金、ニッケル、
パラジウム、白金等の金属、インジウム及び/又はスズ
の酸化物などの金属酸化物、ヨウ化銅などのハロゲン化
金属、カーボンブラック、或いは、ポリ(3−メチルチ
オフェン)、ポリピロール、ポリアニリン等の導電性高
分子など、好ましくは、インジウム・スズ酸化物により
形成される。陽極6の形成は通常、スパッタリング法、
真空蒸着法などにより行われることが多い。銀などの金
属微粒子、ヨウ化銅などの微粒子、カーボンブラック、
導電性の金属酸化物微粒子、導電性高分子微粉末などを
用いる場合には、これを適当なバインダー樹脂溶液に分
散し、基板1上に塗布することにより陽極6を形成する
こともできる。また、導電性高分子を用いる場合には、
電解重合により直接基板1上に薄膜を形成するか、基板
1上に導電性高分子を塗布することにより、陽極6を形
成することもできる(Appl.Phys.Let
t.,60巻,2711頁,1992年)。陽極6は異
なる物質を積層して形成することも可能である。
The anode 6 formed on the substrate 1 plays a role of injecting holes into the organic light emitting layer 7. This anode 6 is usually made of aluminum, gold, silver, platinum, nickel,
Metals such as palladium and platinum, metal oxides such as oxides of indium and / or tin, metal halides such as copper iodide, carbon black, or conductive materials such as poly (3-methylthiophene), polypyrrole, and polyaniline It is preferably formed of indium tin oxide, such as a polymer. The formation of the anode 6 is usually performed by a sputtering method,
It is often performed by a vacuum deposition method or the like. Fine metal particles such as silver, fine particles such as copper iodide, carbon black,
When conductive metal oxide fine particles, conductive polymer fine powder, or the like is used, the anode 6 can be formed by dispersing it in an appropriate binder resin solution and applying it on the substrate 1. When using a conductive polymer,
The anode 6 can also be formed by forming a thin film directly on the substrate 1 by electrolytic polymerization or by coating a conductive polymer on the substrate 1 (Appl. Phys. Let.).
t. 60, 2711, 1992). The anode 6 can be formed by laminating different materials.

【0040】陽極6の厚みは、透明性の要求の有無によ
り異なる。透明性が必要とされる場合は、可視光の透過
率を、通常、60%以上、好ましくは80%以上とする
ことが望ましく、この場合、厚みは、通常、5〜100
0nm、好ましくは10〜500nm程度である。陽極
6が不透明でよい場合には、基板1と同一材料であって
もよい。また、陽極6の上に異なる導電材料を積層する
ことも可能である。
The thickness of the anode 6 varies depending on whether transparency is required. When transparency is required, it is desirable that the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness is usually 5 to 100.
0 nm, preferably about 10 to 500 nm. If the anode 6 may be opaque, it may be made of the same material as the substrate 1. Further, different conductive materials can be laminated on the anode 6.

【0041】陽極6の上に形成される有機発光層7は、
電界が与えられた電極間において、陽極6から注入され
た正孔と陰極8から注入された電子を効率よく輸送して
再結合させ、かつ、再結合により効率よく発光する材料
から形成される。通常、この有機発光層7は発光効率の
向上のために、図5に示す様に、正孔輸送層7aと電子
輸送層7bに分割した機能分離型にすることが行われる
(Appl.Phys.Lett.,51巻,913
頁,1987年)。
The organic light emitting layer 7 formed on the anode 6
It is made of a material that efficiently transports and recombines holes injected from the anode 6 and electrons injected from the cathode 8 between the electrodes to which an electric field is applied, and emits light efficiently by the recombination. Normally, as shown in FIG. 5, the organic light-emitting layer 7 is of a function-separated type in which the organic light-emitting layer 7 is divided into a hole transport layer 7a and an electron transport layer 7b (Appl. Phys. Lett., 51, 913
1987).

【0042】図5に示す機能分離型有機電界発光素子1
0Aにおいて、正孔輸送層7aの材料としては、陽極6
からの正孔注入効率が高く、かつ、注入された正孔を効
率よく輸送することができる材料であることが必要であ
る。そのためには、イオン化ポテンシャルが小さく、し
かも正孔移動度が大きく、更に安定性に優れ、製造時や
使用時にトラップとなる不純物が発生しにくいことが要
求される。
Function-separated type organic electroluminescent device 1 shown in FIG.
At 0A, the material of the hole transport layer 7a is the anode 6
It is necessary that the material has a high hole injection efficiency and a material capable of efficiently transporting the injected holes. For that purpose, it is required that the ionization potential is small, the hole mobility is large, the stability is further improved, and impurities serving as traps during production or use are hardly generated.

【0043】このような正孔輸送材料としては、例え
ば、1,1−ビス(4−ジ−p−トリルアミノフェニ
ル)シクロヘキサン等の3級芳香族アミンユニットを連
結した芳香族ジアミン化合物(特開昭59−19439
3号公報)、4,4’−ビス [N−(1−ナフチル)−
N−フェニルアミノ] ビフェニルで代表される2個以上
の3級アミンを含み2個以上の縮合芳香族環が窒素原子
に置換した芳香族アミン(特開平5−234681号公
報)、トリフェニルベンゼンの誘導体でスターバースト
構造を有する芳香族トリアミン(米国特許第4,92
3,774号)、N,N’−ジフェニル−N,N’−ビ
ス(3−メチルフェニル)ビフェニル−4,4’−ジア
ミン等の芳香族ジアミン(米国特許第4,764,62
5号)、α,α,α’,α’−テトラメチル−α,α’
−ビス(4−ジ−p−トリルアミノフェニル)−p−キ
シレン(特開平3−269084号公報)、分子全体と
して立体的に非対称なトリフェニルアミン誘導体(特開
平4−129271号公報)、ビレニル基に芳香族ジア
ミノ基が複数個置換した化合物(特開平4−17539
5号公報)、エチレン基で3級芳香族アミンユニットを
連結した芳香族ジアミン(特開平4−264189号公
報)、スチリル構造を有する芳香族ジアミン(特開平4
−290851号公報)、チオフェン基で芳香族3級ア
ミンユニットを連結したもの(特開平4−304466
号公報)、スターバースト型芳香族トリアミン(特開平
4−308688号公報)、ベンジルフェニル化合物
(特開平4−364153号公報)、フルオレン基で3
級アミンを連結したもの(特開平5−25473号公
報)、トリアミン化合物(特開平5−239455号公
報)、ビスジピリジルアミノビフェニル(特開平5−3
20634号公報)、N,N,N−トリフェニルアミン
誘導体(特開平6−1972号公報)、フェノキサジン
構造を有する芳香族ジアミン(特開平7−138562
号公報)、ジアミノフェニルフェナントリジン誘導体
(特開平7−252474号公報)、ヒドラゾン化合物
(特開平2−311591号公報)、シラザン化合物
(米国特許第4,950,950号公報)、シラナミン
誘導体(特開平6−49079号公報)、ホスファミン
誘導体(特開平6−25659号公報)、キナクリドン
化合物等が挙げられる。これらの化合物は、単独で用い
てもよく、また、必要に応じて2種以上を混合して用い
てもよい。
As such a hole transporting material, for example, an aromatic diamine compound linked to a tertiary aromatic amine unit such as 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane (Japanese Patent Laid-Open Publication No. 1959-19439
No. 3), 4,4′-bis [N- (1-naphthyl)-
N-phenylamino] aromatic amines containing two or more tertiary amines represented by biphenyl and having two or more condensed aromatic rings substituted by nitrogen atoms (JP-A-5-234681); Aromatic triamines having a starburst structure in derivatives (US Pat. No. 4,92
Aromatic diamines such as N, N'-diphenyl-N, N'-bis (3-methylphenyl) biphenyl-4,4'-diamine (U.S. Pat. No. 4,764,62)
No. 5), α, α, α ′, α′-tetramethyl-α, α ′
-Bis (4-di-p-tolylaminophenyl) -p-xylene (JP-A-3-269084), a triphenylamine derivative which is sterically asymmetric as a whole molecule (JP-A-4-129271), bienyl In which a plurality of aromatic diamino groups are substituted on a group (JP-A-4-17539)
No. 5), an aromatic diamine in which a tertiary aromatic amine unit is linked by an ethylene group (JP-A-4-264189), an aromatic diamine having a styryl structure (JP-A-Hei-4).
(Japanese Patent Application Laid-Open No. 4-290466), a compound in which an aromatic tertiary amine unit is linked by a thiophene group (JP-A-4-304466).
JP-A-4-308688), a benzylphenyl compound (JP-A-4-364153), and a fluorene group of 3
Tertiary amine compound (JP-A-5-239455), bisdipyridylaminobiphenyl (JP-A-5-3473)
20634), N, N, N-triphenylamine derivatives (JP-A-6-1972), and aromatic diamines having a phenoxazine structure (JP-A-7-138562).
JP, JP-A-7-252474, a hydrazone compound (JP-A-2-311591), a silazane compound (U.S. Pat. No. 4,950,950), and a silanamin derivative ( JP-A-6-49079), phosphamine derivatives (JP-A-6-25659), and quinacridone compounds. These compounds may be used alone or, if necessary, in combination of two or more.

