JPH10223264A - Deactivating method of used lithium-cobalt secondary battery and cobalt recovering method from used lithium -cobalt secondary battery using the method - Google Patents

Deactivating method of used lithium-cobalt secondary battery and cobalt recovering method from used lithium -cobalt secondary battery using the method

Info

Publication number
JPH10223264A
JPH10223264A JP2675997A JP2675997A JPH10223264A JP H10223264 A JPH10223264 A JP H10223264A JP 2675997 A JP2675997 A JP 2675997A JP 2675997 A JP2675997 A JP 2675997A JP H10223264 A JPH10223264 A JP H10223264A
Authority
JP
Japan
Prior art keywords
cobalt
battery
solution
used lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2675997A
Other languages
Japanese (ja)
Other versions
JP3069306B2 (en
Inventor
Mitsuhiko Kudo
光彦 工藤
Sei Shimizu
▲瀞▼ 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asaka Riken Industrial Co Ltd
Original Assignee
Asaka Riken Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asaka Riken Industrial Co Ltd filed Critical Asaka Riken Industrial Co Ltd
Priority to JP2675997A priority Critical patent/JP3069306B2/en
Publication of JPH10223264A publication Critical patent/JPH10223264A/en
Application granted granted Critical
Publication of JP3069306B2 publication Critical patent/JP3069306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new variable recovering method, in which a used lithium secondary battery is completely deactivated, dried, heated, crushed, then cobalt variables are physically separated by the difference of particle size and specific gravity or the like, and in addition magnetic property is given to the cobalt variables by a chemical operation, and by utilizing the magnetic property, the cobalt valuables are separated and recovered. SOLUTION: A battery containing cobalt is opened and immersed in a solution, or opened in the solution, and an organic solvent containing an electrolyte in the battery is leached out into the solution. The battery is taken out of the solution, heated, then crushed, and crushed material is sieved, and minus sieve mainly containing cobalt is recovered. Preferably, the crushed material is sieved, that minus sieve has the particle size 5 times or less the maximum particle size of an active material raw material or the crushed active material of the deactivated battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本願発明は、使用済みリチウム
−コバルト二次電池の不活性化方法、及びこれを用いた
使用済みリチウム−コバルト二次電池からのコバルト回
収法に関する。
The present invention relates to a method for inactivating a used lithium-cobalt secondary battery and a method for recovering cobalt from a used lithium-cobalt secondary battery using the same.

【0002】[0002]

【従来の技術】リチウム二次電池は、軽量且つ高電気容
量の電池として知られている。例えば、正極活物質には
有価金属であるコバルトを含むコバルト酸リチウム等を
使用し、負極活物質には炭素粉末を使用している。両活
物質は有機もしくは無機の結合剤および溶剤であるNー
メチルー2ーピロリドンと混合して合剤とした後、正極
活物質はアルミ箔上に、負極活物質は銅箔上に塗布され
ることにより正極及び負極の電極となる。正負電極を分
離する膜としては例えば、多孔質ポリプロピレン膜等の
有機高分子膜が使用されている。更に電解質には、例え
ば6−フッ化燐酸リチウム等を含む炭酸ジエチル、炭酸
プロピレンのような、活性水素を含まない有機溶媒に満
たされるとともに、正極はアルミニウム集電体に、負極
はニッケル導電体に連結され、鉄を主成分とする金属容
器中に密封充填されている。
2. Description of the Related Art A lithium secondary battery is known as a lightweight and high-capacity battery. For example, lithium cobaltate containing cobalt, which is a valuable metal, is used for the positive electrode active material, and carbon powder is used for the negative electrode active material. Both active materials are mixed with an organic or inorganic binder and N-methyl-2-pyrrolidone as a solvent to form a mixture, and then the positive electrode active material is coated on aluminum foil and the negative electrode active material is coated on copper foil. It becomes a positive electrode and a negative electrode. As a film for separating the positive and negative electrodes, for example, an organic polymer film such as a porous polypropylene film is used. Further, the electrolyte is filled with an organic solvent that does not contain active hydrogen, such as diethyl carbonate and propylene carbonate containing, for example, lithium 6-fluorophosphate, and the positive electrode serves as an aluminum current collector, and the negative electrode serves as a nickel conductor. It is connected and hermetically filled in a metal container mainly composed of iron.

【0003】使用済みリチウム二次電池を不活性化し、
それから上記有価物を回収することは、資源の有効利用
及び単なる廃棄による環境汚染防止の点からも極めて重
要であるが、有価物を回収する具体的な公知の方法とし
ては、「特許公開公報平6−346160」が見られ
る。その方法によれば、(1)使用済み電池を焼成し、
(2)粉砕し、(3)規定の粒度以下に篩い、所望の成
分を分別するというものであった。
[0003] Deactivate a used lithium secondary battery,
Then, collecting the valuable resources is extremely important from the viewpoint of effective use of resources and prevention of environmental pollution by mere disposal. 6-346160 ". According to the method, (1) the used battery is fired,
(2) crushing, (3) sieving to a specified particle size or less, and separating desired components.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この方
法によると充電された電池を高温で直接焼成するため、
内部の有機電解液が蒸発し内容積が急膨張する等による
爆発の危険性を生じる。
However, according to this method, the charged battery is directly baked at a high temperature.
There is a danger of explosion due to evaporation of the internal organic electrolyte and rapid expansion of the internal volume.

【0005】それを避けるために、充電された電池の容
器を単に開口したのでは、ショート電流等による発熱が
起こり実際に適用するには不適当である。すなわち、使
用済みの一時電池やリチウム二次電池以外の二次電池か
ら有価物を回収する公知の方法は多いが、それらを使用
済みリチウム二次電池に直接適用しても、操作の安全性
の面及び経済性の面等から問題を生じそのまま適用しが
たい。
If the container of the charged battery is simply opened to avoid this, heat is generated due to a short-circuit current or the like, which is not suitable for actual application. In other words, there are many known methods for recovering valuable resources from used temporary batteries and secondary batteries other than lithium secondary batteries, but even if they are directly applied to used lithium secondary batteries, the safety of operation can be improved. It causes problems from the viewpoints of economy and economy, etc., and is difficult to apply as it is.

【0006】一方、リチウム−マンガン二次電池を希硫
酸で処理しリチウムを有価物として回収するという報告
「駒沢ら、化学工学論文集、15、857(198
9)」がある。しかしこの報告は目的とする対象がリチ
ウムで、本発明の回収対象とするコバルトを含まず、当
然コバルトに関する記載もなく参考にすることが出来な
かった。
On the other hand, a report that a lithium-manganese secondary battery is treated with dilute sulfuric acid and lithium is recovered as a valuable resource [Komazawa et al., Journal of Chemical Engineering, 15, 857 (198)
9) ". However, in this report, the target object was lithium, which did not include cobalt to be recovered according to the present invention.

【0007】[0007]

【目的】本発明の目的は、使用済みリチウム二次電池を
安全に不活性化した後、乾燥、加熱および粉砕する工程
によって、粒度、比重の差等による物理的な分離を行う
とともに、化学的操作によりコバルト有価物に磁性を付
与し、その磁性を利用してコバルト有価物を分離し、回
収するという新規な有価物回収方法を提供することにあ
る。
[Purpose] The purpose of the present invention is to physically inactivate a used lithium secondary battery, dry it, heat it, and pulverize it, and then physically separate it according to the difference in particle size and specific gravity. It is an object of the present invention to provide a novel valuable resource recovery method in which magnetism is imparted to cobalt valuables by operation, and the cobalt valuables are separated and recovered using the magnetism.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するため以下のように構成される。 [電池の不活性化工程]コバルトを含有する電池を、開
口させた後に溶液中に浸漬させることにより、又は溶液
中で開口させることにより、電池中の電解質を含む有機
溶媒を溶液中に浸出させることを特徴とする。
The present invention is configured as described below to achieve the above object. [Battery inactivation step] The organic solvent containing the electrolyte in the battery is leached into the solution by immersing the cobalt-containing battery in the solution after opening the battery or by opening the battery in the solution. It is characterized by the following.

