JPH10223216A - Manufacture of electrode for cell - Google Patents
Manufacture of electrode for cellInfo
- Publication number
- JPH10223216A JPH10223216A JP9026478A JP2647897A JPH10223216A JP H10223216 A JPH10223216 A JP H10223216A JP 9026478 A JP9026478 A JP 9026478A JP 2647897 A JP2647897 A JP 2647897A JP H10223216 A JPH10223216 A JP H10223216A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- active material
- collector plate
- nickel
- porous body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Connection Of Batteries Or Terminals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は電池用電極、特に金
属集電板を一部に溶接した電極の製造法の改良に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method of manufacturing a battery electrode, particularly an electrode in which a metal current collector is partially welded.
【0002】[0002]
【従来の技術】電池用電極には大別してペースト式電
極、焼結式電極、ポケット式電極などがある。近年アル
カリ蓄電池用電極、特にニッケル電極では、3次元的に
連なった空間を有する帯状の金属多孔体やニッケル繊維
の不織布からなる金属支持体にペースト状の混練物を充
填するペースト式電極が採用されている。これらの金属
支持体は多孔度が95%程度で、その空間部の孔径は最
大数百μmであることからペースト状活物質あるいは活
物質粉末を高密度に充填することが可能である。2. Description of the Related Art Battery electrodes are roughly classified into paste electrodes, sintered electrodes, pocket electrodes, and the like. In recent years, in the case of electrodes for alkaline storage batteries, in particular, nickel electrodes, paste-type electrodes in which a paste-like kneaded material is filled in a metal support made of a strip-shaped porous metal having a three-dimensionally connected space or a nonwoven fabric of nickel fibers have been adopted. ing. These metal supports have a porosity of about 95%, and the pore diameter of the space is a few hundred μm at the maximum, so that the paste-like active material or the active material powder can be filled at a high density.
【0003】上記の構成で充填された活物質から電気量
を取り出すためには、金属集電板を電極上に抵抗溶接す
る必要がある。その溶接部を設けるため、図3に示すよ
うに金属支持体の一部を予めプレス6した後に活物質を
充填する必要があった。しかし、その後の電極厚さを調
整するための加圧プレス工程において、集電板2と電極
1との溶接部と活物質充填部との境界部に歪みができ、
電極にひび割れが発生した。このひび割れは、電池の放
電容量の低下を引き起こしていた。図4はその断面図を
示す。In order to extract the amount of electricity from the active material filled in the above configuration, it is necessary to resistance weld a metal current collector to the electrode. In order to provide the welded portion, as shown in FIG. 3, it was necessary to press a part of the metal support 6 in advance and then fill the active material. However, in the subsequent pressing process for adjusting the electrode thickness, the boundary between the welded portion of the current collector 2 and the electrode 1 and the active material-filled portion is distorted,
The electrode cracked. The cracks caused a decrease in the discharge capacity of the battery. FIG. 4 shows a sectional view thereof.
【0004】この問題を解決するために活物質充填前に
溶接するためのプレス部は設けず、充填後に超音波振動
により電極の一部から活物質を脱落させ、溶接部を設け
る方法がある。[0004] In order to solve this problem, there is a method in which a press portion for welding before filling the active material is not provided, and after filling, the active material is dropped from a part of the electrode by ultrasonic vibration to provide a welded portion.
【0005】[0005]
【発明が解決しようとする課題】しかし、その活物質脱
落部分に金属集電板を抵抗溶接しても溶接引張強度が低
く、またこの電極を用いて作製した電池の内部抵抗も増
大する。溶接引張強度が低いと、金属集電板がはずれや
すくなり、電気量が十分に集電できず放電容量も低いま
まであった。また、電池の内部抵抗が増大すると放電効
率が低下し、放電容量の低下を引き起こす問題があっ
た。However, even if the metal current collector plate is resistance-welded to the portion where the active material has fallen, the welding tensile strength is low, and the internal resistance of a battery manufactured using this electrode also increases. When the welding tensile strength was low, the metal current collector plate was likely to come off, the amount of electricity could not be sufficiently collected, and the discharge capacity remained low. Further, when the internal resistance of the battery is increased, there is a problem that the discharge efficiency is reduced and the discharge capacity is reduced.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に本発明は、3次元的に連続した空間を有する板状の金
属多孔体と、その空間内に充填された活物質とからなる
電極の一部分に超音波振動を加えて活物質のみを脱落さ
せた部分に金属集電板を抵抗溶接し、その溶接された金
属集電板の表面に対し、その垂直方向から一定圧力にて
加圧する電池用電極の製造法である。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an electrode comprising a plate-shaped porous metal body having a three-dimensionally continuous space, and an active material filled in the space. A metal current collector is resistance-welded to the part where only the active material was dropped by applying ultrasonic vibration to a part of the metal current collector, and the surface of the welded metal current collector was pressed at a constant pressure from the vertical direction. This is a method for producing a battery electrode.