【0044】なお、上記の化合物以外に、正孔輸送層7
aの材料として、ポリビニルカルバゾールやポリシラン
(Appl.Phys.Lett.,59巻、2760
頁,1991年)、ポリフォスファゼン(特開平5−3
10949号公報)、ポリアミド(特開平5−3109
49号公報)、ポリビニルトリフェニルアミン(特開平
7−53953号公報)、トリフェニルアミン骨格を有
する高分子(特開平4−133065号公報)、トリフ
ェニルアミン単位をメチレン基等で連結した高分子(S
ynthetic Metals,55−57巻,41
63頁,1993年)、芳香族アミンを含有するポリメ
タクリレート(J.Polym.Sci.,Poly
m.Chem.Ed.,21巻,969頁,1983
年)等の高分子材料を用いることができる。
In addition to the above compounds, the hole transport layer 7
As a material of a, polyvinyl carbazole or polysilane (Appl. Phys. Lett., Vol. 59, 2760)
P. 1991), polyphosphazene (JP-A-5-3)
No. 10949), polyamide (JP-A-5-3109)
No. 49), polyvinyl triphenylamine (Japanese Patent Application Laid-Open No. 7-53953), a polymer having a triphenylamine skeleton (Japanese Patent Application Laid-Open No. 4-133065), and a polymer in which triphenylamine units are linked by a methylene group or the like. (S
Synthetic Metals, 55-57, 41
63, 1993), polyamines containing aromatic amines (J. Polym. Sci., Poly).
m. Chem. Ed. , 21, 969, 1983.
) Can be used.

【0045】正孔輸送層7aは、これらの正孔輸送材料
を塗布法又は真空蒸着法により成膜することにより、前
記陽極6上に積層形成される。
The hole transporting layer 7a is formed on the anode 6 by coating these hole transporting materials by a coating method or a vacuum evaporation method.

【0046】塗布法の場合は、正孔輸送材料の1種又は
2種以上と、必要により正孔のトラップにならないバイ
ンダー樹脂や塗布性改良剤などの添加剤とを添加し、溶
剤に溶解して塗布溶液を調製し、これをスピンコート法
などの方法により陽極6上に塗布、乾燥して有機正孔輸
送層7aを形成する。この場合、バインダー樹脂として
は、ポリカーボネート、ポリアリレート、ポリエステル
等が挙げられる。バインダー樹脂の添加量が多いと正孔
移動度を低下させるので、少ない方が望ましく、通常、
50重量%以下が好ましい。
In the case of the coating method, one or more of the hole transporting materials and, if necessary, additives such as a binder resin or a coating property improving agent which do not trap holes are added and dissolved in a solvent. Then, a coating solution is prepared, applied to the anode 6 by a method such as spin coating, and dried to form an organic hole transport layer 7a. In this case, examples of the binder resin include polycarbonate, polyarylate, and polyester. Since a large amount of the binder resin decreases the hole mobility, a small amount is desirable.
It is preferably at most 50% by weight.

【0047】一方、真空蒸着法の場合には、正孔輸送材
料を真空容器内に設置されたルツボに入れ、真空容器内
を適当な真空ポンプで10-4Pa程度にまで排気した
後、ルツボを加熱して、正孔輸送材料を蒸発させ、ルツ
ボに対向配置した基板1上の陽極6上に正孔輸送層7a
を形成する。
On the other hand, in the case of the vacuum evaporation method, the hole transporting material is put into a crucible provided in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 -4 Pa by a suitable vacuum pump. Is heated to evaporate the hole transporting material, and the hole transporting layer 7a is formed on the anode 6 on the substrate 1 opposed to the crucible.
To form

【0048】このようにして正孔輸送層7aを形成する
場合、更に、アクセプタとして、芳香族カルボン酸の金
属錯体及び/又は金属塩(特開平4−320484号公
報)、ベンゾフェノン誘導体及びチオベンゾフェノン誘
導体(特開平5−295361号公報)、フラーレン類
(特開平5−331458号公報)等を10-3〜10重
量%の濃度でドープして、フリーキャリアとしての正孔
を生成させることにより、低電圧駆動を可能にすること
ができる。
When the hole transport layer 7a is formed in this manner, a metal complex and / or a metal salt of an aromatic carboxylic acid (JP-A-4-320484), a benzophenone derivative and a thiobenzophenone derivative are further used as acceptors. (JP-A-5-295361), fullerenes (JP-A-5-331458) and the like are doped at a concentration of 10 −3 to 10% by weight to generate holes as free carriers, thereby reducing the amount of holes. Voltage driving can be enabled.

【0049】正孔輸送層7aの膜厚は、通常、10〜3
00nm、好ましくは30〜100nmである。このよ
うな膜厚の薄い正孔輸送層を一様に形成するためには、
一般に真空蒸着法を採用するのが好適である。
The thickness of the hole transport layer 7a is usually 10 to 3
00 nm, preferably 30 to 100 nm. In order to uniformly form such a thin hole transport layer,
Generally, it is preferable to employ a vacuum deposition method.

【0050】また、正孔注入効率を更に向上させ、か
つ、有機層全体の陽極6への付着力を改善する目的で、
図6に示す如く、正孔輸送層7aと陽極6との間に正孔
注入層7cを形成することも行われている。正孔注入層
7cに用いられる材料としては、イオン化ポテンシャル
が低く、導電性が高く、更に陽極6上で熱的に安定な薄
膜を形成し得る材料が望ましく、フタロシアニン化合物
やポルフィリン化合物(特開昭57−51781号公
報、特開昭63−295695号公報)が用いられる。
このような正孔注入層7cを介在させることで、初期の
素子の駆動電圧が下がると同時に、素子を定電流で連続
駆動した時の電圧上昇も抑制される効果が得られる。正
孔注入層7cもまた、正孔輸送層7aと同様にしてアク
セプタをドープすることで導電性を向上させることが可
能である。
In order to further improve the hole injection efficiency and to improve the adhesion of the entire organic layer to the anode 6,
As shown in FIG. 6, a hole injection layer 7c is also formed between the hole transport layer 7a and the anode 6. As the material used for the hole injection layer 7c, a material having a low ionization potential, high conductivity, and capable of forming a thermally stable thin film on the anode 6 is preferable. A phthalocyanine compound or a porphyrin compound (Japanese Patent Application Laid-Open No. 57-51781, JP-A-63-29569).
By interposing such a hole injection layer 7c, it is possible to obtain the effect that the initial drive voltage of the device is reduced and at the same time the voltage rise when the device is continuously driven with a constant current is suppressed. The conductivity of the hole injection layer 7c can also be improved by doping the acceptor similarly to the hole transport layer 7a.

【0051】正孔注入層7cの膜厚は、通常、2〜10
0nm、好ましくは5〜50nmである。このような膜
厚の薄い正孔注入層を一様に形成するためには、一般に
真空蒸着法を採用するのが好適である。
The thickness of the hole injection layer 7c is usually 2 to 10
0 nm, preferably 5 to 50 nm. In order to uniformly form such a thin hole injection layer, it is generally preferable to employ a vacuum evaporation method.

【0052】正孔輸送層7aの上に形成される電子輸送
層7bは、電界が与えられた電極間において、陰極から
の電子を効率よく正孔輸送層7aの方向に輸送すること
ができる化合物で構成される。
The electron transport layer 7b formed on the hole transport layer 7a is a compound capable of efficiently transporting electrons from the cathode in the direction of the hole transport layer 7a between electrodes to which an electric field is applied. It consists of.