【0009】なお、溶液にあらかじめ電解質を加えるこ
とは、後述するように電池が電圧を有する場合において
は放電が速やかに進行するため、電池の発熱を抑制する
等の効果がある。加える電解質は特に限定されるもので
はないが、無機塩類例えば、塩化ナトリウム、硫酸ナト
リウムおよび硫酸アンモニウムから選択される少なくと
も一つを含む水溶液を使用することが好適である。ま
た、電解質は0.001〜1.0wt%添加すると効果
的である。
The addition of an electrolyte to the solution in advance has the effect of suppressing the heat generation of the battery, since the discharge proceeds rapidly when the battery has a voltage as described later. The electrolyte to be added is not particularly limited, but it is preferable to use an aqueous solution containing at least one selected from inorganic salts such as sodium chloride, sodium sulfate and ammonium sulfate. It is effective to add 0.001 to 1.0% by weight of the electrolyte.

【0010】使用済み電池を開口するには、固定、ある
いは載置された電池を、切断機、破砕機、ドリルによる
穴あけ、釘状のものの突き刺しなどで開口するが、作業
者の安全のため遠隔操作することが望ましい。開口部が
あまり小さいと、開口部から電池内の有機電解液が系外
に拡散し難く、電池内の蓄熱量が大きくなり好ましくな
い。従って開口部は、円筒形電池の場合柱状部に直角方
向に開口し、且つ口径の大きさは電池の直径に対し1/
5〜4/5が望ましく、開口部は貫通させるのが望まし
い。開口後は直ちに放電槽に満たした溶液に浸漬する
か、はじめから溶液に浸漬した状態で開口してもよい。
この溶液は水溶液、非水溶液あるいはこれらを混合した
ものでもよいが、熱容量が大きく不燃性であるものが好
ましく、経済性を考慮すれば水が最良である。
In order to open a used battery, a fixed or mounted battery is opened by a cutting machine, a crusher, drilling with a drill, piercing a nail, or the like. It is desirable to operate. If the opening is too small, the organic electrolyte in the battery is unlikely to diffuse out of the system from the opening, and the amount of heat stored in the battery is undesirably large. Therefore, in the case of a cylindrical battery, the opening is opened in a direction perpendicular to the columnar portion, and the size of the aperture is 1/1 / the diameter of the battery.
It is preferably 5/4/4, and the opening is desirably penetrated. Immediately after the opening, the opening may be immersed in the solution filled in the discharge vessel or may be immersed in the solution from the beginning.
The solution may be an aqueous solution, a non-aqueous solution or a mixture thereof, but preferably has a large heat capacity and is nonflammable, and water is best in consideration of economy.

【0011】開口した電池は放電のため空気中に放置す
ると発熱し、内部の有機物に引火し危険であるが、溶液
中、特に水中に投じることによって、発熱は穏やかにな
り電解質を含む有機溶媒が、電池内から水槽表面に分離
浮遊してくる。発熱は、電解質が存在すると、溶液のみ
使用した場合に比して穏やかであるが、溶液のみを使用
した場合でも開口した電池の投入により電池の発熱は穏
やかになる。これは電池内からリチウム塩等が溶出して
くるため、結果的に電解質を含む系になり放電槽が導電
性の系に成るためである。すなわち、電解質を新たに用
意しなくても使用済み電池の電解質を含む電解液が、放
電漕にある程度混入しさえすればよいことになる。従っ
て添加する電解質の量は、通常の電解反応で必要とする
電解質の添加量より著しく少量で十分である。 [不活性化電池の加熱工程]つぎに、このようにして得
た不活性化電池を、溶液中から取り出し加熱させてから
粉砕し、該粉砕物を篩い分けしてコバルトを主に含む篩
い下を回収するが、加熱の前に粉砕をする事も可能であ
る。
An open battery generates heat when left in the air for discharge and ignites organic substances inside, which is dangerous. However, when the battery is thrown into a solution, especially in water, the heat is moderated and the organic solvent containing the electrolyte is removed. , And separate and float on the surface of the aquarium from within the battery. The generation of heat is milder in the presence of the electrolyte than in the case where only the solution is used. However, even in the case where only the solution is used, the heat generation of the battery is moderated by inserting the open battery. This is because lithium salts and the like are eluted from the inside of the battery, resulting in a system containing an electrolyte and a discharge tank becoming a conductive system. That is, the electrolyte containing the electrolyte of the used battery only needs to be mixed into the discharge vessel to some extent without newly preparing an electrolyte. Therefore, the amount of the electrolyte to be added is sufficiently smaller than the amount of the electrolyte required in the ordinary electrolytic reaction. [Heating Step of Deactivated Battery] Next, the deactivated battery obtained in this manner is taken out of the solution, heated and crushed, and the crushed material is sieved under a screen mainly containing cobalt. , But it is also possible to grind before heating.

【0012】不活性化した電池は好ましくは200℃〜
400℃に加熱することで得られる。すなわち、活物質
結合剤の効力を消滅または低減させるように加熱するこ
とで、対象物を乾燥させるとともに粉砕工程を容易なら
しめることを主な目的とする。 加えて、両電極の分離
膜であるポリプロピレン膜、電池の不活性化工程で除去
されなかった有機溶媒、電解質等が揮発あるいは燃焼、
分解する等して除去される。最適な加熱温度は、電池内
で使用される材料によって異なり、通常の加熱条件では
200℃以下の加熱では不十分であるが、電池に使用さ
れる材料の多くが200℃以下で分解されるものであれ
ば、あるいは減圧下で加熱する等すれば200℃以下の
加熱であっても不活性電池の製造は可能である。
The inactivated battery is preferably at 200 ° C.
It is obtained by heating to 400 ° C. That is, the main object is to heat the active material binder so as to eliminate or reduce the effect of the active material binder, thereby drying the object and facilitating the pulverizing step. In addition, the polypropylene membrane which is the separation membrane of both electrodes, the organic solvent which has not been removed in the inactivation step of the battery, the electrolyte and the like volatilize or burn,
It is removed by decomposition. The optimal heating temperature depends on the materials used in the battery. Under normal heating conditions, heating below 200 ° C is not sufficient, but most of the materials used in batteries are decomposed below 200 ° C. If this is the case, or if heating is performed under reduced pressure, it is possible to produce an inert battery even with heating at 200 ° C. or lower.

【0013】なお、400℃以上に加熱温度を設定する
と、電池内の有機物等の燃焼等により、一時的に400
℃以上になることは差し支えないが、急激な酸化反応に
より、目的とするコバルト有価物の酸化度が高くなり以
後の磁性付与の操作が複雑となる。また、開放系におけ
る加熱が高温となると、コバルトの酸化度が高くなる場
合、アルミニウムが酸化物の形になる場合、さらには、
アルミニウムが完全にイオン化した状態では、系に還元
能力が無くなるため、後述する磁性の付与の工程におい
て、溶液中に新たにアルミニウムを添加しないと磁性化
が達成されないことにもなる。このことからも、磁性化
される最高温度を400℃程度にすることが好ましいと
結論付けられる。
If the heating temperature is set to 400 ° C. or higher, the heating temperature is temporarily set to 400 ° C. due to combustion of organic substances and the like in the battery.
Although the temperature may be higher than or equal to ° C, the rapid oxidation reaction increases the degree of oxidation of the target cobalt valuables, and the subsequent operation of imparting magnetism becomes complicated. Also, when the temperature in the open system is high, when the degree of oxidation of cobalt is high, when aluminum is in the form of an oxide,
In a state where aluminum is completely ionized, the system loses its reducing ability, so that in the step of imparting magnetism to be described later, magnetism cannot be achieved unless aluminum is newly added to the solution. From this, it can be concluded that it is preferable to set the maximum temperature for magnetizing to about 400 ° C.

【0014】以上のことから、有機物の揮発や分解によ
る粉砕処理の容易化と、後述する磁性の付与の容易さの
ためには、加熱温度が200〜400℃であることが望
ましい。なお、加熱時間は処理量や設備によって適宜選
択されるものであるが、本工程の目的を達成するには、
0.5〜3時間程度加熱することが望ましい。
From the above, the heating temperature is desirably 200 to 400 ° C. for facilitating the pulverizing treatment by volatilization and decomposition of the organic matter and facilitating the provision of magnetism described later. The heating time is appropriately selected depending on the treatment amount and equipment, but in order to achieve the purpose of this step,
It is desirable to heat for about 0.5 to 3 hours.