【0007】[0007]
【発明の実施の形態】請求項1に記載の本発明は、電極
の一部分に超音波振動を加えて活物質のみを脱落させ、
その部分に金属集電板を抵抗溶接し、その溶接された金
属集電板の表面に対し、垂直方向から一定圧力にて加圧
することを特徴とする電池用電極の製造法である。DETAILED DESCRIPTION OF THE INVENTION According to the first aspect of the present invention, only an active material is dropped by applying ultrasonic vibration to a part of an electrode.
A method for manufacturing an electrode for a battery, characterized in that a metal current collector plate is resistance-welded to the portion, and pressure is applied to the surface of the welded metal current collector plate at a constant pressure from a vertical direction.
【0008】この場合、電極は抵抗溶接された金属集電
板の一部分に加圧プレスされた部分を有していて、超音
波振動により露出した金属多孔体と、金属集電板との接
触面積が増大し、抵抗溶接部の集電板の金属多孔体への
食い込み量が増大するので、溶接引張強度が向上し、金
属集電板のはずれ等の不具合を防止できる。また、この
電極を用いて作製した電池の内部抵抗も低減するので、
放電効率を向上させることができる。In this case, the electrode has a pressure-pressed portion on a part of the resistance-welded metal current collector plate, and a contact area between the metal porous plate exposed by the ultrasonic vibration and the metal current collector plate. And the amount of penetration of the resistance collector by the current collector plate into the porous metal body increases, so that the welding tensile strength is improved and problems such as the metal collector plate coming off can be prevented. Also, since the internal resistance of the battery manufactured using this electrode is reduced,
Discharge efficiency can be improved.
【0009】請求項2に記載の本発明は、超音波振動子
にて発振する周波数と振幅を規定したものである。According to a second aspect of the present invention, an oscillation frequency and an amplitude of the ultrasonic vibrator are defined.
【0010】この場合、発振する超音波の周波数が15
kHzから40kHzであり、振幅が50〜150μm
であるので、金属支持体に充填された活物質のみを脱落
させることができる。超音波の周波数が15kHz未満
あるいは振幅が50μm未満であると、活物質を十分に
脱落させることができずに、活物質が多量残存し、抵抗
溶接時に溶接不良が発生する。また、周波数が41kH
z以上、あるいは振幅が151μm以上であると、超音
波振動が強すぎて金属多孔体を破壊してしまい、抵抗溶
接部を確保することができない。In this case, the frequency of the oscillating ultrasonic wave is 15
kHz to 40 kHz, amplitude 50 to 150 μm
Therefore, only the active material filled in the metal support can be dropped. If the frequency of the ultrasonic wave is less than 15 kHz or the amplitude is less than 50 μm, the active material cannot be sufficiently dropped, a large amount of the active material remains, and poor welding occurs during resistance welding. In addition, the frequency is 41 kHz
If z or more, or if the amplitude is more than 151 μm, the ultrasonic vibration is too strong and breaks the porous metal body, so that a resistance welded portion cannot be secured.
【0011】請求項3に記載の本発明は、超音波振動に
より脱落させる部分に残留する活物質重量比率を規定し
たものである。According to the present invention, the weight ratio of the active material remaining in the portion dropped off by the ultrasonic vibration is defined.
【0012】この場合、超音波振動により活物質を脱落
させる部分に残留する活物質重量比率が20重量%以下
である抵抗溶接部を有していて、抵抗溶接時に溶接不良
が発生せず、溶接引張強度を向上できるので、金属集電
板のはずれ等の不具合を防止できる。[0012] In this case, the active material has a resistance welding portion in which the weight ratio of the active material remaining at the portion where the active material is dropped off by the ultrasonic vibration is 20% by weight or less. Since the tensile strength can be improved, problems such as detachment of the metal current collector can be prevented.