【0053】電子輸送層7bに用いられる電子輸送性化
合物としては、陰極8からの電子注入効率が高く、か
つ、注入された電子を効率よく輸送することができる化
合物であることが必要である。そのためには、電子親和
力が大きく、しかも電子移動度が大きく、更に安定性に
優れ、製造時や使用時にトラップとなる不純物が発生し
にくい化合物であることが要求される。
The electron transporting compound used for the electron transporting layer 7b needs to be a compound having a high electron injection efficiency from the cathode 8 and capable of efficiently transporting the injected electrons. For that purpose, it is required that the compound has a high electron affinity, high electron mobility, excellent stability, and hardly generates impurities serving as traps during production or use.

【0054】このような条件を満たす材料としては、テ
トラフェニルブタジエンなどの芳香族化合物(特開昭5
7−51781号公報)、8−ヒドロキシキノリンのア
ルミニウム錯体などの金属錯体(特開昭59−1943
93号公報)、シクロペンタジエン誘導体(特開平2−
289675号公報)、ペリノン誘導体(特開平2−2
89676号公報)、オキサジアゾール誘導体(特開平
2−216791号公報)、ビススチリルベンゼン誘導
体(特開平1−245087号公報、同2−22248
4号公報)、ペリレン誘導体(特開平2−189890
号公報、同3−791号公報)、クマリン化合物(特開
平2−191694号公報、同3−792号公報)、希
土類錯体(特開平1−256584号公報)、ジスチリ
ルピラジン誘導体(特開平2−252793号公報)、
p−フェニレン化合物(特開平3−33183号公
報)、チアジアゾロピリジン誘導体(特開平3−372
92号公報)、ピロロピリジン誘導体(特開平3−37
293号公報)、ナフチリジン誘導体(特開平3−20
3982号公報)などが挙げられる。
Materials satisfying such conditions include aromatic compounds such as tetraphenylbutadiene (Japanese Unexamined Patent Publication No.
And metal complexes such as aluminum complexes of 8-hydroxyquinoline (JP-A-59-1943).
No. 93), cyclopentadiene derivatives (Japanese Unexamined Patent Publication No.
289675), perinone derivatives (JP-A 2-2)
No. 89676), oxadiazole derivatives (Japanese Patent Application Laid-Open No. 2-216991), and bisstyrylbenzene derivatives (Japanese Patent Application Laid-Open Nos. 1-245087 and 2-222448).
No. 4), perylene derivatives (JP-A-2-189890)
JP-A-3-7991), coumarin compounds (JP-A-2-191694 and JP-A-3-792), rare-earth complexes (JP-A-1-256584), and distyrylpyrazine derivatives (JP-A-Heisei 2). 252793)),
p-phenylene compound (JP-A-3-33183), thiadiazolopyridine derivative (JP-A-3-372)
No. 92), pyrrolopyridine derivatives (JP-A-3-37)
293), naphthyridine derivatives (JP-A-3-20
3982) and the like.

【0055】これらの化合物を用いた電子輸送層7b
は、一般に、電子を輸送する役割と、正孔と電子の再結
合の際に発光をもたらす役割とを同時に果たすことがで
きる。
Electron transport layer 7b using these compounds
Can generally simultaneously fulfill the role of transporting electrons and the role of providing light emission when holes and electrons recombine.

【0056】正孔輸送層7aが発光機能を有する場合
は、電子輸送層7bは電子を輸送する役割だけを果たす
場合もある。
When the hole transporting layer 7a has a light emitting function, the electron transporting layer 7b may only play the role of transporting electrons.

【0057】素子の発光効率を向上させるとともに発光
色を変える目的で、例えば、8−ヒドロキシキノリンの
アルミニウム錯体をホスト材料として、クマリン等のレ
ーザ用蛍光色素をドープすること(J.Appl.Ph
ys.,65巻,3610頁,1989年)等も行われ
ているが、本発明においても、上記の有機電子輸送性材
料をホスト材料として各種の蛍光色素を10-3〜10モ
ル%ドープすることにより、素子の発光特性をより一層
向上させることができる。
For the purpose of improving the luminous efficiency of the device and changing the luminescent color, for example, doping a fluorescent dye for laser such as coumarin using an aluminum complex of 8-hydroxyquinoline as a host material (J. Appl. Ph.
ys. 65, 3610, 1989). In the present invention, the above-mentioned organic electron transporting material is used as a host material to dope various fluorescent dyes by 10 -3 to 10 mol%. In addition, the light emitting characteristics of the device can be further improved.

【0058】電子輸送層7bの膜厚は、通常、10〜2
00nm、好ましくは30〜100nmである。
The thickness of the electron transporting layer 7b is usually 10 to 2
00 nm, preferably 30 to 100 nm.

【0059】電子輸送層も正孔輸送層と同様の方法で形
成することができるが、通常は真空蒸着法が用いられ
る。
The electron transporting layer can be formed in the same manner as the hole transporting layer, but usually a vacuum evaporation method is used.

【0060】なお、図4に示すような機能分離を行わな
い単層型の有機発光層7としては、先に挙げたポリ(p
−フェニレンビニレン)(Nature,347巻,5
39頁,1990年他)、ポリ [2−メトキシ−5−
(2−エチルヘキシルオキシ)−1,4−フェニレンビ
ニレン] (Appl.Phys.Lett.,58巻,
1982頁,1991年他)、ポリ(3−アルキルチオ
フェン)(Jpn.J.Appl.Phys,30巻,
L1938頁,1991年他)等の高分子材料や、ポリ
ビニルカルバゾール等の高分子に発光材料と電子移動材
料を混合した系(応用物理,61巻,1044頁,19
92年)等が挙げられる。
The organic light emitting layer 7 of the single-layer type which does not perform the function separation as shown in FIG.
-Phenylene vinylene) (Nature, 347, 5)
39, 1990 et al.), Poly [2-methoxy-5-
(2-ethylhexyloxy) -1,4-phenylenevinylene] (Appl. Phys. Lett., Vol. 58,
1982, 1991, etc.), poly (3-alkylthiophene) (Jpn. J. Appl. Phys. 30, vol.
L1938, 1991, etc.) or a system in which a light emitting material and an electron transfer material are mixed with a polymer such as polyvinyl carbazole (Applied Physics, vol. 61, p. 1044, 19).
1992).

【0061】陰極8は、有機発光層7に電子を注入する
役割を果たす。陰極8として用いられる材料は、前記陽
極6に使用される材料を用いることが可能であるが、効
率よく電子注入を行うには、仕事関数の低い金属が好ま
しく、スズ、マグネシウム、インジウム、カルシウム、
アルミニウム、銀等の適当な金属又はそれらの合金が好
適である。陰極8の膜厚は、通常、陽極6と同程度であ
る。
The cathode 8 plays a role of injecting electrons into the organic light emitting layer 7. As the material used for the cathode 8, it is possible to use the material used for the anode 6, but for efficient electron injection, a metal having a low work function is preferable, and tin, magnesium, indium, calcium,
Suitable metals such as aluminum and silver or alloys thereof are preferred. The thickness of the cathode 8 is usually about the same as that of the anode 6.

【0062】低仕事関数金属からなる陰極を保護する目
的で、この陰極上に更に、仕事関数が高く大気に対して
安定な金属層を積層することにより、素子の安定性を増
すことができる。この目的のための金属層には、アルミ
ニウム、銀、ニッケル、クロム、金、白金等の金属が用
いられる。
For the purpose of protecting the cathode made of a low work function metal, a metal layer having a high work function and being stable to the atmosphere can be further laminated on the cathode to increase the stability of the device. Metals such as aluminum, silver, nickel, chromium, gold, and platinum are used for the metal layer for this purpose.

【0063】なお、図4〜6は、本発明で採用される素
子本体の一例を示すものであって、本発明は、図示のも
の以外に、以下に示すような層構成の素子本体に適用す
ることができる。
FIGS. 4 to 6 show an example of an element main body employed in the present invention. The present invention is applied to an element main body having the following layer structure other than the illustrated one. can do.