【0015】[不活性化電池の粉砕および分級工程]こ
の加熱処理により有機成分及び結合剤等の大半が分解除
去された電池は、粉粒に成りやすくなっているコバルト
有価物成分と、比較的破砕され難いアルミニウム箔及び
銅箔、及び負極活物質である粉末状炭素、さらにはアル
ミニウム導電体、強磁性体のニッケル導電体及び鉄を主
成分とする外装缶等から構成されている。これらの粉砕
には、回転する刃物による粉砕機例えばVMミルで処理
する事が出来るので、粉砕処理された物質を例えばJI
S Z8801標準篩(以下、「標準篩」と省略す
る。)1mmの篩いに掛けて選別する。ここで得られた
篩上のおおむね1mm以上の粒度成分は、アルミニウム
箔、銅箔及び鉄を主体とする外装缶の断片が主体で、コ
バルト有価物は殆ど含まれていない。そこで篩下のおお
むね1mm未満の成分を、標準篩250μmの篩いで更
に選別し、標準篩250μmの篩上の成分は再びVMミ
ルで処理し、標準篩250μmで選別する。得られた標
準篩250μmの篩下の成分は、コバルトを含む有価金
属として公知の精錬プロセスにおける原料に使用するこ
とが出来る。
[Pulverizing and Classifying Process of Inactivated Battery] A battery from which most of organic components and binders are decomposed and removed by this heat treatment is relatively different from a cobalt valuable component which is liable to be powdery. It is composed of an aluminum foil and a copper foil that are hard to be crushed, powdered carbon as a negative electrode active material, an aluminum conductor, a ferromagnetic nickel conductor, and an outer can containing iron as a main component. These pulverizations can be processed by a pulverizer such as a VM mill using a rotating blade.
S Z8801 standard sieve (hereinafter abbreviated as "standard sieve") is screened through a 1 mm sieve to select. The particle size component of about 1 mm or more on the sieve obtained here is mainly composed of aluminum foil, copper foil, and a piece of an outer can mainly composed of iron, and hardly contains cobalt valuables. Therefore, components under about 1 mm below the sieve are further selected by a standard sieve of 250 μm, and components on the standard sieve of 250 μm are again processed by a VM mill and selected by a standard sieve of 250 μm. The obtained component under the standard sieve of 250 μm can be used as a raw material in a refining process known as a valuable metal containing cobalt.

【0016】ここで、標準篩1mm、および標準篩25
0μmを用いることが好ましい理由について説明する。
現在、工業的に生産されているリチウム二次電池の、炭
素粉末その他の負極活物質およびコバルト酸化物その他
の正極活物質の50%平均粒度は、おおむね5〜50μ
mであり、最大粒度(最大粒子径)もおおむね100〜
200μmである。
Here, the standard sieve 1 mm and the standard sieve 25
The reason why it is preferable to use 0 μm will be described.
At present, the 50% average particle size of carbon powder and other negative electrode active materials and cobalt oxide and other positive electrode active materials of industrially produced lithium secondary batteries is approximately 5 to 50 μm.
m, and the maximum particle size (maximum particle size) is generally 100 ~
200 μm.

【0017】しかし、不活性化した電池粉砕後の活物質
には、活物質の加熱処理あるいは残存する結合剤等によ
り、複数の粒子の集合物である二次粒子が多く生成し、
回収するコバルト有価物の粒度(粒子径)に大きいもの
を含む場合や、電池に使用される活物質の粒度が上記の
ものよりも大きい場合には、第一段階として標準篩1m
mよりも大きな目開きを持つものを選択し、第二段階と
して標準篩250μmより大きな目開きのもの、例えば
目開き300〜500μmの標準篩を用いることが必要
となると考えられる。したがって、第二段階に用いられ
る標準篩の目開きは、電池の活物質原料あるいは二次粒
子の最大粒度の5倍以下のものを選択することが、他の
電池材料の混入を減らし、かつコバルト有価物を効率よ
く回収する観点から望ましい。ここで最大粒度の計測に
は、レーザー回折による90%累積時の粒度を採用する
ことができる。
However, secondary particles, which are aggregates of a plurality of particles, are generated in the inactivated active material after the battery pulverization due to the heat treatment of the active material or the remaining binder.
In the case where the particle size (particle size) of the cobalt valuables to be recovered includes a large one, or when the particle size of the active material used in the battery is larger than the above, the standard sieve is 1 m as the first step.
It is considered that it is necessary to select a sieve having a mesh size larger than m, and to use a standard sieve having a mesh size larger than 250 μm, for example, a standard sieve having a mesh size of 300 to 500 μm as a second step. Therefore, the size of the standard sieve used in the second step should be less than 5 times the maximum particle size of the active material of the battery or the secondary particles. It is desirable from the viewpoint of efficiently collecting valuable resources. Here, for the measurement of the maximum particle size, the particle size at the time of 90% accumulation by laser diffraction can be adopted.

【0018】以上から、第一段階として標準篩1mmの
篩上がアルミニウム箔、銅箔及び外装缶の断片となるよ
うに粉砕する。こうすることで標準篩1mmの篩下の成
分のコバルト有価物含有率が高くなる。
From the above, as a first step, the standard sieve of 1 mm is pulverized so as to become pieces of aluminum foil, copper foil, and an outer can. By doing so, the cobalt valuables content of the components under the standard sieve of 1 mm increases.

【0019】次に第二段階として当該篩下の成分をさら
に標準篩250μm篩下の成分とすることで、おおむね
350μm以下の粉状物からなる成分となるため、コバ
ルト有価物が効率よく回収されるものである。
Next, as a second step, the components under the sieve are further converted to components under a standard sieve of 250 μm to become components composed of powdery materials of approximately 350 μm or less, so that cobalt valuables are efficiently recovered. Things.

【0020】なお、第一段階の標準篩の目開きをあまり
大きくすると、その篩上にコバルト有価物をほとんど含
まない成分とすることができるが、篩下にはコバルト有
価物以外のものが多く混入するため好ましくない。そこ
で、第一段階の前に第一段階の標準篩の目開きよりもさ
らに大きな目開きの篩い分けの工程を追加して、コバル
ト有価物以外のものを効率よく除去してもよい。
If the opening of the standard sieve in the first stage is too large, a component containing almost no cobalt valuables on the sieve can be obtained. It is not preferable because it is mixed. Therefore, before the first step, a step of sieving the mesh with a size larger than that of the standard sieve in the first step may be added to efficiently remove substances other than the cobalt valuables.

【0021】このような機械的選別法により得られた最
終製品のコバルト含有率を更に高める為には、上記の粉
砕後、風力分離(分級)装置あるいは送風機の付いた破
砕装置、例えばピンミルを用いて処理するといっそう効
果的である。
In order to further increase the cobalt content of the final product obtained by such a mechanical sorting method, after the above-mentioned pulverization, a wind separator (classifier) or a crusher equipped with a blower, for example, a pin mill is used. Processing is more effective.

【0022】風力分級装置や送風機の付いた破砕装置で
あるピンミルにより銅箔、アルミニウム箔は比較的大き
な断片として容易に分離される。VMミルと篩いの処理
のみでは、有価物中に含まれる粉末状炭素の粒度範囲が
ほぼコバルト有価物と等しいために分離されにくいのに
対し、例えばピンミルで処理するとピンミルに付属する
風力分級機構によって炭素粉末(比重:1.5〜2.
2)、アルミニウム箔または銅箔等は遠方に飛ぶととも
に、酸化コバルト(II)(比重:6.5)や酸化コバ
ルト(III)(比重:4.3〜4.9)等からもわか
るようにコバルト有価物は、炭素粉末と比較して高比重
であるため直下に落下したい積するので、容易に炭素等
と分離出来るからである。
Copper foil and aluminum foil can be easily separated as relatively large pieces by a pin mill which is a crusher equipped with an air classifier or a blower. With only a VM mill and a sieve treatment, the powdered carbon contained in the valuables is difficult to be separated because the particle size range is almost equal to the cobalt valuables. Carbon powder (specific gravity: 1.5 to 2.
2), as the aluminum foil or copper foil flies far away, as can be seen from cobalt (II) oxide (specific gravity: 6.5), cobalt oxide (III) (specific gravity: 4.3 to 4.9), etc. This is because cobalt valuables have a higher specific gravity than carbon powder, and therefore are likely to fall immediately below, and thus can be easily separated from carbon and the like.

