JP2009110873A - Display device - Google Patents

Display device Download PDF

Info

Publication number
JP2009110873A
JP2009110873A JP2007283828A JP2007283828A JP2009110873A JP 2009110873 A JP2009110873 A JP 2009110873A JP 2007283828 A JP2007283828 A JP 2007283828A JP 2007283828 A JP2007283828 A JP 2007283828A JP 2009110873 A JP2009110873 A JP 2009110873A
Authority
JP
Japan
Prior art keywords
light
layer
light extraction
extraction layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007283828A
Other languages
Japanese (ja)
Inventor
Masaru Okubo
優 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2007283828A priority Critical patent/JP2009110873A/en
Publication of JP2009110873A publication Critical patent/JP2009110873A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spontaneous emission display device, capable of improving light takeout efficiency from a light emitting layer, and achieving high front luminance, and high resolution. <P>SOLUTION: On a substrate 1, a light emitting element comprising an anode 2, the light emitting layer 3, and a cathode 4 is laminated, and the light emitting element is sealed with a sealing film 5. On the light emitting surface side of the sealing film 5, a light takeout layer 7 is integrated with the sealing film. On the light incident surface side of the light takeout layer 7, projections are formed in one-to-one correspondence to the position of the light emitting element. In a gap 6 between the projection and the projection, material of a lower index of refraction than the index of refraction of the light takeout layer is filled. Light advancing in diagonal directions which is totally reflected on the surface of each layer without being taken out in conventional devices is totally reflected on the projections on the light takeout layer to be directed upward, so that the light can be taken out. Due to the presence of the projections, mixture of light from adjoining picture elements is hard to occur, thereby resolution can be improved compared to conventional display devices. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機EL素子等の発光素子とそれを用いた表示装置に関するものであり、発光素子の取り出し効率向上のための改良に関する。   The present invention relates to a light emitting element such as an organic EL element and a display device using the same, and relates to an improvement for improving the extraction efficiency of the light emitting element.

一般に、有機EL素子は、自発光型の素子であるため視認性が高く、薄型化が可能なため、フラットパネルディスプレイへの応用が期待されている。有機材料を用いたELに関する研究は古く、様々な研究がなされてきたが、当初は発光効率の悪さから中々実用化には至らなかった。
しかし、1987年にコダック社のC.W.Tang 等により、正孔輸送層と発光層の2層に分けた機能分離型有機EL素子が提案され、従来と比べて非常に高い発光効率を得ることが可能になった。それ以降、有機EL素子の研究が非常に盛んになり、特に有機EL素子は数V程度の低い電圧で高輝度の面発光が可能で、かつ蛍光物質を選択することで任意の色調の発光を行えることから、フラットパネルディスプレイや液晶表示バックライト、照明用光源として実用化を目指した開発が精力的になされている。
In general, an organic EL element is a self-luminous element, and thus has high visibility and can be thinned. Therefore, application to a flat panel display is expected. Research on EL using organic materials is old, and various researches have been made, but at first, due to poor luminous efficiency, it was not practically used.
However, in 1987, CWTang of Kodak Co., Ltd. proposed a functionally separated organic EL device that was divided into a hole transport layer and a light-emitting layer, and it was possible to obtain much higher light emission efficiency than conventional ones. became. Since then, research on organic EL devices has become very active. In particular, organic EL devices can emit light with high brightness at a voltage as low as several volts, and emit light of any color tone by selecting a fluorescent material. Since it can be performed, development aimed at practical use as a flat panel display, a liquid crystal display backlight, and a light source for illumination has been energetically performed.

一般的な有機EL素子の構造は、例えば図4に示すように、ガラス基板100に透光性ITO膜110をスパッタなどによって形成し、このITO膜110の表面に感光性レジストを塗布して露光・現像後、塩酸などのエッチング液でITO膜をストライプ状にエッチングして透明電極パターンを形成する。そして、その表面にトリフェニルアミン系材料(TPD)からなる正孔輸送層120を設け、その上にAlq3等のアルミニウム錯体からなる電子輸送層140を兼ねる発光層130を積層して有機層を形成する。さらにAl、Li、Ag、Mg、Inや、これらの合金からなる陰極150を上記透明電極パターンと直交させた向きにストライプ状に真空蒸着等の方法で形成した構造となる。   For example, as shown in FIG. 4, a general organic EL element has a structure in which a light-transmitting ITO film 110 is formed on a glass substrate 100 by sputtering, and a photosensitive resist is applied to the surface of the ITO film 110 to perform exposure. After development, the ITO film is etched into a stripe shape with an etchant such as hydrochloric acid to form a transparent electrode pattern. Then, a hole transport layer 120 made of a triphenylamine-based material (TPD) is provided on the surface, and a light emitting layer 130 also serving as an electron transport layer 140 made of an aluminum complex such as Alq3 is laminated thereon to form an organic layer. To do. Further, the cathode 150 made of Al, Li, Ag, Mg, In, or an alloy thereof is formed in a stripe shape in a direction perpendicular to the transparent electrode pattern by a method such as vacuum deposition.

ここで、透明電極110と背面電極150に電圧を印加すると、両者の電極の交点において、正孔輸送層120から正孔が背面電極150方向に、電子輸送層140の電子が透明電極110方向に移動し、両層の境界付近で電子と正孔が結合して発光する。放射された光は全方位へ進行し、透明電極110側へ進行した光はそのまま透過してガラス基板100から外部へ放出される。背面電極150側へ進行した光は電極150により反射した後、透明電極110側へ進行し、外部へ放出される。
特開昭64−7635号公報 特開平6−32307号公報
Here, when a voltage is applied to the transparent electrode 110 and the back electrode 150, holes from the hole transport layer 120 in the direction of the back electrode 150 and electrons in the electron transport layer 140 in the direction of the transparent electrode 110 at the intersection of both electrodes. It moves and emits light by combining electrons and holes near the boundary between both layers. The emitted light travels in all directions, and the light traveling toward the transparent electrode 110 is transmitted as it is and emitted from the glass substrate 100 to the outside. The light traveling toward the back electrode 150 is reflected by the electrode 150, travels toward the transparent electrode 110, and is emitted to the outside.
JP-A 64-7635 JP-A-6-32307

ところで、このようなガラス基板100を透過させて外部へ取り出す一般的な有機ELの構造を用いた場合、エネルギー変換効率が非常に低いため、これを改善することが大きな課題となっている。有機ELの発光効率は、蛍光体の発光効率が約25%であり、蛍光体から放出された光のうち有機EL素子の外部へと取り出される割合である光取り出し効率が約20%である。これらを合わせると有機EL素子のエネルギー変換効率は5%程度に過ぎない。   By the way, when a general organic EL structure that transmits through the glass substrate 100 and takes out to the outside is used, the energy conversion efficiency is very low. The luminous efficiency of the organic EL is that the phosphor has a luminous efficiency of about 25%, and the light extraction efficiency that is the ratio of the light emitted from the phosphor that is extracted outside the organic EL element is about 20%. Together, the energy conversion efficiency of the organic EL element is only about 5%.