【0064】 陽極/正孔輸送層/電子輸送層/界面層/陰極、 陽極/正孔輸送層/電子輸送層/他の電子輸送層/陰
極、 陽極/正孔輸送層/電子輸送層/他の電子輸送層/界面
層/陰極、 陽極/正孔注入層/正孔輸送層/電子輸送層/界面層/
陰極、 陽極/正孔注入層/正孔輸送層/電子輸送層/他の電子
輸送層/陰極 上記層構成で、界面層は陰極と有機層とのコンタクトを
向上させるためのもので、芳香族ジアミン化合物(特開
平6−267658号公報)、キナクリドン化合物(特
開平6−330031号公報)、ナフタセン誘導体(特
開平6−330032号公報)、有機シリコン化合物
(特開平6−325871号公報)、有機リン化合物
(特開平6−325872号公報)、N−フェニルカル
バゾール骨格を有する化合物(特願平6−199562
号)、N−ビニルカルバゾール重合体(特願平6−20
0942号)等で構成された層が例示できる。界面層の
膜厚は、通常、2〜100nm、好ましくは5〜30n
mである。界面層を設ける代わりに、有機発光層及び電
子輸送層の陰極界面近傍に上記界面層の材料を50重量
%以上含む領域を設けてもよい。
Anode / hole transport layer / electron transport layer / interface layer / cathode, anode / hole transport layer / electron transport layer / other electron transport layer / cathode, anode / hole transport layer / electron transport layer / others Electron transport layer / interface layer / cathode, anode / hole injection layer / hole transport layer / electron transport layer / interface layer /
Cathode, anode / hole injection layer / hole transport layer / electron transport layer / other electron transport layer / cathode In the above layer structure, the interface layer is for improving the contact between the cathode and the organic layer, and is aromatic. Diamine compounds (JP-A-6-267658), quinacridone compounds (JP-A-6-330031), naphthacene derivatives (JP-A-6-330032), organic silicon compounds (JP-A-6-325871), organic compounds Phosphorus compounds (Japanese Patent Application Laid-Open No. Hei 6-325872) and compounds having an N-phenylcarbazole skeleton (Japanese Patent Application No. Hei 6-199562)
No.), N-vinylcarbazole polymer (Japanese Patent Application No. 6-20)
0942) and the like. The thickness of the interface layer is usually 2 to 100 nm, preferably 5 to 30 n.
m. Instead of providing the interface layer, a region containing 50% by weight or more of the material for the interface layer may be provided near the cathode interface between the organic light emitting layer and the electron transport layer.

【0065】また、他の電子輸送層は、有機電界発光素
子の発光効率を更に向上させるために、電子輸送層の上
にさらに積層形成されるものであり、この電子輸送層に
用いられる化合物には、陰極からの電子注入が容易で、
電子の輸送能力が更に大きいことが要求される。このよ
うな電子輸送性材料としては、オキサジアゾール誘導体
(Appl.Phys.Lett.,55巻,1489
頁,1989年他)やそれらをポリメタクリル酸メチル
(PMMA)等の樹脂に分散した系(Appl.Phy
s.Lett.,61巻,2793頁,1992年)、
フェナントロリン誘導体(特開平5−331459号公
報)、又は、n型水素化非晶質炭化シリコン、n型硫化
亜鉛、n型セレン化亜鉛等が挙げられる。この他の電子
輸送層の膜厚は、通常、5〜200nm、好ましくは1
0〜100nmである。
The other electron transporting layer is further formed on the electron transporting layer in order to further improve the luminous efficiency of the organic electroluminescent device. Is easy to inject electrons from the cathode,
It is required that the ability to transport electrons is further increased. As such an electron transporting material, an oxadiazole derivative (Appl. Phys. Lett., Vol. 55, 1489)
1989, etc.) and a system in which they are dispersed in a resin such as polymethyl methacrylate (PMMA) (Appl. Phys.
s. Lett. 61, 2793, 1992),
Phenanthroline derivatives (JP-A-5-331559), n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, n-type zinc selenide and the like. The thickness of the other electron transporting layer is usually 5 to 200 nm, preferably 1 to 200 nm.
0-100 nm.

【0066】本発明の有機電界発光素子は、単一の素
子、アレイ状に配置された構造からなる素子、陽極と陰
極がX−Yマトリックス状に配置された構造の素子のい
ずれにも適用することができる。
The organic electroluminescent device of the present invention can be applied to any of a single device, a device having a structure arranged in an array, and a device having a structure in which an anode and a cathode are arranged in an XY matrix. be able to.

【0067】[0067]

【実施例】次に、実施例及び比較例を挙げて本発明を更
に具体的に説明するが、本発明はその要旨を超えない限
り、以下の実施例の記載に限定されるものではない。
Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the description of the following examples unless it exceeds the gist.

【0068】実施例1 4,4’−ビス(β−メタクリロイルオキシエチルチ
オ)ジフェニルスルホン100重量部に、光重合開始剤
として2,4,6−トリメチルベンゾイルジフェニルホ
スフィンオキサイド0.1重量部及びベンゾフェノン
0.02重量部を均一に攪拌混合した。この組成物を直
径1mmの半球状の凹部が1mmピッチで整列している
マイクロレンズアレイ状の金属板と、1mm厚のシリコ
ンスペーサーを介して設置された平板状のガラス板より
なる型に注入した。そして、ガラス板から50cm上方
にある出力80mW/cm2 の高圧水銀灯により紫外線
を散乱光として3分間照射して、硬化を行った。硬化
後、脱型して、硬化物を120℃で1時間アニール処理
を行い、片面が凸型のマイクロレンズアレイ構造であり
片面が平滑なプラスチックシートを得た。このマイクロ
レンズアレイシートのレンズ径、レンズ部曲率半径、レ
ンズ部ピッチ、厚み、屈折率及び比重は表1に示す通り
である。
Example 1 0.1 part by weight of 2,4,6-trimethylbenzoyldiphenylphosphine oxide as a photopolymerization initiator and 100 parts by weight of 4,4'-bis (β-methacryloyloxyethylthio) diphenylsulfone and benzophenone 0.02 parts by weight was uniformly stirred and mixed. This composition was poured into a mold composed of a microlens array-shaped metal plate in which hemispherical concave portions having a diameter of 1 mm are arranged at a pitch of 1 mm, and a flat glass plate provided via a 1 mm-thick silicon spacer. . Then, curing was performed by irradiating ultraviolet light as scattered light for 3 minutes from a high-pressure mercury lamp having an output of 80 mW / cm 2 50 cm above the glass plate. After curing, the mold was released and the cured product was annealed at 120 ° C. for 1 hour to obtain a plastic sheet having a convex microlens array structure on one side and a smooth surface on one side. The lens diameter, the radius of curvature of the lens portion, the pitch of the lens portion, the thickness, the refractive index, and the specific gravity of the microlens array sheet are as shown in Table 1.

【0069】このマイクロレンズアレイシートを基板と
し、その平滑面側にITO(インジウム・スズ酸化物)
を低温にて0.1μmの厚さにスパッタ成膜した。次
に、6N塩酸(50℃)のエッチング液を用いて、IT
O膜を幅2mmのストライプ状に加工した。このITO
基板をUV/O3 洗浄した。その後、真空蒸着装置内に
設置して、装置内の真空度が10-4Pa以下になるま
で、液体窒素トラップを備えた油拡散ポンプを用いて排
気した後、有機正孔注入層材料として、下記化1に示す
銅フタロシアニンを基板上に20nmの厚さに成膜し
た。この時の蒸着速度は0.3nm/secであった。
The microlens array sheet was used as a substrate, and ITO (indium tin oxide) was provided on the smooth surface side.
At a low temperature to a thickness of 0.1 μm by sputtering. Next, using an etching solution of 6N hydrochloric acid (50 ° C.),
The O film was processed into a stripe shape having a width of 2 mm. This ITO
The substrate was subjected to UV / O 3 cleaning. After that, it is installed in a vacuum evaporation apparatus, and evacuated using an oil diffusion pump equipped with a liquid nitrogen trap until the degree of vacuum in the apparatus becomes 10 −4 Pa or less. Copper phthalocyanine shown in Chemical Formula 1 below was formed on a substrate to a thickness of 20 nm. At this time, the deposition rate was 0.3 nm / sec.

【0070】[0070]

【化1】 Embedded image

【0071】次に、有機正孔輸送材料として、下記化2
に示すN,N’−ジフェニル−N,N’−(α−ナフチ
ル)−1,1’−ビフェニル−4,4’−ジアミンをセ
ラミックルツボに入れ、ルツボの周囲のタンタル線ヒー
ターで加熱して、蒸着を行った。この時のルツボの温度
は160〜170℃の範囲で制御した。蒸着時の真空度
は10-4Paで、蒸着時間は3分10秒で、膜厚60n
mの有機正孔輸送層を得た。
Next, as an organic hole transporting material,
N, N′-diphenyl-N, N ′-(α-naphthyl) -1,1′-biphenyl-4,4′-diamine shown in (1) is placed in a ceramic crucible and heated with a tantalum wire heater around the crucible. And vapor deposition. At this time, the temperature of the crucible was controlled in the range of 160 to 170 ° C. The degree of vacuum at the time of vapor deposition was 10 −4 Pa, the vapor deposition time was 3 minutes and 10 seconds, and the film thickness was 60 n.
m of the organic hole transport layer was obtained.