【0023】なお、加熱工程、粉砕および分級工程の進
行順番は特に限定されない。たとえば、不活性化電池を
VMミルで粉砕後加熱することで、電池内の有機物等の
除去を容易にし、加熱時間を短縮することも可能であ
る。なお、もちいる粉砕装置は一種類としてもよい。 [コバルト有価物への磁性付与工程]以上の粉砕、風力
分級によりコバルト有価物の含有率を向上させた上記分
離物は、上述の通りコバルトを含む有価金属として公知
の精錬プロセスにおける原料に使用することが出来る
が、回収したコバルト有価物を還元して、コバルト有価
物が磁性を付与し、磁力により磁性を発現したコバルト
有価物を回収することで、コバルト有価物の含有率を更
に向上させることも可能である。
The order of progress of the heating step, pulverization and classification step is not particularly limited. For example, by crushing the inactivated battery with a VM mill and then heating it, it is possible to easily remove organic substances and the like in the battery and shorten the heating time. The crushing device used may be of one type. [Step of Applying Magnetism to Cobalt Valuables] The above-mentioned separated material having an improved content of cobalt valuables by the above pulverization and air classification is used as a raw material in a refining process known as a valuable metal containing cobalt as described above. However, it is possible to further improve the content of the cobalt valuables by reducing the collected cobalt valuables, imparting magnetism to the cobalt valuables, and recovering the cobalt valuables exhibiting magnetism by magnetic force. Is also possible.

【0024】一般に金属コバルトは強磁性体であるが、
その酸化物である酸化コバルト(II)及び酸化コバル
ト(II、III)は常温でいずれも外界に対し磁性を
示さない。そこで、回収したコバルト有価物を、酸また
はアルカリ水溶液中で還元することにより、コバルト有
価物に磁性を付与し、磁性を発現したコバルト有価物を
回収することで、コバルト有価物の含有率を更に向上さ
せるものである。
Generally, metallic cobalt is a ferromagnetic material,
Neither of the oxides, cobalt (II) oxide and cobalt oxide (II, III), exhibit normal magnetism at ambient temperature. Therefore, by reducing the recovered cobalt valuables in an acid or alkali aqueous solution, magnetism is imparted to the cobalt valuables, and the cobalt valuables exhibiting magnetism are recovered, thereby further increasing the content of the cobalt valuables. It is to improve.

【0025】なお、ここでいう磁性の発現とは、磁選機
によって選別することができる程度のものであることを
いうものとする。加熱工程、粉砕工程、分級工程により
分離したコバルト有価物は酸化物になっており、反強磁
性で磁石に対して感応しない。そこで本工程によるコバ
ルト有価物の回収を行うには、まず鉄を主成分とする外
装缶の断片及び導電体を構成しているニッケル片を、粉
砕工程、分離工程において磁力により除去する。
It should be noted that the expression of the magnetism here means that the magnetism can be selected by a magnetic separator. The cobalt valuables separated in the heating step, the pulverizing step, and the classifying step are oxides, and are antiferromagnetic and insensitive to magnets. Therefore, in order to recover the cobalt valuables in this step, first, pieces of the outer can, which are mainly composed of iron, and nickel pieces constituting the conductor are removed by magnetic force in the pulverizing step and the separating step.

【0026】次に、磁性を示さない残りのコバルト有価
物を磁性化させるには還元する必要がある。なお、この
還元反応においては、コバルトが完全に金属状にまで還
元される必要はないようである。
Next, in order to magnetize the remaining cobalt valuables that do not show magnetism, it is necessary to reduce them. In this reduction reaction, it seems that cobalt does not need to be completely reduced to a metallic state.

【0027】即ち、上記の加熱工程、粉砕工程、篩によ
り分離されたコバルト有価物をアルカリ水溶液、例えば
苛性ソーダ水溶液に浸漬するとともに、この系に両性金
属例えばアルミニウムを粉末状にして添加すると、アル
ミン酸ナトリウムとなり溶解する際に、水素を発生しコ
バルト酸化物を還元する。ここで、電池にはアルミニウ
ム箔を使用しているため、アルミニウムを添加しなくて
もアルカリ水溶液、例えば苛性ソーダ水溶液に上記の有
価物を浸漬させただけで還元されるが、コバルト有価物
の還元による磁性化を効率よく行うにはアルミニウム、
特に粉末状にしたものを添加することが望ましい。
That is, while the cobalt valuables separated by the above-mentioned heating step, pulverizing step, and sieve are immersed in an aqueous alkali solution, for example, an aqueous caustic soda solution, and an amphoteric metal, for example, aluminum is added to this system in powder form, alumina When dissolved as sodium, it generates hydrogen and reduces cobalt oxide. Here, since the battery uses an aluminum foil, it is reduced only by immersing the above-mentioned valuables in an alkaline aqueous solution, for example, a caustic soda aqueous solution without adding aluminum, but by reducing cobalt valuables. For efficient magnetization, aluminum,
In particular, it is desirable to add a powder.

【0028】一方、コバルト有価物を還元させる系とし
て、酸例えば塩酸水溶液中にコバルト有価物を浸漬し、
亜鉛又はアルミニウムの粉末を添加してコバルト酸化物
を還元し磁性を持たせることも可能である。しかしなが
らコバルト酸化物はこの系に若干溶出するので、コバル
ト有価物の回収という観点からは、アルカリ水溶液に両
性金属添加するほうが好ましい。
On the other hand, as a system for reducing cobalt valuables, cobalt valuables are immersed in an acid such as an aqueous hydrochloric acid solution.
It is also possible to add zinc or aluminum powder to reduce the cobalt oxide to make it magnetic. However, since cobalt oxide is slightly eluted into this system, it is preferable to add an amphoteric metal to the aqueous alkali solution from the viewpoint of recovery of cobalt valuables.

【0029】かくして得られた磁性を持つコバルト有価
物は、濾過水洗し乾燥させ、磁力によりコバルト含有率
を向上させた有価物として回収して、コバルトを含む有
価金属として公知の精錬プロセスに供する事ができる。
なお、コバルト有価物を磁選する場合には、必ずしも乾
燥状態で行う必要はなく、溶液中に分散させた状態で行
う事も可能である。その場合には、濾過洗浄した後、溶
液中に分散させて磁力により選別した後、乾燥し調整す
ればよい。
The thus obtained magnetic cobalt-containing material having magnetic properties is filtered, washed with water, dried, and recovered as a valuable material having an increased cobalt content by a magnetic force, and subjected to a refining process known as a valuable metal containing cobalt. Can be.
In addition, when magnetically separating cobalt valuables, it is not always necessary to carry out in a dry state, but it is also possible to carry out in a state of being dispersed in a solution. In that case, after washing by filtration, it may be dispersed in a solution, separated by magnetic force, dried and adjusted.

【0030】なお、上述した水溶液中での還元方法以外
にも、例えばコバルト有価物を不活性気流中、例えば窒
素気流中で500〜900℃に加熱するか、電池の開口
部を極端に小さくして熱処理するとか、炭素粉末で覆い
焼成し放冷すると磁性を持つようになる。しかしなが
ら、粉砕、分離工程の後に加熱工程を加える必要が生じ
るので、これらの場合には不活性化電池を加熱する際の
温度をより高温として、はじめからコバルト有価物に磁
性を付与し、その後の粉砕、分離工程によってコバルト
含有率を高めた後、磁性付与のための工程を省略し、す
でに磁性を発現したコバルト有価物を磁力によって回収
することで、コバルト有価物の含有率を更に向上させる
ことが可能となる。
In addition to the above-described reduction method in an aqueous solution, for example, cobalt valuables are heated to 500 to 900 ° C. in an inert gas stream, for example, a nitrogen gas stream, or the opening of the battery is made extremely small. Or heat-treated, or covered with carbon powder, fired, and allowed to cool, resulting in magnetism. However, since it becomes necessary to add a heating step after the pulverization and separation steps, in these cases, the temperature at the time of heating the deactivated battery is set to a higher temperature, and magnetism is imparted to the cobalt valuables from the beginning, and thereafter, After increasing the cobalt content by the pulverization and separation steps, the step of imparting magnetism is omitted, and the cobalt valuables that have already developed magnetism are recovered by magnetic force, thereby further improving the content of the cobalt valuables. Becomes possible.