特に、従来の有機ELの構造では、例えば図5に示すように、蛍光体から放出された光は、有機層140〜120、透明電極110、ガラス基板100の屈折率差があるために起こる全反射効果によって光が閉じ込められるため、素子外部へと光を効率的に取り出すことができない。例えば、有機層140〜120の屈折率をN=1.7、透明電極110の屈折率をN=2.0、ガラス基板100の屈折率をN=1.5とすると、有機層140〜120から透明電極110へ透過する光は全発光光線の約47%となり、透明電極110からガラス基板100へ透過する光線は34%、ガラス基板100から大気層へ取り出される光線は19%となり、80%近い光線は界面での全反射により無駄に失われてしまうことになる(技術情報協会「有機ELディスプレイにおける高輝度・高効率・超寿命化技術」P106)。このように、従来の有機EL素子の構成は、光の取り出し効率が低く発光層からの光を有効利用できていないという問題点を有する。   In particular, in the conventional organic EL structure, as shown in FIG. 5, for example, the light emitted from the phosphor is entirely caused by the difference in refractive index between the organic layers 140 to 120, the transparent electrode 110, and the glass substrate 100. Since the light is confined by the reflection effect, the light cannot be efficiently extracted outside the device. For example, when the refractive index of the organic layers 140 to 120 is N = 1.7, the refractive index of the transparent electrode 110 is N = 2.0, and the refractive index of the glass substrate 100 is N = 1.5, the organic layers 140 to 120 are used. The light transmitted from the transparent electrode 110 to the transparent electrode 110 is about 47% of the total emitted light, the light transmitted from the transparent electrode 110 to the glass substrate 100 is 34%, and the light extracted from the glass substrate 100 to the atmospheric layer is 19%, 80%. Near rays of light are lost in vain due to total reflection at the interface (Technical Information Association “Technology for High Brightness, High Efficiency, and Long Life in Organic EL Displays” P106). As described above, the configuration of the conventional organic EL element has a problem that light extraction efficiency is low and light from the light emitting layer cannot be effectively used.

そこで従来は、このような光取り出し効率を改善するために様々な手法が提案されている。例えば、発光層を反射電極で挟み、発光層内部を導波した光を端面から取り出し、基板上に設置したマイクロミラーにより正面方向へ反射させることで光取り出し効率の改善が試みられている。
しかしこの方法は、発光素子のサイズが大きい場合は有効であるが、ドットマトリクスディスプレイのように発光素子が微細化すると、各素子に対応したマイクロミラーを形成することが非常に困難になる。
Therefore, conventionally, various methods have been proposed to improve such light extraction efficiency. For example, an attempt has been made to improve light extraction efficiency by sandwiching a light emitting layer between reflective electrodes, extracting light guided through the light emitting layer from an end surface, and reflecting the light in the front direction by a micromirror placed on the substrate.
However, this method is effective when the size of the light-emitting element is large, but if the light-emitting element is miniaturized like a dot matrix display, it becomes very difficult to form a micromirror corresponding to each element.

また、例えばガラス基板にメサ型の凹凸を形成し、凹凸頂部に有機EL素子を形成することで、基板内の導波モードを抑制する方法も提案されている。
しかしこの場合、基板の加工が困難であるという問題点がある。
In addition, for example, a method of suppressing a waveguide mode in a substrate by forming mesa-shaped unevenness on a glass substrate and forming an organic EL element on the top of the unevenness has been proposed.
However, in this case, there is a problem that it is difficult to process the substrate.

また、別の方法としては、マイクロレンズをガラス基板表面に形成する方法が提案されている。この方法を用いれば、本来であればガラス基板表面で全反射されていた臨界角以上の光を、レンズの屈折効果により外部へ取り出すことができるため、光取り出し効率は向上する。
しかし、この場合、基板の法線方向から大きく傾いた光線がレンズに入射すると、レンズの集光効果が働かず、側面方向へ光が無駄に失われてしまうため正面輝度が十分に高められない。また、隣接する画素からの光が同じレンズに入射して混色することにより画面の解像度が低下する要因となる。
As another method, a method of forming a microlens on the surface of a glass substrate has been proposed. If this method is used, light having a critical angle or more that was originally totally reflected on the surface of the glass substrate can be extracted to the outside due to the refractive effect of the lens, so that the light extraction efficiency is improved.
However, in this case, if a light beam greatly tilted from the normal direction of the substrate is incident on the lens, the condensing effect of the lens does not work, and light is lost in the side direction, so the front luminance is not sufficiently increased. . In addition, light from adjacent pixels enters the same lens and mixes colors, causing a reduction in screen resolution.

そこで本発明は、上記問題点を解決し、取り出し効率が高く、さらに正面輝度と解像度が高い有機EL発光素子を実現できる表示装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a display device that can solve the above-described problems and can realize an organic EL light-emitting element with high extraction efficiency and high front luminance and resolution.