【0072】[0072]

【化2】 Embedded image

【0073】次に、電子輸送層の材料として、下記化3
に示すアルミニウムの8−ヒドロキシキノリン錯体Al
(C9 6 NO)3 を用いて、上記有機正孔輸送層の上
に同様にして蒸着を行った。この時のルツボの温度は2
30〜270℃の範囲で制御した。蒸着時の真空度は2
×10-6torr、蒸着時間は3分30秒、得られた電
子輸送層の膜厚は75nmであった。
Next, as a material for the electron transporting layer,
Aluminum 8-hydroxyquinoline complex Al
Using (C 9 H 6 NO) 3 , vapor deposition was performed on the organic hole transport layer in the same manner. The temperature of the crucible at this time is 2
The temperature was controlled in the range of 30 to 270 ° C. The degree of vacuum during evaporation is 2
× 10 -6 torr, the deposition time was 3 minutes and 30 seconds, and the thickness of the obtained electron transport layer was 75 nm.

【0074】[0074]

【化3】 Embedded image

【0075】正孔注入層、正孔輸送層及び電子輸送層を
形成した基板に、マグネシウムと銀の合金電極(Mg:
Ag=10:1.5(原子比))よりなる陰極を、二元
同時蒸着法によって膜厚40nmとなるように蒸着して
形成した。蒸着はモリブデンボードを用いて真空度2×
10-4Pa、蒸着時間4分20秒で行い、光沢のある膜
を得た。更に、保護層としてアルミニウムを40nmの
膜厚に蒸着した。
On the substrate on which the hole injection layer, the hole transport layer and the electron transport layer were formed, an alloy electrode of magnesium and silver (Mg:
(Ag = 10: 1.5 (atomic ratio)) was formed by vapor deposition to a film thickness of 40 nm by a dual simultaneous vapor deposition method. Vapor deposition was performed using a molybdenum board with a degree of vacuum of 2 ×.
The deposition was performed at 10 −4 Pa and a deposition time of 4 minutes and 20 seconds to obtain a glossy film. Further, aluminum was deposited to a thickness of 40 nm as a protective layer.

【0076】得られた有機電界発光素子のITO電極側
を正極、MgAg合金膜側を陰極として、6Vの直流電
圧を印加したところ、4mA/cm2 の電流が流れ、発
光した。その時の輝度を測定し、結果を表1に示した。
When a DC voltage of 6 V was applied using the ITO electrode side of the obtained organic electroluminescent device as a positive electrode and the MgAg alloy film side as a cathode, a current of 4 mA / cm 2 flowed to emit light. The luminance at that time was measured, and the results are shown in Table 1.

【0077】実施例2 2mm径の半球状の凹部が2mmピッチで整列している
マイクロレンズアレイ用の型を用いたこと以外は実施例
1と同様にして、表1に示すレンズ径、レンズ部曲率半
径、レンズ部ピッチ、厚み、屈折率及び比重のマイクロ
レンズアレイシートを得、同様にして有機電界発光素子
を製造し、その輝度の測定を行って結果を表1に示し
た。
Example 2 A lens diameter and a lens portion shown in Table 1 were obtained in the same manner as in Example 1 except that a mold for a microlens array in which hemispherical concave portions having a diameter of 2 mm were arranged at a pitch of 2 mm was used. A microlens array sheet having a radius of curvature, a lens portion pitch, a thickness, a refractive index, and a specific gravity was obtained. An organic electroluminescent device was manufactured in the same manner, and the luminance was measured. The results are shown in Table 1.

【0078】実施例3 p−ビス(β−メタクリロイルオキシエチルチオ)キシ
リレン100重量部に、光重合開始剤として2,4,6
−トリメチルベンゾイルジフェニルホスフィンオキサイ
ド0.1重量部及びベンゾフェノン0.02重量部を加
え、均一に攪拌混合した。この組成物を、図3の4に示
されるような直径10μmの光透過部を20μmピッチ
で有するネガ型マスクパターン(1.5mm厚のガラス
板にクロム蒸着マスクしたものを型の内側にマスク面が
くるように設置)と、1mm厚のシリコンスペーサーを
介して設置された透明なガラス板よりなる型に注入し
た。この型から50cm離れて上下にある出力8mW/
cm2 の高圧水銀灯のうち、上方よりネガ型マスクパタ
ーンを通して紫外線を散乱光として1分間照射し、続い
て上下より11分間同時に照射して硬化を行った。その
後、脱型した硬化物を120℃で1時間アニール処理
し、片面が凸型の、表1に示すレンズ径、レンズ部曲率
半径、レンズ部ピッチ、厚み、屈折率及び比重のマイク
ロレンズアレイシートを得た。このシートを基板として
用いたこと以外は実施例1と同様にして有機電界発光素
子を製造し、その輝度の測定を行って結果を表1に示し
た。
Example 3 To 100 parts by weight of p-bis (β-methacryloyloxyethylthio) xylylene was added 2,4,6
0.1 parts by weight of trimethylbenzoyldiphenylphosphine oxide and 0.02 parts by weight of benzophenone were added, and the mixture was stirred and mixed uniformly. A negative mask pattern (a chrome vapor-deposited mask on a 1.5 mm thick glass plate) having a light transmitting portion with a diameter of 10 μm at a pitch of 20 μm as shown in 4 of FIG. And placed in a mold made of a transparent glass plate placed via a 1 mm thick silicon spacer. 8mW / output power 50cm above and below this mold
Among the high-pressure mercury lamps of cm 2 , curing was performed by irradiating ultraviolet rays as scattered light from above through a negative mask pattern for 1 minute, and then simultaneously irradiating from above and below for 11 minutes. Thereafter, the demolded cured product is annealed at 120 ° C. for 1 hour, and a microlens array sheet having a convex surface on one side and having a lens diameter, a lens radius of curvature, a lens pitch, a thickness, a refractive index, and a specific gravity shown in Table 1 shown in Table 1. I got An organic electroluminescent device was manufactured in the same manner as in Example 1 except that this sheet was used as a substrate, and the luminance thereof was measured. The results are shown in Table 1.

【0079】実施例4 直径50μmの光透過部を80μmピッチで有するネガ
型マスクパターンを用いたこと以外は実施例3と同様に
して、表1に示すレンズ径、レンズ部曲率半径、レンズ
部ピッチ、厚み、屈折率及び比重のマイクロレンズアレ
イシートを得た。このシートを基板として用いたこと以
外は実施例1と同様にして有機電界発光素子を製造し、
その輝度の測定を行って結果を表1に示した。
Example 4 A lens diameter, a lens radius of curvature and a lens pitch shown in Table 1 were obtained in the same manner as in Example 3 except that a negative mask pattern having light transmitting portions having a diameter of 50 μm at a pitch of 80 μm was used. , A thickness, a refractive index and a specific gravity of a microlens array sheet were obtained. Except for using this sheet as a substrate, an organic electroluminescent device was manufactured in the same manner as in Example 1,
The luminance was measured and the results are shown in Table 1.

【0080】実施例5 直径100μmの光透過部を110μmピッチで有する
ネガ型マスクパターンを用いたこと以外は実施例3と同
様にして、表1に示すレンズ径、レンズ部曲率半径、レ
ンズ部ピッチ、厚み、屈折率及び比重のマイクロレンズ
アレイシートを得た。このシートを基板として用いたこ
と以外は実施例1と同様にして有機電界発光素子を製造
し、その輝度の測定を行って結果を表1に示した。
Example 5 A lens diameter, a lens radius of curvature, and a lens pitch shown in Table 1 were obtained in the same manner as in Example 3 except that a negative mask pattern having a light transmitting portion having a diameter of 100 μm at a pitch of 110 μm was used. , A thickness, a refractive index and a specific gravity of a microlens array sheet were obtained. An organic electroluminescent device was manufactured in the same manner as in Example 1 except that this sheet was used as a substrate, and the luminance thereof was measured. The results are shown in Table 1.