【0031】[0031]

【作用】上記構成により、本願発明は以下のように作用
する。すなわち、制御された条件下で使用済み電池が開
口され、当該電池が電圧を有する場合は放電も伴うた
め、使用済み電池が容易に不活性化される。
According to the above configuration, the present invention operates as follows. That is, the used battery is opened under the controlled condition, and when the battery has a voltage, the battery is also discharged, so that the used battery is easily inactivated.

【0032】また、不活性化した電池を加熱工程と、粉
砕工程とによって粉砕物とした後、風力分離することに
より、コバルト有価物の含有率を向上させた有価物が分
離回収される。更に、この分離回収されたコバルト有価
物に磁性付与処理を施すことで、磁力によってコバルト
有価物が選択的に分離回収されることとなり、回収効率
が高められる。
Further, the deactivated battery is pulverized by a heating step and a pulverizing step, and is separated by wind power, thereby separating and recovering a valuable material having an improved content of cobalt valuable material. Further, by applying a magnetizing treatment to the separated and recovered cobalt valuables, the cobalt valuables are selectively separated and recovered by the magnetic force, and the recovery efficiency is improved.

【0033】[0033]

【発明の実施例】以下に実施例によって本発明を具体的
に説明するが、本発明は実施例のみに限定されるもので
はない。 [実施例1] 開口−放電試験 直径:26mm、長さ:64mmの円柱型使用済みリチ
ウムーコバルト電池30個を1組にして試験した。使用
済み電池を水中に固定し、遠隔操作可能なドリルで、柱
状部分に径10mmの穴を貫通させ、直ちに放電槽に投
入し30分後の系の水温および状態を観察した(表
1)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to examples, but the present invention is not limited to only examples. [Example 1] Opening-discharge test A set of 30 used cylindrical lithium-cobalt batteries having a diameter of 26 mm and a length of 64 mm was tested. The used battery was fixed in water, and a column having a diameter of 10 mm was passed through a columnar portion using a remotely operable drill. The battery was immediately charged into a discharge vessel, and the water temperature and the state of the system after 30 minutes were observed (Table 1).

【0034】放電用水及び電解質水溶液の量はいずれも
10Lとし、電解質溶液は水10Lに、(イ)電解質な
し、(ロ)NaCl、(ハ) Na2SO4、 (ニ)(N
42SO4を各々10gを溶解したもの、および
(ホ)Na2SO4と(NH42SO4を各々5g溶解し
て使用した。投入された電池の開口部分からガスが発生
し同時に有機臭を持つ油状の有機物が水溶液表面に分離
浮遊した。ガスの発生は、水のみの系に開口した電池を
投入した初期段階に激しく、開口部が電池を貫通してい
ない電池で激しく発生した。更に、投入数が増加すると
ガスの発生は、漸次ゆるやかになった。電池30個の投
入完了時から30分経過時の系の温度は、初期の水温7
℃に対して、以下の如く上昇しているが、投入後2時間
でほぼ外気温近くまで下がった。表1から、電解質の添
加効果が認められる。
The amounts of the water for discharge and the aqueous solution of the electrolyte were all 10 L. The electrolyte solution was 10 L of water, (A) no electrolyte, (B) NaCl, (C) Na 2 SO 4 , (D) (N)
H 4) respectively 2 SO 4 obtained by dissolving a 10 g, and (used by each 5g dissolved e) and Na 2 SO 4 and (NH 4) 2 SO 4. Gas was generated from the opening of the charged battery, and at the same time, oily organic substances having organic odor separated and floated on the surface of the aqueous solution. The generation of gas was intense in the initial stage when a battery opened to a water-only system was introduced, and was severely generated in a battery whose opening did not penetrate the battery. Furthermore, as the number of inputs increased, the evolution of gas gradually became more gradual. The temperature of the system 30 minutes after the completion of the charging of the 30 batteries is the initial water temperature 7
With respect to ° C, the temperature rose as follows, but fell almost to the outside temperature in 2 hours after the introduction. Table 1 shows the effect of adding the electrolyte.

【0035】[0035]

【表1】 [実施例2] 開口−放電試験 水50Lに実施例1記載の(イ)の残液0.5Lを添加
した液を電解液とし、実施例1で使用した装置を用い
て、使用済み電池約150個の開口−放電試験を行っ
た。系の温度は、25℃に上昇したが、その他は、実施
例1と同様異常は認められなかった。 [実施例3] 開口−放電試験 実施例1に使用した円筒形電池及び縦50mm、横32
mm、厚さ13mmの角形の電池を冷却し大気中で開口
した、電池は共に発熱し開口部からガス状の物質が噴出
し危険な状態と判断された。直ちに、水中に投じたとこ
ろガス発生は穏やかになり発熱反応もゆるやかになっ
た。 [実施例4] 不活性化電池の内容物の加熱 直径26mm 長さ64mmの円筒形リチウムーコバル
ト電池を実施例1に示した方法により、NaCl水溶液
を用いて不活性化させた電池の内容物のみをそれぞれ3
0個を1組にして、大気雰囲気のマッフル炉中に置載し
て200℃〜250℃で1時間、300℃で1時間、4
00℃で1時間、500℃で1時間、1000℃で1時
間加熱した。
[Table 1] [Example 2] Opening-discharge test A solution obtained by adding 0.5 L of the residual solution of (a) described in Example 1 to 50 L of water was used as an electrolyte, and the used battery used in Example 1 was used. 150 opening-discharge tests were performed. The temperature of the system rose to 25 ° C., but no other abnormalities were observed as in Example 1. [Example 3] Opening-discharge test Cylindrical battery used in Example 1 and a length of 50 mm and a width of 32
A rectangular battery having a thickness of 13 mm and a thickness of 13 mm was cooled and opened in the atmosphere. The batteries both generated heat and a gaseous substance was ejected from the opening to determine that the battery was dangerous. Immediately upon exposure to water, gas evolution became mild and the exothermic reaction became mild. Example 4 Heating of Contents of Inactivated Battery Contents of a battery obtained by inactivating a cylindrical lithium-cobalt battery having a diameter of 26 mm and a length of 64 mm using an aqueous NaCl solution according to the method described in Example 1. Only 3 each
A set of 0 pieces is placed in a muffle furnace in an air atmosphere and placed at 200 ° C. to 250 ° C. for 1 hour, 300 ° C. for 1 hour,
Heating was performed at 00 ° C for 1 hour, 500 ° C for 1 hour, and 1000 ° C for 1 hour.

【0036】加熱温度が250〜300℃に達すると、
酸性ガスの発生が見られ、更に400℃に達すると、第
二のガス発生が見られた。最高温度400℃以上の温度
に1段で加熱すると、有機物が発火し炉内の温度は急激
に上昇し分解ガスの発生も激しくなった。加熱温度が6
60℃以上になると、系中のアルミニウム箔が溶解し飛
散するためガスの発生が認められた。
When the heating temperature reaches 250 to 300 ° C.,
Generation of acid gas was observed, and when the temperature reached 400 ° C., a second gas generation was observed. When heated in a single step to a temperature of 400 ° C. or higher, organic substances were ignited, the temperature inside the furnace rose rapidly, and the generation of cracked gas increased. Heating temperature is 6
When the temperature reached 60 ° C. or higher, gas generation was recognized because the aluminum foil in the system was dissolved and scattered.

【0037】したがって、400℃以上に加熱する場
合、温度プログラムを(a)常温〜300℃迄昇温し、
(b)300℃に1時間保持、(c)続いて400℃に
昇温し、(d)400℃に1時間保持、という段階的な
昇温プログラムを実行させた後に、最高温度に到達する
ようにして、有機物等の急激な分解を制御する事が必要
であることが判明した。この操作プログラムに従えば、
着火したとしても一時的に過ぎず操作上問題とはならな
い。
Therefore, when heating to a temperature of 400 ° C. or more, the temperature program is set to (a) from normal temperature to 300 ° C.
The maximum temperature is reached after executing a stepwise heating program of (b) holding at 300 ° C. for 1 hour, (c) subsequently raising the temperature to 400 ° C., and (d) holding at 400 ° C. for 1 hour. Thus, it was found that it was necessary to control the rapid decomposition of organic substances and the like. According to this operation program,
Even if it is ignited, it is only temporary and there is no operational problem.