上述の目的を達成するため、本発明の表示装置は、基板と、前記基板上に形成された自発光型素子と、前記自発光型素子の発光面側に対向配置された光取り出し層と、前記基板と光取り出し層との間に充填され、前記自発光型素子を包囲して基板と光取り出し層を一体化する透明の封止膜とを有し、前記光取り出し層は、前記自発光型素子との対向面に凸部を有するとともに、隣接する凸部と凸部の間に凹部を有し、前記凹部に前記光取り出し層の屈折率よりも低い屈折率の材料によって充填された低屈折材料層を有することを特徴とする。   In order to achieve the above object, a display device of the present invention includes a substrate, a self-luminous element formed on the substrate, a light extraction layer disposed to face the light emitting surface of the self-luminous element, A transparent sealing film that is filled between the substrate and the light extraction layer and surrounds the self-light-emitting element and integrates the substrate and the light extraction layer; and the light extraction layer includes the self-light-emitting layer. A convex portion on a surface facing the mold element, a concave portion between adjacent convex portions, and the concave portion filled with a material having a refractive index lower than that of the light extraction layer. It has a refractive material layer.

本発明の表示装置によれば、自発光型素子の発光面と対向配置された光取り出し層の光入射面に、自発光型素子の位置に対応して凸部を形成するとともに、隣接する凸部と凸部の間の凹部に光取り出し層の屈折率よりも低い屈折率の低屈折材料層を充填したことから、発光素子から放出された斜め方向の光を光取り出し層の傾斜面によって正面方向へ屈折させることができ、画面の正面輝度の向上や取出し効率の向上を図ることができる効果がある。   According to the display device of the present invention, a convex portion is formed on the light incident surface of the light extraction layer disposed opposite to the light emitting surface of the self light emitting element corresponding to the position of the self light emitting element, and the adjacent convex Since the low refractive material layer having a refractive index lower than the refractive index of the light extraction layer is filled in the concave portion between the convex portion and the convex portion, the oblique light emitted from the light emitting element is fronted by the inclined surface of the light extraction layer. The screen can be refracted in the direction, and the front luminance of the screen can be improved and the extraction efficiency can be improved.

以下、本発明の実施の形態を詳細に説明する。
図1〜図3は本発明の実施の形態による表示装置の積層構造を示す断面図であり、図1は光取り出し層の光射出面側が平面の場合(第1の例)を示し、図2は光取り出し層の光入射面側の凸部傾斜面が一部曲面を含む場合(第2の例)を示している。また、図3は光取り出し層の光射出面側に凸部が設けられている場合(第3の例)を示している。
Hereinafter, embodiments of the present invention will be described in detail.
1 to 3 are cross-sectional views showing a laminated structure of a display device according to an embodiment of the present invention, and FIG. 1 shows a case where a light emission surface side of a light extraction layer is a plane (first example). Shows a case where the convex inclined surface on the light incident surface side of the light extraction layer partially includes a curved surface (second example). FIG. 3 shows a case where a convex portion is provided on the light exit surface side of the light extraction layer (third example).

図1に示すように、本実施の形態による第1の例の表示装置は、基板1の表面に陽極2、発光層3、陰極4からなる自発光型素子が形成されており、これらの素子は透明媒質からなる封止膜5により封止されている。
そして、封止膜5の観察者側には光取り出し層7が設けられ、この光取り出し層7と基板1は封止膜5を介して一体化されている。
さらに、光取り出し層7の発光素子側には発光素子の位置に対応して凸部7aが形成されており、さらに凸部7aと凸部7aの間6には光取出し層7よりも低い屈折率を持つ材料(低屈折材料層)により充填されている。
As shown in FIG. 1, in the display device of the first example according to the present embodiment, a self-luminous element comprising an anode 2, a light emitting layer 3 and a cathode 4 is formed on the surface of a substrate 1, and these elements are formed. Is sealed with a sealing film 5 made of a transparent medium.
A light extraction layer 7 is provided on the viewer side of the sealing film 5, and the light extraction layer 7 and the substrate 1 are integrated via the sealing film 5.
Further, a convex portion 7a is formed on the light-emitting element side of the light extraction layer 7 corresponding to the position of the light-emitting element, and the refractive index lower than the light extraction layer 7 is between the convex portion 7a and the convex portion 7a. It is filled with a material having a refractive index (low refractive material layer).

このような表示装置において、基板1上の自発光型素子から放射された光は全方位へ進行するが、このうち、従来では大気層との界面で全反射して外に取り出すことのできなかった斜め方向へ進行する光線L2が、光取り出し層7の凸部7aの傾斜面で全反射されるため、外部へ光を取り出すことが可能になる。
なお、凸形状としては、素子からの光を効果的に正面方向へ反射させるために、光射出面側に開く形で傾斜がついていることが望ましい。例えば素子の位置に円錐、三角錐、四角錐などの角錐、円錐台もしくは角錐台形状、または素子の側に凸の曲面形状を付与することにより、素子から放出した斜め方向の光を傾斜面で全反射させて効果的に外部へ取り出すことができる。或いは光取り出し層7の光入射面側にV字型の溝(凹部)を形成することでも同様の効果を得ることができる。
また、隣接する画素からの光線は、凸部7aの傾斜面によって遮られているため混色がおこりにくく、本例の構成を用いることで解像度の良いディスプレイを提供することができる。
In such a display device, the light emitted from the self-luminous element on the substrate 1 travels in all directions, but conventionally, it is totally reflected at the interface with the atmospheric layer and cannot be extracted outside. Since the light beam L2 traveling in the oblique direction is totally reflected by the inclined surface of the convex portion 7a of the light extraction layer 7, light can be extracted to the outside.
The convex shape is desirably inclined so as to open to the light exit surface side in order to effectively reflect light from the element in the front direction. For example, by giving a pyramid such as a cone, a triangular pyramid, a quadrangular pyramid, a truncated cone or a truncated pyramid shape at the element position, or a convex curved surface shape on the element side, oblique light emitted from the element is reflected on the inclined surface. It can be taken out effectively by total reflection. Alternatively, the same effect can be obtained by forming a V-shaped groove (concave portion) on the light incident surface side of the light extraction layer 7.
In addition, since light rays from adjacent pixels are blocked by the inclined surface of the convex portion 7a, color mixing is unlikely to occur, and a display with good resolution can be provided by using the configuration of this example.

また、図2に示す本実施の形態による第2の例の表示装置は、図1に示した凸部7aの傾斜面を曲面にしたものである。   Further, the display device of the second example according to the present embodiment shown in FIG. 2 has a curved surface of the inclined surface of the convex portion 7a shown in FIG.