【0081】実施例6 実施例3の手順と同様にしてマイクロレンズアレイシー
トを作製し、このシートを厚さ1000μmのガラス板
に実施例3で使用した光硬化性液状モノマー組成物を塗
布した上に重ね、光硬化することにより貼り合わせて、
表1に示すレンズ径、レンズ部曲率半径、レンズ部ピッ
チ、厚み、屈折率及び比重の積層基板を製造した。この
積層基板を用いたこと以外は実施例1と同様にして有機
電界発光素子を製造し、その輝度の測定を行って結果を
表1に示した。
Example 6 A microlens array sheet was prepared in the same manner as in Example 3, and this sheet was coated on a 1000 μm-thick glass plate with the photocurable liquid monomer composition used in Example 3. On top of each other.
A laminated substrate having a lens diameter, a lens radius of curvature, a lens pitch, a thickness, a refractive index, and a specific gravity shown in Table 1 was manufactured. An organic electroluminescent device was manufactured in the same manner as in Example 1 except that this laminated substrate was used, and its luminance was measured. The results are shown in Table 1.

【0082】実施例7 実施例3において、光硬化を行った後、クロム蒸着マス
クガラスとシリコンスペーサーを除去することにより、
厚さ1000μmのガラス板上にマイクロレンズアレイ
層が積層された、表1に示すレンズ径、レンズ部曲率半
径、レンズ部ピッチ、厚み、屈折率及び比重の積層基板
を製造した。この積層基板を用いたこと以外は実施例1
と同様にして有機電界発光素子を製造し、その輝度の測
定を行って結果を表1に示した。
Example 7 In Example 3, after photo-curing, the chromium vapor deposition mask glass and the silicon spacer were removed.
A laminated substrate having a lens diameter, a lens radius of curvature, a lens pitch, a thickness, a refractive index, and a specific gravity shown in Table 1 in which a microlens array layer was laminated on a glass plate having a thickness of 1000 μm was manufactured. Example 1 except that this laminated substrate was used.
An organic electroluminescent device was manufactured in the same manner as in Example 1 and the luminance thereof was measured. The results are shown in Table 1.

【0083】比較例1 基板としてマイクロレンズアレイ構造が形成されていな
い両面平滑なガラス板(厚さ、屈折率、比重は表1に示
す通り。)を用いたこと以外は実施例1と同様にして有
機電界発光素子を製造し、その輝度の測定を行って結果
を表1に示した。
Comparative Example 1 The same procedure as in Example 1 was carried out except that a glass plate having no smooth microlens array structure was used on both sides (thickness, refractive index and specific gravity are as shown in Table 1). Thus, an organic electroluminescent device was manufactured, and its luminance was measured. The results are shown in Table 1.

【0084】比較例2 p−ビス(β−メタクリロイルオキシエチルチオ)キシ
リレン100重量部に光重合開始剤として2,4,6−
トリメチルベンゾイルジフェニルホスフィンオキサイド
0.1重量部及びベンゾフェノン0.02重量部を均一
に攪拌混合した。この組成物を厚さ1mmのシリコンス
ペーサーを挟んだ光学研磨ガラスの型に注入し、ガラス
面より距離40cmで上下にある出力80W/cm2
メタルハライドランプの間にて5分間紫外線を照射した
後、脱型し、120℃で1時間アニール処理を行った。
このようにしてマイクロレンズアレイ構造を形成せずに
作成した硬化物を25mm×75mmのスライドガラス
状に切削して、表1に示す厚み、屈折率及び比重のシー
トを得た。このシートを基板として用いたこと以外は実
施例1と同様にして有機電界発光素子を作成し、その輝
度の測定を行って結果を表1に示した。
Comparative Example 2 100, parts by weight of p-bis (β-methacryloyloxyethylthio) xylylene was added with 2,4,6-
0.1 parts by weight of trimethylbenzoyldiphenylphosphine oxide and 0.02 parts by weight of benzophenone were uniformly stirred and mixed. This composition was poured into a mold of optically polished glass sandwiching a silicon spacer of 1 mm in thickness, and irradiated with ultraviolet rays for 5 minutes between metal halide lamps having an output of 80 W / cm 2 above and below at a distance of 40 cm from the glass surface. The mold was removed, and an annealing treatment was performed at 120 ° C. for 1 hour.
The cured product thus formed without forming the microlens array structure was cut into a 25 mm × 75 mm glass slide to obtain a sheet having the thickness, refractive index and specific gravity shown in Table 1. An organic electroluminescent device was prepared in the same manner as in Example 1 except that this sheet was used as a substrate, and its luminance was measured. The results are shown in Table 1.

【0085】[0085]

【表1】 [Table 1]

【0086】[0086]

【発明の効果】以上詳述した通り、本発明の有機電界発
光素子によれば、マイクロレンズアレイ構造の基板によ
る集光作用で、駆動電圧や色素材料等を変えることな
く、高輝度の有機電界発光素子を実現することができ
る。従って、本発明の有機電界発光素子は、高輝度、低
電圧のフラットパネルディスプレイ等を提供するために
工業的に極めて有用な技術である。
As described above in detail, according to the organic electroluminescent device of the present invention, the light-collecting action of the substrate having the microlens array structure enables the high-luminance organic electroluminescent device without changing the driving voltage or the dye material. A light-emitting element can be realized. Therefore, the organic electroluminescent device of the present invention is an industrially extremely useful technique for providing a high-brightness, low-voltage flat panel display or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る基板の構造及び集光作用を説明す
る模式図である。
FIG. 1 is a schematic diagram illustrating a structure and a light condensing function of a substrate according to the present invention.

【図2】マイクロレンズアレイ構造の形成方法の一例を
示す斜視図である。
FIG. 2 is a perspective view illustrating an example of a method for forming a microlens array structure.

【図3】従来の基板の発光光線を説明する模式図であ
る。
FIG. 3 is a schematic diagram illustrating a light beam emitted from a conventional substrate.

【図4】本発明の有機電界発光素子の一実施例を示す模
式的断面図である。
FIG. 4 is a schematic sectional view showing one embodiment of the organic electroluminescent device of the present invention.

【図5】本発明の有機電界発光素子の他の実施例を示す
模式的断面図である。
FIG. 5 is a schematic sectional view showing another embodiment of the organic electroluminescent device of the present invention.

【図6】本発明の有機電界発光素子の別の実施例を示す
模式的断面図である。
FIG. 6 is a schematic sectional view showing another embodiment of the organic electroluminescent device of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 1a レンズ部 1A マイクロレンズアレイ構造 1B ガラス板 2 発光部 3 発光光線 4 ネガ型マスクパターン 5 光硬化性液状モノマー組成物 6 陽極 7 有機発光層 7a 正孔輸送層 7b 電子輸送層 7c 正孔注入層 8 陰極 10,10A,10B 有機電界発光素子 DESCRIPTION OF SYMBOLS 1 Substrate 1a Lens part 1A Microlens array structure 1B Glass plate 2 Light emitting part 3 Emitted light 4 Negative mask pattern 5 Photocurable liquid monomer composition 6 Anode 7 Organic light emitting layer 7a Hole transport layer 7b Electron transport layer 7c Hole Injection layer 8 Cathode 10, 10A, 10B Organic electroluminescent device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板の一方の板面上に、陽極、有機発光
層及び陰極が積層された有機電界発光素子であって、該
基板がプラスチック製マイクロレンズアレイ構造を有す
ることを特徴とする有機電界発光素子。
1. An organic electroluminescent device in which an anode, an organic light emitting layer and a cathode are stacked on one plate surface of a substrate, wherein the substrate has a plastic microlens array structure. Electroluminescent device.
【請求項2】 マイクロレンズアレイ構造が、光硬化性
樹脂からなることを特徴とする請求項1に記載の有機電
界発光素子。
2. The organic electroluminescent device according to claim 1, wherein the microlens array structure is made of a photocurable resin.
【請求項3】 光硬化性樹脂が、多官能(メタ)アクリ
レート化合物含有光硬化性液状モノマーを光硬化した光
硬化性樹脂であることを特徴とする請求項2に記載の有
機電界発光素子。
3. The organic electroluminescent device according to claim 2, wherein the photo-curable resin is a photo-curable resin obtained by photo-curing a photo-curable liquid monomer containing a polyfunctional (meth) acrylate compound.
【請求項4】 マイクロレンズアレイ構造が、マスクを
介した露光により製造されることを特徴とする請求項1
ないし3のいずれか1項に記載の有機電界発光素子。
4. The microlens array structure is manufactured by exposure through a mask.
4. The organic electroluminescent device according to any one of items 3 to 3.
【請求項5】 基板が、ガラス基板上にマイクロレンズ
アレイシートを積層したものであることを特徴とする請
求項1ないし4のいずれか1項に記載の有機電界発光素
子。
5. The organic electroluminescent device according to claim 1, wherein the substrate is formed by laminating a microlens array sheet on a glass substrate.
JP9021528A 1997-02-04 1997-02-04 Organic electric field luminescence element Pending JPH10223367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9021528A JPH10223367A (en) 1997-02-04 1997-02-04 Organic electric field luminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9021528A JPH10223367A (en) 1997-02-04 1997-02-04 Organic electric field luminescence element