【0038】なお、実施例4に述べたような開放系の炉
で400℃以上に加熱放冷すると、非磁性のコバルト有
価物が得られるとともに、磁性を有するコバルト有価物
が得られることがある。そして、非磁性コバルト有価物
が得られた場合には、当該コバルト有価物に磁性を付与
する事が困難になる事実を発見した。 [実施例5] 不活性化電池の加熱 実施例1に示した方法により、NaCl水溶液を用いて
調整した直径26mm長さ64mmの円筒形リチウムー
コバルト電池を不活性化したもの各10個を大気雰囲気
のマッフル炉に置き、最高温度300℃及び400℃に
加熱した。加熱プログラムは最高温度に応じて実施例4
記載の(a)〜(b)または、(a)〜(d)の昇温プ
ログラムとした。すなわち、200℃〜250℃で1時
間保持し、300℃まで昇温させ1時間保持するか、ま
たは200℃〜250℃で1時間保持し、300℃まで
昇温させ1時間保持した後、400℃まで昇温させ1時
間保持した。いずれも炉内温度250〜300℃で酸性
ガスの発生が認められるが、燃焼のような酸化反応は認
められなかった。 [実施例6] 加熱物質の粉砕 実施例4で調整した200〜250℃加熱電池約30個
をVMミルで粉砕し、標準篩1mmおよび250μmに
よって分別した試料の金属等の組成を、定法に従ってI
CP(セイコー電子工業KK製)で測定した結果を表2
に示す。なお、炭素量は王水不溶物を15分間煮沸し、
蒸発乾燥させたものの重量とした。つぎに表2の試料N
O.3を10g秤量し、磁選による精製後の金属等の組
成を表3に示した。なお表2中、1mm>A>250μ
mとは、成分Aは標準篩の1mm篩下であって250μ
m篩上であることを示すものである。
When heated and cooled to 400 ° C. or higher in an open furnace as described in Example 4, non-magnetic cobalt valuables and magnetic cobalt valuables are sometimes obtained. . And it discovered that when nonmagnetic cobalt valuables were obtained, it would be difficult to impart magnetism to the cobalt valuables. [Example 5] Heating of deactivated batteries In accordance with the method described in Example 1, ten cylindrical lithium-cobalt batteries each having a diameter of 26 mm and a length of 64 mm prepared using an aqueous NaCl solution were deactivated, and 10 of each were air-conditioned. It was placed in an atmosphere muffle furnace and heated to a maximum temperature of 300 ° C and 400 ° C. Example 4 heating program according to maximum temperature
The temperature raising program described in (a) to (b) or (a) to (d) was used. That is, the temperature is maintained at 200 ° C. to 250 ° C. for 1 hour and the temperature is raised to 300 ° C. and maintained for 1 hour, or the temperature is maintained at 200 ° C. to 250 ° C. for 1 hour, and the temperature is raised to 300 ° C. and maintained for 1 hour. The temperature was raised to ° C. and maintained for 1 hour. In all cases, generation of acidic gas was observed at a furnace temperature of 250 to 300 ° C., but no oxidation reaction such as combustion was observed. Example 6 Pulverization of Heated Material About 30 cells heated at 200 to 250 ° C. prepared in Example 4 were pulverized by a VM mill and fractionated by a standard sieve of 1 mm and 250 μm.
Table 2 shows the results measured with CP (manufactured by Seiko Denshi Kogyo KK).
Shown in In addition, the amount of carbon was boiled for 15 minutes.
The weight of the dried product was taken as the weight. Next, sample N in Table 2
O. 3 was weighed, and the composition of metals and the like after purification by magnetic separation is shown in Table 3. In Table 2, 1mm>A> 250μ
m means that the component A is 250 μm below a 1 mm standard sieve.
It indicates that it is on the m sieve.

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [実施例7−1〜3] 粒度分布とCoの品位 [実施例7−1]使用済み円筒形電池(径13mm,長
さ64mm)80個を実施例1の条件に従って開口し、
240℃で3時間加熱したものを放冷した後、VMミ
ル、続いてバイブロミルにかけて粉砕した。粉砕物を標
準篩2mmの篩いで分粒した組成を測定した(測定法は
実施例6と同様である。以下同じ。)。2mm篩上
(1)および2mm篩下(2)の結果を表4に示す。
[Table 3] [Examples 7-1 to 3] Particle size distribution and quality of Co [Example 7-1] 80 used cylindrical batteries (diameter 13 mm, length 64 mm) were opened according to the conditions of Example 1,
After heating at 240 ° C. for 3 hours, the mixture was allowed to cool, and then pulverized by a VM mill and then a vibro mill. The composition obtained by sizing the pulverized product with a standard sieve having a sieve of 2 mm was measured (the measuring method is the same as that in Example 6; the same applies hereinafter). Table 4 shows the results of the above 2 mm sieve (1) and the below 2 mm sieve (2).

【0041】[0041]

【表4】 [実施例7−2]実施例7−1(2)で得た標準篩2m
m篩下の試料488gを目開きの異なる標準篩で分粒し
た結果を表5に示す。標準篩の目開きによって篩分けし
た粒度範囲500μm以下の成分でコバルト含有率が2
0%以上となった。
[Table 4] [Example 7-2] 2 m of the standard sieve obtained in Example 7-1 (2)
Table 5 shows the results obtained by sizing 488 g of the sample under the m sieve with a standard sieve having different openings. A component having a particle size range of 500 μm or less sieved with a standard sieve opening and having a cobalt content of 2
0% or more.

【0042】[0042]

【表5】 [実施例7−3] 風力分離による効果 実施例7−1(2)の試料を出口に送風機を付けたピン
ミルに掛け比重の大きい部分(出口の直下に溜まった部
分)を採取し、組成を分析した結果を表6に示す。風力
分離により、コバルト含有率が36.8%にまで向上し
た。
[Table 5] Example 7-3 Effect of Wind Separation The sample of Example 7-1 (2) was placed on a pin mill equipped with a blower at the outlet, and a portion having a large specific gravity (a portion collected immediately below the outlet) was collected. The results of the analysis are shown in Table 6. Wind separation increased the cobalt content to 36.8%.

【0043】[0043]

【表6】 [実施例8−1〜2] 磁性発現化反応 実施例1〜実施例7−3の操作で得られるコバルト有価
物は磁性を示さなかった。本発明者らは、コバルト有価
物に以下の処理を施す事によりコバルト有価物に、外界
に対して磁性を発現させることに成功した。 [実施例8−1] アルカリによる磁性化の発現 実施例4で200〜250℃に加熱した試料、300℃
に加熱した試料及び400℃に加熱した試料を、実施例
6で使用したVMミルで粉砕した試料は、いずれも磁性
を示さなかった。
[Table 6] [Examples 8-1 and 2-2] Magnetization reaction The cobalt valuables obtained by the operations of Examples 1 and 7-3 did not show magnetism. The present inventors succeeded in expressing magnetism to the outside world by applying the following treatment to the cobalt valuables. Example 8-1 Expression of Magnetization by Alkali Sample Heated to 200 to 250 ° C. in Example 4, 300 ° C.
The sample heated to 400 ° C. and the sample heated to 400 ° C. were crushed by the VM mill used in Example 6, and none of the samples showed magnetism.

【0044】この試料10gを12〜25%の水酸化ナ
トリウム水溶液100mlに浸漬すると、系中に存在す
る金属アルミニウムが溶解し、この際水素を発生してコ
バルト有価物を還元し磁性を発現した。なお、上記の磁
性の発現しなかった物質を600℃〜1000℃に加熱
して、加熱処理物を再びアルカリ処理しても磁性は発現
しなかった。磁力による回収量は8.2gであった。 [実施例8−2] 酸性溶液中での磁性化の発現 実施例8−1で使用した300℃に加熱処理後粉砕した
試料10gを、10%塩酸水溶液又は13%硫酸水溶液
に浸漬し亜鉛粉末0.5gを少量ずつ添加すると、直ち
にガスが発生しコバルト有価物が磁性を持つようになっ
た。同時に系中にコバルトが溶出し液は桃紫色を呈し
た。磁力による回収量は7.8gであった。 [実施例9]実施例8−1記載の300℃で加熱処理し
た試料(磁性を示さない物質)10gを坩堝(るつぼ)
に入れ、その上部を炭素粉末で覆って、バーナーで一時
間加熱した後、放冷したところ、この試験により試料は
磁性を発現した。
When 10 g of this sample was immersed in 100 ml of a 12 to 25% sodium hydroxide aqueous solution, the metallic aluminum present in the system was dissolved, and at this time, hydrogen was generated to reduce cobalt valuables and develop magnetism. In addition, even if the above-mentioned substance which did not express magnetism was heated to 600 ° C. to 1000 ° C., and the heat-treated product was again alkali-treated, no magnetism was exhibited. The amount recovered by magnetic force was 8.2 g. Example 8-2 Expression of Magnetization in Acid Solution 10 g of the sample used in Example 8-1 and ground after heating at 300 ° C. was immersed in a 10% aqueous hydrochloric acid solution or a 13% aqueous sulfuric acid solution to obtain zinc powder. When 0.5 g was added little by little, gas was immediately generated and the cobalt valuables became magnetic. At the same time, cobalt was eluted into the system, and the solution turned pink-violet. The recovered amount by magnetic force was 7.8 g. Example 9 A crucible (crucible) was charged with 10 g of the sample (substance not exhibiting magnetism) heat-treated at 300 ° C. described in Example 8-1.
, And the top was covered with carbon powder, heated for one hour with a burner, and allowed to cool. The sample showed magnetism by this test.