さらに、図3に示すように、本実施の形態による第3の例の表示装置は、光取り出し層7の光射出面側に、発光素子の位置に対応して凸部8が形成されている。この凸部8を形成することで、発光素子から放出された斜め方向の光を正面方向へ屈折させることができ、画面の正面輝度を上げることができる。凸部形状としては、マイクロレンズ、レンチキュラーレンズ、フレネルレンズのようなレンズ構造や、三角錐台、四角錐台のような角錐台構造、三角錐や四角錐のような角錐、円錐のような錐体が挙げられる。   Furthermore, as shown in FIG. 3, in the display device of the third example according to the present embodiment, a convex portion 8 is formed on the light emission surface side of the light extraction layer 7 corresponding to the position of the light emitting element. . By forming the convex portion 8, the oblique light emitted from the light emitting element can be refracted in the front direction, and the front luminance of the screen can be increased. The convex shape includes a lens structure such as a microlens, a lenticular lens, and a Fresnel lens, a pyramid structure such as a triangular frustum and a quadrangular pyramid, a pyramid such as a triangular pyramid and a quadrangular pyramid, and a cone like a cone. The body is mentioned.

なお、図1に示す第1の例において、光取り出し層7の光入射面側の凸部7aと凸部7aの間が空気層により充填されていてもよい。低屈折率層を空気層とすることで界面の臨界角が小さくなるため、発光素子からの光をより効率的に全反射させることができる。   In the first example shown in FIG. 1, the space between the convex portions 7a on the light incident surface side of the light extraction layer 7 and the convex portions 7a may be filled with an air layer. By making the low refractive index layer an air layer, the critical angle of the interface becomes small, so that light from the light emitting element can be totally reflected more efficiently.

以下、本実施の形態の詳細な構成及び作用について具体的に説明する。
まず、図1において、基板1上の発光素子から放出される光は、拡散光として全方位へ進行する。その場合、基板の法線方向からあまり傾いていない角度に進行する光線L1は、光取り出し層7に入射後そのまま光射出面へ到達し、外部へ放出される。また、基板1の法線方向からある傾斜角以上傾いた光L2は、光取り出し層7の凸部7aの傾斜面7bで全反射した後、光取り出し層7の光射出面7cに到達し、界面で屈折して外部へ放出される。
ここで、傾斜面7bの形状は図1(第1の例)に示すような平面状のものでも良いし、図2(第2の例)に示すように、曲面が一部含まれる形状であっても良い。傾斜面7bが平面の場合、傾斜面に対する入射角が臨界角に達しない一部の光線が低屈折率材料層へ透過してしまうが、傾斜面7bを曲面とすることで傾斜面に対する入射角が臨界角を超えるので、発光素子からの光を効率よく反射させることができる。
Hereinafter, the detailed configuration and operation of the present embodiment will be specifically described.
First, in FIG. 1, light emitted from the light emitting elements on the substrate 1 travels in all directions as diffused light. In that case, the light beam L1 traveling at an angle not so inclined from the normal direction of the substrate reaches the light exit surface as it is after entering the light extraction layer 7 and is emitted to the outside. Further, the light L2 tilted by a certain inclination angle or more from the normal direction of the substrate 1 is totally reflected by the inclined surface 7b of the convex portion 7a of the light extraction layer 7, and then reaches the light emission surface 7c of the light extraction layer 7. Refracted at the interface and emitted to the outside.
Here, the shape of the inclined surface 7b may be a planar shape as shown in FIG. 1 (first example), or may be a shape including a part of a curved surface as shown in FIG. 2 (second example). There may be. When the inclined surface 7b is a flat surface, a part of light rays whose incident angle with respect to the inclined surface does not reach the critical angle is transmitted to the low refractive index material layer. Exceeds the critical angle, the light from the light emitting element can be reflected efficiently.

図3(第3の例)は、光取り出し層7の観察者側に発光素子の位置に対応してレンズ構造(凸部8)が設けられている場合を示す。発光素子から放出された光のうち、基板1の法線方向或いは法線方向近傍へ進行する光L4は、凸部7の傾斜面7aで反射されることなくレンズ(凸部8)内部へ入射し、屈折して外部へと取り出される。基板1の法線方向からある傾斜角以上傾いた光L5は、凸部7の傾斜面7aで全反射を受けた後、レンズ(凸部8)内部へ入射し、レンズ表面で屈折して外部へ取り出される。   FIG. 3 (third example) shows a case where a lens structure (convex portion 8) is provided on the observer side of the light extraction layer 7 corresponding to the position of the light emitting element. Of the light emitted from the light emitting element, the light L4 traveling in the normal direction of the substrate 1 or in the vicinity of the normal direction enters the lens (convex portion 8) without being reflected by the inclined surface 7a of the convex portion 7. Then, it is refracted and taken out to the outside. The light L5 inclined by a certain inclination angle or more from the normal direction of the substrate 1 is totally reflected by the inclined surface 7a of the convex portion 7, and then enters the lens (convex portion 8) and is refracted on the lens surface to be external. Is taken out.

ただし、レンズ(凸部8)の裾付近に入射する一部の光線L6は、レンズ表面で全反射を受けて基板1側に戻されるが、この場合、発光素子の電極に高反射性材料を用いることで再び利用することが可能である。もしくは、発光素子の径よりもレンズの径を大きく設計することで、レンズ面に対する光線の入射角が小さくなるため、レンズ内部での全反射を抑制することが可能である。   However, a part of the light ray L6 incident near the skirt of the lens (convex portion 8) is totally reflected on the lens surface and returned to the substrate 1, but in this case, a highly reflective material is applied to the electrode of the light emitting element. It can be used again by using it. Alternatively, by designing the diameter of the lens to be larger than the diameter of the light emitting element, the incident angle of the light beam with respect to the lens surface can be reduced, so that total reflection inside the lens can be suppressed.

一般的な有機ELの場合、発光層から基板を通して光を外部へ取り出すため、基板には光透過性のガラス基板や、或いは高平滑処理をしたプラスチック板、フィルムなどが用いられる。しかし、本実施の形態においては、基板とは反対側に光を取り出す構造となるため、基板にはこれらのような光透過性材料に限らず、金属板のような不透明材料を用いることも可能である。   In the case of a general organic EL, in order to extract light from the light emitting layer through the substrate to the outside, a light transmissive glass substrate, a highly smooth plastic plate, a film, or the like is used as the substrate. However, in this embodiment, since the light is extracted to the opposite side of the substrate, the substrate is not limited to such a light transmissive material, and an opaque material such as a metal plate can be used. It is.