Publications (1)

Publication Number Publication Date
JPH10223367A true JPH10223367A (en) 1998-08-21

Family

ID=12057466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9021528A Pending JPH10223367A (en) 1997-02-04 1997-02-04 Organic electric field luminescence element

Country Status (1)

Country Link
JP (1) JPH10223367A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008850A (en) * 2000-04-21 2002-01-11 Semiconductor Energy Lab Co Ltd Self-luminous device and electric appliance using the same
JP2002260845A (en) * 2001-03-02 2002-09-13 Matsushita Electric Ind Co Ltd Organic electroluminescence element, display device or light-emitting source using the same
WO2003037041A1 (en) * 2001-10-25 2003-05-01 Harison Toshiba Lighting Corp. Light emitting apparatus
JP2003197364A (en) * 2001-12-27 2003-07-11 Goyo Paper Working Co Ltd El light emitting device with high light emission efficiency
FR2836584A1 (en) * 2002-02-27 2003-08-29 Thomson Licensing Sa Electro-luminescent panel for colour image display includes optical coupling elements between light cells and output surface
WO2003077325A1 (en) * 2002-03-12 2003-09-18 Automotive Lighting Rear Lamps Italia S.P.A. Optical lighting device and method to produce lighting devices adopting said optical device
JP2004020746A (en) * 2002-06-13 2004-01-22 Sumitomo Bakelite Co Ltd Substrate for light emitting device and light emitting device using same
JP2004047383A (en) * 2002-07-15 2004-02-12 Rohm Co Ltd Organic electroluminescent display element and manufacturing method of the same
EP1443563A2 (en) * 2003-02-03 2004-08-04 Seiko Epson Corporation Light emitting display panel and method of manufacturing the same
WO2004112434A1 (en) * 2003-06-13 2004-12-23 Kabushiki Kaisha Toyota Jidoshokki El device, process for manufacturing the same, and liquid crystal display employing el device
US6844888B2 (en) * 2001-03-29 2005-01-18 Matsushita Electric Industrial Co., Ltd. Image writing device, light source, light source unit, microlens and fabrication method for microlens
FR2858859A1 (en) * 2003-08-14 2005-02-18 Thomson Licensing Sa Lighting panel for displaying image, has light extractors, each with light input section that is optically coupled to electroluminescent organic layer, where zone of organic layer is optically coupled with extractors
JP2005175417A (en) * 2003-07-28 2005-06-30 Ricoh Co Ltd Light emitting element array, light writing unit, and image forming apparatus
DE102004015584A1 (en) * 2004-03-30 2005-10-20 Fer Fahrzeugelektrik Gmbh Electroluminescent light has flat capacitor on flat rear of plastic film transparent to light from pigment layer so transparent cover electrode is closer to plastic film than base electrode; film has optically active structures on front
US6998775B2 (en) 2000-10-25 2006-02-14 Matsushita Electric Industrial Co., Ltd. Layered, light-emitting element
KR100669686B1 (en) * 2002-08-26 2007-01-17 삼성에스디아이 주식회사 Organic electro luminescence display device and method of manufacturing the same
JP2007059119A (en) * 2005-08-23 2007-03-08 Konica Minolta Holdings Inc Organic electroluminescence element and organic electroluminescence display
KR100706730B1 (en) * 2000-10-18 2007-04-13 샤프 가부시키가이샤 Luminous display element
KR100730113B1 (en) * 2004-04-03 2007-06-19 삼성에스디아이 주식회사 Flat panel display
KR100730114B1 (en) * 2004-04-19 2007-06-19 삼성에스디아이 주식회사 Flat panel display
WO2007130858A1 (en) * 2006-05-03 2007-11-15 3M Innovative Properties Company Methods of making led extractor arrays
WO2007130779A1 (en) * 2006-05-03 2007-11-15 3M Innovative Properties Company Led extractor composed of high index glass
CN100367531C (en) * 2003-09-15 2008-02-06 统宝光电股份有限公司 Organic luminous component with optical efficiency raising structure
US7329611B2 (en) * 2002-04-11 2008-02-12 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
CN100373655C (en) * 2004-05-09 2008-03-05 友达光电股份有限公司 Organic luminescent display and manufacturing method thereof
JP2008066180A (en) * 2006-09-08 2008-03-21 Seiko Epson Corp Lighting device and liquid crystal display
JP2008218415A (en) * 2007-03-07 2008-09-18 Samsung Sdi Co Ltd Organic light emitting display device, and method of manufacturing the same
US7511419B2 (en) 2002-05-14 2009-03-31 Casio Computer Co., Ltd. Luminescent panel having a reflecting film to reflect light outwardly which is shaped to condense the reflected light
JP2009110873A (en) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd Display device
US7674407B2 (en) 2004-07-09 2010-03-09 Seiko Epson Corporation Method for manufacturing microlens and method for manufacturing organic electroluminescence element
US7692379B2 (en) 2005-02-07 2010-04-06 Samsung Electronics Co., Ltd. Display device with reflective structure for improved light emission
KR100977964B1 (en) 2004-02-04 2010-08-24 사천홍시현시기건유한공사 Organic Electroluminescence device
KR100980801B1 (en) 2003-12-30 2010-09-10 엘지디스플레이 주식회사 Bottom Emission Type Organic Electroluminescent Device
JP2010245056A (en) * 2000-04-21 2010-10-28 Semiconductor Energy Lab Co Ltd Self-light emitting device and electrical appliance
US7892382B2 (en) 2003-11-18 2011-02-22 Samsung Mobile Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including a color conversion element
JP2011113973A (en) * 2009-11-24 2011-06-09 Samsung Mobile Display Co Ltd Organic light-emitting element, lighting device including the same, and organic light-emitting display device equipped with lighting device
JP2011170224A (en) * 2010-02-22 2011-09-01 Konica Minolta Opto Inc Method for manufacturing optical element
WO2012111361A1 (en) * 2011-02-17 2012-08-23 日東電工株式会社 Surface light-emitting object
JP2012178341A (en) * 2011-01-31 2012-09-13 Semiconductor Energy Lab Co Ltd Method and apparatus for manufacturing light-emitting device
JP2013077412A (en) * 2011-09-30 2013-04-25 Toppan Printing Co Ltd El element, illumination apparatus employing the same, display device and liquid crystal display device
US8569948B2 (en) 2004-12-28 2013-10-29 Samsung Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including an optical spacer
KR101335369B1 (en) * 2009-09-01 2013-12-02 파나소닉 주식회사 Organic luminescent element