【0045】一方、炭素粉末を入れずそのまま加熱放冷
した試料は磁性を示さなかった。 [実施例10] 不活性気流中での使用済み電池の加熱 自然放電させ小さな開口部(電池の直径の1/10の径
口)を持つ使用済み電池を不活性雰囲気下で800℃に
2時間加熱した。この系では、有機物の燃焼は観察され
なかった。つぎにこの不活性化電池VMミルで粉砕し、
標準篩1mmの篩下に分別した。表7に粉砕し分別した
試料の組成を示す。この分別した試料を30g秤量し磁
石による選別をしたところ磁性体29gを得た。
On the other hand, the sample which had been heated and allowed to cool without adding the carbon powder did not show magnetism. [Example 10] Heating of a used battery in an inert gas flow A naturally used battery having a small opening (a diameter of 1/10 of the battery) was heated to 800 ° C for 2 hours in an inert atmosphere. Heated. No organic matter combustion was observed in this system. Next, pulverize with this inactivation battery VM mill,
It was separated under a standard sieve of 1 mm. Table 7 shows the composition of the sample that was pulverized and separated. When 30 g of the separated sample was weighed and sorted by a magnet, 29 g of a magnetic material was obtained.

【0046】[0046]

【表7】 [Table 7]

【0047】[0047]

【発明の効果】以上から明らかなように、本発明によれ
ば、使用済みのリチウムーコバルト二次電池を安全且つ
確実に放電不活性化することができ、コバルト有価物を
簡便且つ有効に回収することが出来る。
As is apparent from the above, according to the present invention, a used lithium-cobalt secondary battery can be safely and reliably deactivated by discharge, and cobalt valuables can be easily and effectively recovered. You can do it.

【0048】すなわち、制御された条件下で使用済み電
池が開口され、当該電池が電圧を有する場合は放電も伴
うため、使用済み電池を容易に不活性化することができ
る。また、不活性化した電池を加熱工程と、粉砕工程と
によって粉砕物とした後、風力分離することにより、コ
バルト有価物の含有率を向上させた有価物を分離回収す
ることができる。更に、この分離回収されたコバルト有
価物に磁性を付与する処理を施すことで、磁力によって
コバルト有価物を選択的に分離回収可能となり、回収効
率が高められるため、その産業的効果は顕著である。
That is, a used battery is opened under a controlled condition, and when the battery has a voltage, the battery is also discharged, so that the used battery can be easily deactivated. In addition, after the inactivated battery is pulverized by the heating step and the pulverizing step, it is separated by wind power, whereby a valuable substance having an improved content of cobalt valuable substance can be separated and collected. Further, by performing a process of imparting magnetism to the separated and recovered cobalt valuables, it becomes possible to selectively separate and recover the cobalt valuables by magnetic force, and the recovery efficiency is enhanced, so that the industrial effect is remarkable. .

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 コバルトを含有する電池を、開口させた
後に溶液中に浸漬させることにより、又は溶液中で開口
させることにより、電池中の電解質を含む有機溶媒を溶
液中に浸出させることを特徴とする使用済みリチウム−
コバルト二次電池の不活性化方法。
An organic solvent containing an electrolyte in a battery is leached into a solution by immersing a battery containing cobalt in a solution after opening the battery or by opening the battery in the solution. Used lithium-
A method for inactivating a cobalt secondary battery.
【請求項2】 塩化ナトリウム、硫酸ナトリウムおよび
硫酸アンモニウムから選択される少なくとも一つを電解
質として含有する水溶液を、溶液として使用することを
特徴とする請求項1記載の電池の不活性化方法。
2. The method according to claim 1, wherein an aqueous solution containing at least one selected from sodium chloride, sodium sulfate and ammonium sulfate as an electrolyte is used as the solution.
【請求項3】 請求項1、又は2記載の不活性化を行っ
た後、溶液中から取り出した電池を加熱させてから粉砕
し、該粉砕物を篩い分けして篩い下を回収することを特
徴とする使用済みリチウム−コバルト二次電池からのコ
バルト回収法。
3. After performing the inactivation according to claim 1 or 2, heating the battery taken out of the solution, pulverizing the battery, sieving the pulverized material, and collecting the material under the sieve. A method for recovering cobalt from used lithium-cobalt secondary batteries.
【請求項4】 請求項3記載のコバルト回収法におい
て、加熱の前に粉砕をしたことを特徴とする使用済みリ
チウム−コバルト二次電池からのコバルト回収法。
4. The method for recovering cobalt from a used lithium-cobalt secondary battery according to claim 3, wherein pulverization is performed before heating.
【請求項5】 加熱において、活物質結合剤の効力を消
滅または低減させるように加熱したことを特徴とする請
求項3、又は4記載の使用済みリチウム−コバルト二次
電池からのコバルト回収法。
5. The method for recovering cobalt from a used lithium-cobalt secondary battery according to claim 3, wherein the heating is performed so as to eliminate or reduce the effectiveness of the active material binder.
【請求項6】 粉砕物の篩い分けにおいて、活物質原料
または不活性化した電池粉砕後の活物質の最大粒度の5
倍以下の成分となるように篩い分けしたことを特徴とす
る請求項3、4又は5記載の使用済みリチウム−コバル
ト二次電池からのコバルト回収法。
6. The sieving of the pulverized material, wherein the maximum particle size of the active material after the pulverization of the active material or the inactivated battery is 5%.
6. The method for recovering cobalt from a used lithium-cobalt secondary battery according to claim 3, wherein the component is sieved so as to have a content of twice or less.
【請求項7】 請求項3、4、5、又は6記載の使用済
みリチウム−コバルト二次電池からのコバルト回収法に
おける回収物を、さらに風力を用いてコバルトを分離回
収したことを特徴とする使用済みリチウム−コバルト二
次電池からのコバルト回収法。
7. A method of recovering a used lithium-cobalt secondary battery according to claim 3, 4, 5, or 6, wherein cobalt is separated and recovered using wind power. A method for recovering cobalt from used lithium-cobalt secondary batteries.
【請求項8】 請求項3、4、5、又は6記載の使用済
みリチウム−コバルト二次電池からのコバルト回収法に
おいて、回収物に磁性を付与し、磁力を用いてコバルト
を分離回収したことを特徴とする使用済みリチウム−コ
バルト二次電池からのコバルト回収法。
8. A method for recovering cobalt from a used lithium-cobalt secondary battery according to claim 3, wherein magnetism is imparted to the recovered material, and cobalt is separated and recovered using a magnetic force. A method for recovering cobalt from used lithium-cobalt secondary batteries.
JP2675997A 1997-02-10 1997-02-10 Method for inactivating a used lithium-cobalt secondary battery and a method for recovering cobalt from a used lithium-cobalt secondary battery using the same Expired - Lifetime JP3069306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2675997A JP3069306B2 (en) 1997-02-10 1997-02-10 Method for inactivating a used lithium-cobalt secondary battery and a method for recovering cobalt from a used lithium-cobalt secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2675997A JP3069306B2 (en) 1997-02-10 1997-02-10 Method for inactivating a used lithium-cobalt secondary battery and a method for recovering cobalt from a used lithium-cobalt secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH10223264A true JPH10223264A (en) 1998-08-21
JP3069306B2 JP3069306B2 (en) 2000-07-24