また、陽極には、一般的にはITOのような透明電極が用いられるが、本実施の形態では陰極側へ光を放出するため、Mg、Al、Agなどの金属や、これらの合金からなる反射電極を用いる方が適している。
また、陰極には一般的には反射性電極を用いるが、本実施の形態では陰極側に光を放射する構成のため、ITOや、光透過率の高い薄い金属箔などの光透過性電極を用いる。
In addition, a transparent electrode such as ITO is generally used for the anode, but in the present embodiment, light is emitted to the cathode side, and therefore, the anode is made of a metal such as Mg, Al, Ag, or an alloy thereof. It is more suitable to use a reflective electrode.
In addition, a reflective electrode is generally used for the cathode. However, in this embodiment, a light transmissive electrode such as ITO or a thin metal foil having a high light transmittance is used because of the configuration in which light is emitted to the cathode side. Use.

また、封止膜5は、発光層が外気中に含まれる水分により発光特性が劣化するのを防止するとともに、光取り出し層と基板を一体化するための接着層としての役割を果たす。
この封止膜材料としては、エポキシ系樹脂やアクリル系樹脂、ウレタン系樹脂などからなる熱硬化性樹脂、もしくは光硬化性樹脂により構成されている。発光素子は熱に弱いため、熱硬化性樹脂は、できるだけTgの低い温度で硬化する樹脂を選定する必要がある。また、発光素子は紫外線によるダメージを受け易いため、光硬化性樹脂を用いる場合はUV光を用いるよりは、可視光で硬化するものを用いるのが望ましい。
In addition, the sealing film 5 serves as an adhesive layer for integrating the light extraction layer and the substrate while preventing the light emitting layer from being deteriorated in light emission due to moisture contained in the outside air.
The sealing film material is composed of a thermosetting resin made of an epoxy resin, an acrylic resin, a urethane resin, or the like, or a photocurable resin. Since the light-emitting element is vulnerable to heat, it is necessary to select a resin that cures at a temperature as low as Tg as much as possible. In addition, since the light-emitting element is easily damaged by ultraviolet rays, it is preferable to use a light-curing resin that is cured with visible light rather than UV light.

また、光取り出し層7はEL素子とは別に作製され、その後、EL素子と光取り出し層を貼り合わせて一体化する構成をとる。   The light extraction layer 7 is manufactured separately from the EL element, and then the EL element and the light extraction layer are bonded and integrated.

また、光取り出し層7の光入射面側に形成された凹凸と、光射出面側に作製された凹凸は、例えばPET(ポリエチレンテレフタレート)、PC(ポリカーボネイト)、PMMA(ポリメチルメタクリレート)、COP(シクロオレフィンポリマー)等を用いて、熱可塑性樹脂を用いたプレス成形または押し出し成形によって両面成形されたモノリシックな成形体より形成できる。あるいは、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PC(ポリカーボネイト)、PMMA(ポリメチルメタクリレート)、PE(ポリエチレン)等を基材として、その上に紫外線固化樹脂を配置する紫外線キュアリング成型法によって両面形成しても良い。   The unevenness formed on the light incident surface side of the light extraction layer 7 and the unevenness formed on the light exit surface side are, for example, PET (polyethylene terephthalate), PC (polycarbonate), PMMA (polymethyl methacrylate), COP ( It can be formed from a monolithic molded body that is molded on both sides by press molding or extrusion molding using a thermoplastic resin using a cycloolefin polymer). Alternatively, by an ultraviolet curing molding method in which an ultraviolet solidified resin is disposed on a base material of PET (polyethylene terephthalate), PP (polypropylene), PC (polycarbonate), PMMA (polymethyl methacrylate), PE (polyethylene), etc. Both sides may be formed.

その他の方法として、マイクロレンズ形状を付与する場合、紫外線硬化樹脂を所定の位置にインクジェット法により滴下して、表面張力によりレンズ形状となった樹脂に対してUV光を照射、硬化させることでマイクロレンズを作成することができる。もしくは、フォトリソグラフィー法により円柱形状レジストパターンを基材上に作成し、基材を過熱してレジストを溶融させることで、表面張力によりレンズ形状を得ることができる。もしくは、フォトマスクを用いてレジストの露光とエッチングを繰り返すことでもマイクロレンズを作成することができる。   As another method, when a microlens shape is provided, an ultraviolet curable resin is dropped at a predetermined position by an ink jet method, and the resin that has become a lens shape by surface tension is irradiated with UV light and cured. A lens can be created. Alternatively, a lens shape can be obtained by surface tension by creating a cylindrical resist pattern on a base material by photolithography and heating the base material to melt the resist. Alternatively, the microlens can be formed by repeating exposure and etching of the resist using a photomask.

あるいは、光入射面側の凹凸と、光射出面側の凹凸を前記方法により別々に作製した樹脂板もしくはフィルムを粘着剤もしくは接着剤により貼り合わせて一体化して作製する方法も可能である。   Alternatively, a method in which the unevenness on the light incident surface side and the unevenness on the light emission surface side are separately manufactured by the above-described method and bonded together with an adhesive or an adhesive to produce them integrally is also possible.

また、光取り出し層の光入射面側の凸部と凸部の間に低屈折率材料層を設ける方法としては、光取り出し層の光入射面側の凹凸を覆うように低屈折率の光硬化性材料をロールコート、バーコート、カーテンコートなどの方法でコーティングした後、凸部表面に残った樹脂をドクターブレードによって除去する方法を用いる。あるいは、低屈折率材料からなる粘着材を透明基材に塗布し、粘着材が凸部と凸部の間隙を埋没させるように透明基材と光取り出し層を圧着し、その後透明基材と封止膜を貼り合わせて一体化する方法などがある。
また、低屈折率材料層を空気層とする場合は、封止膜の厚みを凸部の厚みよりも薄く設定することで、光取り出し層を貼りあわせる際に凸部と凸部の間隙が封止膜によって埋没されないようにして一体化を行うことにより達成できる。
As a method of providing a low refractive index material layer between the convex portions on the light incident surface side of the light extraction layer, a low refractive index photocuring is performed so as to cover the irregularities on the light incident surface side of the light extraction layer. A method is used in which the functional material is coated by a method such as roll coating, bar coating, or curtain coating, and then the resin remaining on the convex surface is removed by a doctor blade. Alternatively, an adhesive material made of a low refractive index material is applied to the transparent substrate, and the transparent substrate and the light extraction layer are pressure-bonded so that the adhesive material embeds the gap between the protrusions, and then sealed with the transparent substrate. For example, there is a method in which a stop film is bonded and integrated.
In addition, when the low refractive index material layer is an air layer, by setting the thickness of the sealing film thinner than the thickness of the convex portion, the gap between the convex portion and the convex portion is sealed when the light extraction layer is bonded. This can be achieved by performing integration so as not to be buried by the stop film.