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923171B2 (en) 2000-04-21 2018-03-20 Semiconductor Energy Laboratory Co., Ltd. Self-light emitting device and electrical appliance using the same
JP2002008850A (en) * 2000-04-21 2002-01-11 Semiconductor Energy Lab Co Ltd Self-luminous device and electric appliance using the same
US8686624B2 (en) 2000-04-21 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Self-light emitting device and electrical appliance using the same
JP2010245056A (en) * 2000-04-21 2010-10-28 Semiconductor Energy Lab Co Ltd Self-light emitting device and electrical appliance
KR100706730B1 (en) * 2000-10-18 2007-04-13 샤프 가부시키가이샤 Luminous display element
US7741771B2 (en) 2000-10-25 2010-06-22 Panasonic Corporation Light-emitting element and display device and lighting device using same
US7342246B2 (en) 2000-10-25 2008-03-11 Matsushita Electric Industrial Co., Ltd. Light-emitting element and display device and lighting device using same
US6998775B2 (en) 2000-10-25 2006-02-14 Matsushita Electric Industrial Co., Ltd. Layered, light-emitting element
JP2002260845A (en) * 2001-03-02 2002-09-13 Matsushita Electric Ind Co Ltd Organic electroluminescence element, display device or light-emitting source using the same
US6844888B2 (en) * 2001-03-29 2005-01-18 Matsushita Electric Industrial Co., Ltd. Image writing device, light source, light source unit, microlens and fabrication method for microlens
WO2003037041A1 (en) * 2001-10-25 2003-05-01 Harison Toshiba Lighting Corp. Light emitting apparatus
JP2003197364A (en) * 2001-12-27 2003-07-11 Goyo Paper Working Co Ltd El light emitting device with high light emission efficiency
FR2836584A1 (en) * 2002-02-27 2003-08-29 Thomson Licensing Sa Electro-luminescent panel for colour image display includes optical coupling elements between light cells and output surface
WO2003077325A1 (en) * 2002-03-12 2003-09-18 Automotive Lighting Rear Lamps Italia S.P.A. Optical lighting device and method to produce lighting devices adopting said optical device
US7678454B2 (en) 2002-04-11 2010-03-16 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
US7643100B2 (en) 2002-04-11 2010-01-05 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
US7525732B2 (en) 2002-04-11 2009-04-28 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
US7329611B2 (en) * 2002-04-11 2008-02-12 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
US7511419B2 (en) 2002-05-14 2009-03-31 Casio Computer Co., Ltd. Luminescent panel having a reflecting film to reflect light outwardly which is shaped to condense the reflected light
JP2004020746A (en) * 2002-06-13 2004-01-22 Sumitomo Bakelite Co Ltd Substrate for light emitting device and light emitting device using same
JP2004047383A (en) * 2002-07-15 2004-02-12 Rohm Co Ltd Organic electroluminescent display element and manufacturing method of the same
KR100669686B1 (en) * 2002-08-26 2007-01-17 삼성에스디아이 주식회사 Organic electro luminescence display device and method of manufacturing the same
EP1443563A3 (en) * 2003-02-03 2005-04-27 Seiko Epson Corporation Light emitting display panel and method of manufacturing the same
EP1443563A2 (en) * 2003-02-03 2004-08-04 Seiko Epson Corporation Light emitting display panel and method of manufacturing the same
WO2004112434A1 (en) * 2003-06-13 2004-12-23 Kabushiki Kaisha Toyota Jidoshokki El device, process for manufacturing the same, and liquid crystal display employing el device
JP2005175417A (en) * 2003-07-28 2005-06-30 Ricoh Co Ltd Light emitting element array, light writing unit, and image forming apparatus
FR2858859A1 (en) * 2003-08-14 2005-02-18 Thomson Licensing Sa Lighting panel for displaying image, has light extractors, each with light input section that is optically coupled to electroluminescent organic layer, where zone of organic layer is optically coupled with extractors
WO2005022659A3 (en) * 2003-08-14 2005-06-16 Thomson Licensing Sa Electroluminescent panel provided with light extraction elements
CN100367531C (en) * 2003-09-15 2008-02-06 统宝光电股份有限公司 Organic luminous component with optical efficiency raising structure
US7892382B2 (en) 2003-11-18 2011-02-22 Samsung Mobile Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including a color conversion element
KR100980801B1 (en) 2003-12-30 2010-09-10 엘지디스플레이 주식회사 Bottom Emission Type Organic Electroluminescent Device
KR100977964B1 (en) 2004-02-04 2010-08-24 사천홍시현시기건유한공사 Organic Electroluminescence device
DE102004015584A1 (en) * 2004-03-30 2005-10-20 Fer Fahrzeugelektrik Gmbh Electroluminescent light has flat capacitor on flat rear of plastic film transparent to light from pigment layer so transparent cover electrode is closer to plastic film than base electrode; film has optically active structures on front
KR100730113B1 (en) * 2004-04-03 2007-06-19 삼성에스디아이 주식회사 Flat panel display
US7527398B2 (en) 2004-04-03 2009-05-05 Samsung Mobile Display Co., Ltd. Flat panel display
US7733019B2 (en) 2004-04-19 2010-06-08 Samsung Mobile Display Co., Ltd. Flat panel display device with a lens sheet having condensing lenses thereon
KR100730114B1 (en) * 2004-04-19 2007-06-19 삼성에스디아이 주식회사 Flat panel display
JP2011216492A (en) * 2004-04-19 2011-10-27 Samsung Mobile Display Co Ltd Method for manufacturing flat display device
CN103813562A (en) * 2004-04-19 2014-05-21 三星显示有限公司 Flat panel display device
CN100373655C (en) * 2004-05-09 2008-03-05 友达光电股份有限公司 Organic luminescent display and manufacturing method thereof
US7674407B2 (en) 2004-07-09 2010-03-09 Seiko Epson Corporation Method for manufacturing microlens and method for manufacturing organic electroluminescence element
US8569948B2 (en) 2004-12-28 2013-10-29 Samsung Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including an optical spacer
US9918370B2 (en) 2004-12-28 2018-03-13 Samsung Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including an optical spacer
US7692379B2 (en) 2005-02-07 2010-04-06 Samsung Electronics Co., Ltd. Display device with reflective structure for improved light emission
JP2007059119A (en) * 2005-08-23 2007-03-08 Konica Minolta Holdings Inc Organic electroluminescence element and organic electroluminescence display
US7423297B2 (en) 2006-05-03 2008-09-09 3M Innovative Properties Company LED extractor composed of high index glass
WO2007130779A1 (en) * 2006-05-03 2007-11-15 3M Innovative Properties Company Led extractor composed of high index glass
WO2007130858A1 (en) * 2006-05-03 2007-11-15 3M Innovative Properties Company Methods of making led extractor arrays
JP4666285B2 (en) * 2006-09-08 2011-04-06 セイコーエプソン株式会社 Liquid crystal display device
JP2008066180A (en) * 2006-09-08 2008-03-21 Seiko Epson Corp Lighting device and liquid crystal display
JP2008218415A (en) * 2007-03-07 2008-09-18 Samsung Sdi Co Ltd Organic light emitting display device, and method of manufacturing the same
JP2009110873A (en) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd Display device
KR101335369B1 (en) * 2009-09-01 2013-12-02 파나소닉 주식회사 Organic luminescent element
JP2011113973A (en) * 2009-11-24 2011-06-09 Samsung Mobile Display Co Ltd Organic light-emitting element, lighting device including the same, and organic light-emitting display device equipped with lighting device
US8410477B2 (en) 2009-11-24 2013-04-02 Samsung Display Co., Ltd. Organic light emitting device, lighting apparatus and organic light emitting display apparatus
JP2011170224A (en) * 2010-02-22 2011-09-01 Konica Minolta Opto Inc Method for manufacturing optical element
JP2012178341A (en) * 2011-01-31 2012-09-13 Semiconductor Energy Lab Co Ltd Method and apparatus for manufacturing light-emitting device
WO2012111361A1 (en) * 2011-02-17 2012-08-23 日東電工株式会社 Surface light-emitting object
US9147861B2 (en) 2011-02-17 2015-09-29 Nitto Denko Corporation Surface light-emitting object
JP2013077412A (en) * 2011-09-30 2013-04-25 Toppan Printing Co Ltd El element, illumination apparatus employing the same, display device and liquid crystal display device

Similar Documents

Publication Publication Date Title
JPH10223367A (en) Organic electric field luminescence element
TWI568051B (en) Organic electroluminescent elements
JP5575434B2 (en) Manufacturing method of substrate with electrode
JP4947095B2 (en) Light extraction structure
US20050110384A1 (en) Lighting elements and methods
WO2009119889A1 (en) Organic electroluminescent device
JP2005531915A (en) Buffer layer for organic electroluminescent devices, and methods of manufacture and use
JPH10214682A (en) Manufacturing device and manufacture of organic electroluminescent element
JP2006318837A (en) Organic electroluminescent element and organic electroluminescent device
WO2013080798A1 (en) Light-diffusing transfer material, method for forming light diffusion layer, organic electroluminescent device, and method for manufacturing organic electroluminescent device
JP2007053089A (en) Upper part emission device, and illumination device
JP2002522890A (en) Optoelectronic component and method of manufacturing the same
WO2009119558A1 (en) Organic electroluminescent device and method for manufacturing the same
CN1902771A (en) Thermal transfer of light-emitting dendrimers
JP2017091695A (en) Organic electroluminescent element, lighting system, surface light source, and display device
JP4164885B2 (en) Organic electroluminescent device and manufacturing method thereof
JP5471162B2 (en) Organic electroluminescence device
JP4030608B2 (en) Organic electroluminescent device and manufacturing method thereof
JP2007335327A (en) Organic electroluminescence element, and method for manufacturing the element
JPH08288064A (en) Manufacture of organic electroluminescent element
JP4088471B2 (en) Organic light emitting device and method for manufacturing the same
JP5216112B2 (en) Planar light emitter
JP4853605B2 (en) Organic EL display
JP2008021575A (en) Organic electroluminescent element and manufacturing method of same
JP2010080308A (en) Organic electroluminescence element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213