Family

ID=12202220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2675997A Expired - Lifetime JP3069306B2 (en) 1997-02-10 1997-02-10 Method for inactivating a used lithium-cobalt secondary battery and a method for recovering cobalt from a used lithium-cobalt secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3069306B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2796206A1 (en) * 1999-07-07 2001-01-12 Tredi Complete inactivation of reactive components from lithium cells prior to destruction involves soaking the cells in aqueous solutions made sufficiently conducting to create a short circuit between their oppositely charged electrodes
KR100358528B1 (en) * 2000-05-22 2002-10-25 김인석 recycling method of lithium ion secondary battery
GB2424651A (en) * 2005-03-31 2006-10-04 Aea Technology Plc Reclaiming cobalt, nickel and/or manganese from lithium ion batteries
WO2008022414A1 (en) * 2006-08-21 2008-02-28 Lg Eletronics De São Paulo Ltda Process for the extraction of chemical compounds found in secondary lithium batteries
JP2012129054A (en) * 2010-12-15 2012-07-05 Sawaya:Kk Waste battery processing method and waste battery sorting machine and waste battery processing apparatus
JP2012128952A (en) * 2010-12-13 2012-07-05 Sumitomo Metal Mining Co Ltd Battery pack processing apparatus and processing method
JP2012160269A (en) * 2011-01-31 2012-08-23 Sumitomo Metal Mining Co Ltd Device and method for processing battery pack
JP2013539897A (en) * 2010-09-14 2013-10-28 エンパイア テクノロジー ディベロップメント エルエルシー Battery disassembly and recycling
US8858677B2 (en) 2006-02-02 2014-10-14 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus for recovering valuable substance from lithium secondary battery
JP2015170480A (en) * 2014-03-07 2015-09-28 松田産業株式会社 Valuable material recovery method from lithium ion secondary battery
KR20180065471A (en) * 2016-12-08 2018-06-18 (주)엔에이치리사이텍컴퍼니 A treatment method of a used lithium battery and a resource recycling system used therefor
CN109273791A (en) * 2018-10-31 2019-01-25 株洲鼎端装备股份有限公司 A kind of minimizing technology of applying waste lithium ionic power battery septation
JP2019153561A (en) * 2018-03-06 2019-09-12 Jx金属株式会社 Method for processing lithium ion battery waste
CN110767955A (en) * 2019-11-01 2020-02-07 巨江电源科技有限公司 Activation method of waste lead paste of lead-acid battery
JP2020061297A (en) * 2018-10-11 2020-04-16 Dowaエコシステム株式会社 Method of recovering valuable material from lithium ion secondary battery
JP2020174032A (en) * 2019-04-10 2020-10-22 住友金属鉱山株式会社 Method for collecting valuable resources from waste batteries and crushing equipment
CN115995628A (en) * 2023-03-23 2023-04-21 深圳市杰成镍钴新能源科技有限公司 Recovery processing method and device for retired lithium ion battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2796206A1 (en) * 1999-07-07 2001-01-12 Tredi Complete inactivation of reactive components from lithium cells prior to destruction involves soaking the cells in aqueous solutions made sufficiently conducting to create a short circuit between their oppositely charged electrodes
KR100358528B1 (en) * 2000-05-22 2002-10-25 김인석 recycling method of lithium ion secondary battery
GB2424651A (en) * 2005-03-31 2006-10-04 Aea Technology Plc Reclaiming cobalt, nickel and/or manganese from lithium ion batteries
US8858677B2 (en) 2006-02-02 2014-10-14 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus for recovering valuable substance from lithium secondary battery
WO2008022414A1 (en) * 2006-08-21 2008-02-28 Lg Eletronics De São Paulo Ltda Process for the extraction of chemical compounds found in secondary lithium batteries
US9160043B2 (en) 2010-09-14 2015-10-13 Empire Technology Development Llc Disassembling and recycling a battery
KR101472470B1 (en) * 2010-09-14 2014-12-12 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 Disassembling and recycling a battery
JP2013539897A (en) * 2010-09-14 2013-10-28 エンパイア テクノロジー ディベロップメント エルエルシー Battery disassembly and recycling
JP2012128952A (en) * 2010-12-13 2012-07-05 Sumitomo Metal Mining Co Ltd Battery pack processing apparatus and processing method
US8734972B2 (en) 2010-12-13 2014-05-27 Sumitomo Metal Mining Co., Ltd. Battery pack processing apparatus and processing method
JP2012129054A (en) * 2010-12-15 2012-07-05 Sawaya:Kk Waste battery processing method and waste battery sorting machine and waste battery processing apparatus
JP2012160269A (en) * 2011-01-31 2012-08-23 Sumitomo Metal Mining Co Ltd Device and method for processing battery pack
JP2015170480A (en) * 2014-03-07 2015-09-28 松田産業株式会社 Valuable material recovery method from lithium ion secondary battery
KR20180065471A (en) * 2016-12-08 2018-06-18 (주)엔에이치리사이텍컴퍼니 A treatment method of a used lithium battery and a resource recycling system used therefor
JP2019153561A (en) * 2018-03-06 2019-09-12 Jx金属株式会社 Method for processing lithium ion battery waste
JP2020061297A (en) * 2018-10-11 2020-04-16 Dowaエコシステム株式会社 Method of recovering valuable material from lithium ion secondary battery
CN109273791A (en) * 2018-10-31 2019-01-25 株洲鼎端装备股份有限公司 A kind of minimizing technology of applying waste lithium ionic power battery septation
JP2020174032A (en) * 2019-04-10 2020-10-22 住友金属鉱山株式会社 Method for collecting valuable resources from waste batteries and crushing equipment
CN110767955A (en) * 2019-11-01 2020-02-07 巨江电源科技有限公司 Activation method of waste lead paste of lead-acid battery
CN115995628A (en) * 2023-03-23 2023-04-21 深圳市杰成镍钴新能源科技有限公司 Recovery processing method and device for retired lithium ion battery
CN115995628B (en) * 2023-03-23 2023-06-30 深圳市杰成镍钴新能源科技有限公司 Recovery processing method and device for retired lithium ion battery

Also Published As

Publication number Publication date
JP3069306B2 (en) 2000-07-24

Similar Documents

Publication Publication Date Title
JP3069306B2 (en) Method for inactivating a used lithium-cobalt secondary battery and a method for recovering cobalt from a used lithium-cobalt secondary battery using the same
JP6198027B1 (en) How to recover valuable materials from used lithium ion batteries
US12018350B2 (en) Method for recycling lithium batteries
JP6748274B2 (en) How to recover valuables from lithium-ion secondary batteries
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
JP6948066B2 (en) Recycled negative electrode active material recovered from waste lithium ion battery containing lithium titanate and its recovery method
KR20220038416A (en) How to recycle lithium batteries
TW201809296A (en) Process for recovery of pure cobalt oxide from spent lithium ion batteries with high manganese content
JPH1197076A (en) Method for processing battery
JP2000015216A (en) Method for recycling positive electrode active material from lithium ion secondary battery
KR20230038506A (en) Method for disassembling and separating waste lithium ion batteries
KR100358528B1 (en) recycling method of lithium ion secondary battery
WO2022147937A1 (en) Method for treating copper-aluminum material of waste lithium battery and application
JP7229197B2 (en) Lithium recovery method
JP2018170223A (en) Processing method of lithium ion battery scrap
JP3443446B2 (en) Method for recovering cobalt from used lithium secondary battery
JP6676124B1 (en) Method of recovering valuable resources from lithium ion secondary batteries
JPH1046266A (en) Method for recovering cobalt from spent secondary battery
JP6966960B2 (en) Lithium-ion battery waste disposal method
JP2003272720A (en) Recovery method for lithium cobaltate
JP3448392B2 (en) Method for recovering cobalt, copper and lithium from used lithium secondary batteries
US5458990A (en) Method of processing used batteries
JP7316411B1 (en) Method for collecting valuables from lithium ion secondary battery
WO2023243385A1 (en) Recycled positive electrode material, method for producing same, method for using recycled positive electrode material, recycled positive electrode, and lithium ion secondary battery
JP2023183355A (en) Recycled cathode material and manufacturing method thereof, method of using recycled cathode material, recycled cathode, and lithium ion secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080519

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term