本発明の実施の形態による表示装置の積層構造を示す断面図であり、光取り出し層の光射出面側が平面の場合(第1の例)を示している。It is sectional drawing which shows the laminated structure of the display apparatus by embodiment of this invention, and has shown the case where the light-projection surface side of a light extraction layer is a plane (1st example). 本発明の実施の形態による表示装置の積層構造を示す断面図であり、光取り出し層の光入射面側の凸部傾斜面が一部曲面を含む場合(第2の例)を示している。It is sectional drawing which shows the laminated structure of the display apparatus by embodiment of this invention, and the case where the convex inclined surface by the side of the light-incidence surface of a light extraction layer contains a curved surface partially (2nd example) is shown. 本発明の実施の形態による表示装置の積層構造を示す断面図であり、光取り出し層の光射出面側に凸部が設けられている場合(第3の例)を示している。It is sectional drawing which shows the laminated structure of the display apparatus by embodiment of this invention, and shows the case where the convex part is provided in the light-projection surface side of the light extraction layer (3rd example). 一般的な従来の有機EL素子の積層構造を示す断面図である。It is sectional drawing which shows the laminated structure of a general conventional organic EL element. 図4に示す積層構造において、発光層からの光が素子の各層で全反射を受けることを説明する断面図である。FIG. 5 is a cross-sectional view for explaining that light from the light emitting layer undergoes total reflection in each layer of the element in the stacked structure shown in FIG. 4.

符号の説明Explanation of symbols

1……基板、2……陽極、3……発光層、4……陰極、5……封止膜、7……光取り出し層。   DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Anode, 3 ... Light emitting layer, 4 ... Cathode, 5 ... Sealing film, 7 ... Light extraction layer.

Claims (8)

基板と、
前記基板上に形成された自発光型素子と、
前記自発光型素子の発光面側に対向配置された光取り出し層と、
前記基板と光取り出し層との間に充填され、前記自発光型素子を包囲して基板と光取り出し層を一体化する透明の封止膜とを有し、
前記光取り出し層は、前記自発光型素子との対向面に凸部を有するとともに、隣接する凸部と凸部の間に凹部を有し、前記凹部に前記光取り出し層の屈折率よりも低い屈折率の材料によって充填された低屈折材料層を有する、
ことを特徴とする表示装置。
A substrate,
A self-luminous element formed on the substrate;
A light extraction layer disposed opposite to the light emitting surface of the self-luminous element;
A transparent sealing film that is filled between the substrate and the light extraction layer, surrounds the self-luminous element, and integrates the substrate and the light extraction layer;
The light extraction layer has a convex portion on the surface facing the self-luminous element, and has a concave portion between adjacent convex portions, and the concave portion has a lower refractive index than the light extraction layer. Having a low refractive material layer filled with a refractive index material,
A display device characterized by that.
前記基板上に複数の自発光型素子が配置され、前記光取り出し層の凸部が複数の自発光型素子と一対一に対応して設けられていることを特徴とする請求項1記載の表示装置。   The display according to claim 1, wherein a plurality of self-luminous elements are disposed on the substrate, and a convex portion of the light extraction layer is provided in one-to-one correspondence with the plural self-luminous elements. apparatus. 前記光取り出し層の凸部及び凹部の側壁が平面状の傾斜面によって形成されていることを特徴とする請求項1記載の表示装置。   The display device according to claim 1, wherein the convex portions and the side walls of the concave portions of the light extraction layer are formed by flat inclined surfaces. 前記光取り出し層の凸部及び凹部の側壁が一部曲面を含む傾斜面によって形成されていることを特徴とする請求項1記載の表示装置。   The display device according to claim 1, wherein a side wall of the convex portion and the concave portion of the light extraction layer is formed by an inclined surface including a partially curved surface. 前記光取り出し層の低屈折材料層が空気層であることを特徴とする請求項1または2記載の表示装置。   3. The display device according to claim 1, wherein the low refractive material layer of the light extraction layer is an air layer. 前記光取り出し層の前記自発光型素子との反対面にレンズ部を有することを特徴とする請求項1記載の表示装置。   The display device according to claim 1, further comprising a lens portion on a surface of the light extraction layer opposite to the self-luminous element. 前記自発光型素子は有機EL素子であることを特徴とする請求項1記載の表示装置。   The display device according to claim 1, wherein the self-luminous element is an organic EL element. 前記自発光型素子は前記基板上面に設けられた陽極と、前記陽極上に設けられた発光層と、前記発光層上に設けられた陰極とを有する積層体であることを特徴とする請求項1記載の表示装置。   The self-luminous element is a laminate having an anode provided on the upper surface of the substrate, a light emitting layer provided on the anode, and a cathode provided on the light emitting layer. The display device according to 1.
JP2007283828A 2007-10-31 2007-10-31 Display device Pending JP2009110873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007283828A JP2009110873A (en) 2007-10-31 2007-10-31 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007283828A JP2009110873A (en) 2007-10-31 2007-10-31 Display device

Publications (1)

Publication Number Publication Date
JP2009110873A true JP2009110873A (en) 2009-05-21

Family

ID=40779127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007283828A Pending JP2009110873A (en) 2007-10-31 2007-10-31 Display device

Country Status (1)

Country Link
JP (1) JP2009110873A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065721A2 (en) * 2009-11-27 2011-06-03 한양대학교 산학협력단 Organic light-emitting device comprising a color conversion layer
WO2012002260A1 (en) * 2010-06-29 2012-01-05 日本ゼオン株式会社 Surface light source device
US8427747B2 (en) 2010-04-22 2013-04-23 3M Innovative Properties Company OLED light extraction films laminated onto glass substrates
WO2013084629A1 (en) * 2011-12-09 2013-06-13 ソニー株式会社 Display device and electronic apparatus
JP2014202982A (en) * 2013-04-08 2014-10-27 三菱レイヨン株式会社 Optical film and surface light emitting body
KR20140135568A (en) * 2013-05-16 2014-11-26 삼성디스플레이 주식회사 Organic light emitting display apparatus
KR20150076782A (en) * 2013-12-27 2015-07-07 엘지디스플레이 주식회사 Organic light emitting diode display device
JP2017117787A (en) * 2015-12-21 2017-06-29 エルジー ディスプレイ カンパニー リミテッド Display panel, display panel device and method of manufacturing display panel
JP2019519814A (en) * 2016-06-03 2019-07-11 コーニング インコーポレイテッド Light extraction device and method for OLED display and OLED display using them
WO2020130760A1 (en) * 2018-12-21 2020-06-25 삼성디스플레이 주식회사 Display device and method for manufacturing same
US10734452B1 (en) 2019-01-16 2020-08-04 Samsung Display Co., Ltd. Organic light-emitting display apparatus
CN111512460A (en) * 2017-12-26 2020-08-07 索尼半导体解决方案公司 Display element and electronic device
CN111613734A (en) * 2020-05-29 2020-09-01 上海天马有机发光显示技术有限公司 Light extraction layer, manufacturing method thereof and display panel
WO2020197777A1 (en) * 2019-03-22 2020-10-01 Corning Incorporated Optical assembly comprising sub-surface scattering features
US11069759B2 (en) 2018-11-19 2021-07-20 Samsung Display Co., Ltd. Organic light-emitting display device
CN113178466A (en) * 2021-04-09 2021-07-27 Oppo广东移动通信有限公司 Display device and electronic apparatus
US11081676B2 (en) 2019-07-11 2021-08-03 Samsung Display Co., Ltd. Display apparatus
WO2022041347A1 (en) * 2020-08-26 2022-03-03 京东方科技集团股份有限公司 Display panel, control method for display panel, and display apparatus
US11289684B2 (en) 2020-02-12 2022-03-29 Samsung Display Co., Ltd. Display device and electronic apparatus
US11545528B2 (en) 2019-09-16 2023-01-03 Samsung Display Co., Ltd. Display apparatus
WO2023082325A1 (en) * 2021-11-10 2023-05-19 惠州华星光电显示有限公司 Display panel and method for preparing same
US11764252B2 (en) 2020-04-01 2023-09-19 Samsung Display Co., Ltd. Display device
WO2023193530A1 (en) * 2022-04-08 2023-10-12 京东方科技集团股份有限公司 Display panel and manufacturing method thereof, and display device
US11934599B2 (en) 2018-12-10 2024-03-19 Samsung Display Co., Ltd. Display device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223367A (en) * 1997-02-04 1998-08-21 Mitsubishi Chem Corp Organic electric field luminescence element
JP2002043629A (en) * 2000-07-24 2002-02-08 Yamakawa Akira Led projector and lens body for use therein
JP2004164912A (en) * 2002-11-11 2004-06-10 Seiko Epson Corp Display body, display panel and display device
JP2006156075A (en) * 2004-11-29 2006-06-15 Seiko Epson Corp Manufacturing method of electro-optical device and image forming device
JP2006287078A (en) * 2005-04-04 2006-10-19 Sony Corp Organic electroluminescence element
JP2007149591A (en) * 2005-11-30 2007-06-14 Konica Minolta Holdings Inc Surface emitting body and display device
JP2007149527A (en) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd Optical filter and organic el display device
JP2007180001A (en) * 2005-03-29 2007-07-12 Konica Minolta Holdings Inc Surface light emitter and display apparatus
JP2007234729A (en) * 2006-02-28 2007-09-13 Seiko Epson Corp Organic el device and electronic equipment
JP2007234878A (en) * 2006-03-01 2007-09-13 Toshiba Corp Semiconductor device
JP2007280699A (en) * 2006-04-05 2007-10-25 Matsushita Electric Ind Co Ltd Light-emitting device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223367A (en) * 1997-02-04 1998-08-21 Mitsubishi Chem Corp Organic electric field luminescence element
JP2002043629A (en) * 2000-07-24 2002-02-08 Yamakawa Akira Led projector and lens body for use therein
JP2004164912A (en) * 2002-11-11 2004-06-10 Seiko Epson Corp Display body, display panel and display device
JP2006156075A (en) * 2004-11-29 2006-06-15 Seiko Epson Corp Manufacturing method of electro-optical device and image forming device
JP2007180001A (en) * 2005-03-29 2007-07-12 Konica Minolta Holdings Inc Surface light emitter and display apparatus
JP2006287078A (en) * 2005-04-04 2006-10-19 Sony Corp Organic electroluminescence element
JP2007149527A (en) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd Optical filter and organic el display device
JP2007149591A (en) * 2005-11-30 2007-06-14 Konica Minolta Holdings Inc Surface emitting body and display device
JP2007234729A (en) * 2006-02-28 2007-09-13 Seiko Epson Corp Organic el device and electronic equipment
JP2007234878A (en) * 2006-03-01 2007-09-13 Toshiba Corp Semiconductor device
JP2007280699A (en) * 2006-04-05 2007-10-25 Matsushita Electric Ind Co Ltd Light-emitting device

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065721A3 (en) * 2009-11-27 2011-09-09 한양대학교 산학협력단 Organic light-emitting device comprising a color conversion layer
WO2011065721A2 (en) * 2009-11-27 2011-06-03 한양대학교 산학협력단 Organic light-emitting device comprising a color conversion layer
US8427747B2 (en) 2010-04-22 2013-04-23 3M Innovative Properties Company OLED light extraction films laminated onto glass substrates
WO2012002260A1 (en) * 2010-06-29 2012-01-05 日本ゼオン株式会社 Surface light source device
US8704441B2 (en) 2010-06-29 2014-04-22 Zeon Corporation Surface light source device
JP5783175B2 (en) * 2010-06-29 2015-09-24 日本ゼオン株式会社 Surface light source device
US9859528B2 (en) 2011-12-09 2018-01-02 Joled Inc. Display and electronic apparatus
WO2013084629A1 (en) * 2011-12-09 2013-06-13 ソニー株式会社 Display device and electronic apparatus
JP2014202982A (en) * 2013-04-08 2014-10-27 三菱レイヨン株式会社 Optical film and surface light emitting body
KR20140135568A (en) * 2013-05-16 2014-11-26 삼성디스플레이 주식회사 Organic light emitting display apparatus
KR102048924B1 (en) * 2013-05-16 2019-11-27 삼성디스플레이 주식회사 Organic light emitting display apparatus
KR20150076782A (en) * 2013-12-27 2015-07-07 엘지디스플레이 주식회사 Organic light emitting diode display device
KR102295610B1 (en) * 2013-12-27 2021-08-30 엘지디스플레이 주식회사 Organic light emitting diode display device
JP2017117787A (en) * 2015-12-21 2017-06-29 エルジー ディスプレイ カンパニー リミテッド Display panel, display panel device and method of manufacturing display panel
US10566576B2 (en) 2015-12-21 2020-02-18 Lg Display Co., Ltd. Display panel with luminance efficiency improvement, display device, and method of fabricating the display panel
JP2019519814A (en) * 2016-06-03 2019-07-11 コーニング インコーポレイテッド Light extraction device and method for OLED display and OLED display using them
JP7229777B2 (en) 2016-06-03 2023-02-28 コーニング インコーポレイテッド Light extraction devices and methods for OLED displays and OLED displays using them
CN111512460A (en) * 2017-12-26 2020-08-07 索尼半导体解决方案公司 Display element and electronic device
US11069759B2 (en) 2018-11-19 2021-07-20 Samsung Display Co., Ltd. Organic light-emitting display device
US11844242B2 (en) 2018-11-19 2023-12-12 Samsung Display Co., Ltd. Organic light-emitting display device
US11934599B2 (en) 2018-12-10 2024-03-19 Samsung Display Co., Ltd. Display device
WO2020130760A1 (en) * 2018-12-21 2020-06-25 삼성디스플레이 주식회사 Display device and method for manufacturing same
CN113228333B (en) * 2018-12-21 2024-03-22 三星显示有限公司 Display device and method for manufacturing the same
CN113228333A (en) * 2018-12-21 2021-08-06 三星显示有限公司 Display device and method for manufacturing the same
US10734452B1 (en) 2019-01-16 2020-08-04 Samsung Display Co., Ltd. Organic light-emitting display apparatus
US11594580B2 (en) 2019-01-16 2023-02-28 Samsung Display Co., Ltd. Organic light-emitting display apparatus having differently spaced pixel openings
CN113710956A (en) * 2019-03-22 2021-11-26 康宁公司 Optical assembly including sub-surface scattering features
WO2020197777A1 (en) * 2019-03-22 2020-10-01 Corning Incorporated Optical assembly comprising sub-surface scattering features
US11081676B2 (en) 2019-07-11 2021-08-03 Samsung Display Co., Ltd. Display apparatus
US11545528B2 (en) 2019-09-16 2023-01-03 Samsung Display Co., Ltd. Display apparatus
US11289684B2 (en) 2020-02-12 2022-03-29 Samsung Display Co., Ltd. Display device and electronic apparatus
US11764252B2 (en) 2020-04-01 2023-09-19 Samsung Display Co., Ltd. Display device
CN111613734B (en) * 2020-05-29 2023-04-07 武汉天马微电子有限公司 Light extraction layer, manufacturing method thereof and display panel
CN111613734A (en) * 2020-05-29 2020-09-01 上海天马有机发光显示技术有限公司 Light extraction layer, manufacturing method thereof and display panel
CN114586164A (en) * 2020-08-26 2022-06-03 京东方科技集团股份有限公司 Display panel, control method of display panel and display device
WO2022041347A1 (en) * 2020-08-26 2022-03-03 京东方科技集团股份有限公司 Display panel, control method for display panel, and display apparatus
CN114586164B (en) * 2020-08-26 2023-07-14 京东方科技集团股份有限公司 Display panel, control method of display panel and display device
CN113178466B (en) * 2021-04-09 2022-11-11 Oppo广东移动通信有限公司 Display device and electronic apparatus
CN113178466A (en) * 2021-04-09 2021-07-27 Oppo广东移动通信有限公司 Display device and electronic apparatus
WO2023082325A1 (en) * 2021-11-10 2023-05-19 惠州华星光电显示有限公司 Display panel and method for preparing same
WO2023193530A1 (en) * 2022-04-08 2023-10-12 京东方科技集团股份有限公司 Display panel and manufacturing method thereof, and display device

Similar Documents

Publication Publication Date Title
JP2009110873A (en) Display device
CN107689426B (en) Light emitting device, electronic device and manufacturing method of light emitting device
JP5373054B2 (en) Display panel device and method of manufacturing display panel device
JP6095301B2 (en) Display device
KR101415566B1 (en) Display device
WO2011121668A1 (en) Display panel device, and method for producing display panel device
US20070176195A1 (en) Surface light emitter, display apparatus and light control member
JP6680311B2 (en) Light emitting device and surface emitting light source
KR20160070904A (en) Display apparatus and method of manufacturing the same
JPWO2011121656A1 (en) Display panel device and method of manufacturing display panel device
KR20120078883A (en) Display apparatus
JP2010212204A (en) El element, display apparatus, display device, and liquid crystal display device
CN109309108B (en) Display panel and display device
WO2024037317A1 (en) Display panel and display device
JP5131166B2 (en) EL element
JP2007280699A (en) Light-emitting device
JP2010097711A (en) El element and display device
JP2010123322A (en) Surface light source element and display device including the same
JP2010218839A (en) El element, backlight device for liquid crystal display, lighting system, electronic signboard device, display device, and light extraction film
JP2006337845A (en) Member for improving contrast in bright place
JP2004259607A (en) Display panel and display device
CN115662984A (en) Packaged light emitting unit, display device and manufacturing method of packaged light emitting unit
JP2006337846A (en) Member for improving contrast in bright place
KR102236357B1 (en) Method of manufacturing micro lens array having color change function
JP2004241214A (en) El element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130212