【0013】請求項4に記載の本発明は、垂直方向に加
圧プレスする範囲Aを規定したものである。即ちAは電
極上に配置する金属集電板の範囲B以上であり、電極に
おける活物質を脱落させた範囲C以下(B≦A≦C)と
したものである。According to a fourth aspect of the present invention, a range A in which pressing is performed in the vertical direction is defined. That is, A is equal to or greater than the range B of the metal current collector disposed on the electrode, and equal to or less than the range C (B ≦ A ≦ C) where the active material in the electrode is dropped.
【0014】この場合は、金属集電板と電極との接触面
積が増大し、抵抗溶接部の金属多孔体への食い込み量が
増大し、溶接引張強度が向上するので、金属集電板のは
ずれ等の不具合を防止できる。また、この電極を用いて
作製した電池の内部抵抗についても低減するので、放電
効率が向上できる。[0014] In this case, the contact area between the metal current collector plate and the electrode increases, the amount of bite of the resistance welding portion into the porous metal increases, and the tensile strength of welding improves, so that the metal current collector plate comes off. And the like can be prevented. In addition, since the internal resistance of a battery manufactured using this electrode is also reduced, discharge efficiency can be improved.
【0015】請求項5に記載の本発明は、活物質を脱落
させた部分のプレス後の電極の厚さが、活物質を脱落さ
せていない電極部分の厚さ100%に対して10%〜5
0%としたものである。According to a fifth aspect of the present invention, the thickness of the electrode after pressing the portion where the active material has fallen is 10% to 10% of the thickness of the electrode portion where the active material has not fallen. 5
0%.
【0016】この場合も、金属集電板と電極の接触面積
が増大し、抵抗溶接部の金属多孔体への食い込み量が増
大し、溶接引張強度が向上する。In this case as well, the contact area between the metal current collector plate and the electrode increases, the amount of bite into the porous metal body of the resistance welding portion increases, and the welding tensile strength improves.
【0017】[0017]
【実施例】次に、本発明の具体例を説明する。Next, specific examples of the present invention will be described.
【0018】図1は、本発明の実施例における電極Aの
表面形状を示し、以下にこの構成を説明する。FIG. 1 shows the surface shape of an electrode A in an embodiment of the present invention, and this structure will be described below.
【0019】水酸化ニッケル粉末85重量%に対して、
コバルト酸化物粉末10重量%、ニッケル金属粉末5重
量%を加えて、粉末混合しこれらに水を全ペーストに占
める比率が25重量%となるように加え、練合してペー
スト状活物質とした。この活物質を多孔度95%、平均
孔径200μm、幅250mm、長さ155mm、厚さ
2mmのスポンジ状ニッケル多孔体中に40〜50gの
一定量で押出充填した。その後、ペーストが充填された
金属多孔体を90℃で1時間乾燥し、ロールプレスにて
加圧して、厚さ0.8mmに調整した後、長さ41m
m、幅38mmに切断した。With respect to 85% by weight of nickel hydroxide powder,
10% by weight of a cobalt oxide powder and 5% by weight of a nickel metal powder were added, and the powders were mixed. Water was added to the mixture so that the ratio in the total paste was 25% by weight. . This active material was extrusion-filled in a fixed amount of 40 to 50 g into a sponge-like nickel porous body having a porosity of 95%, an average pore diameter of 200 µm, a width of 250 mm, a length of 155 mm, and a thickness of 2 mm. After that, the porous metal body filled with the paste was dried at 90 ° C. for 1 hour, pressurized by a roll press, adjusted to a thickness of 0.8 mm, and then 41 m in length.
m, 38 mm wide.
【0020】このようにして得られたニッケル極1の上
縁中央部の一部分を図1のように、幅8mm、長さ4m
mの範囲で超音波振動子を当てがい、周波数28kH
z、振幅100μmの超音波振動を発振させてその部分
の活物質0.04gを脱落させた。従って活物質残存率
は、その部分の活物質100重量%が0.05gである
ので、0.01gは20重量%となる。その活物質脱落
部3に残った金属多孔体であるスポンジ状ニッケル多孔
体に長さ10mm、幅2mm、厚さ0.15mmのニッ
ケル集電板2を抵抗溶接部4において溶接し、その後、
この溶接部4を含み、活物質を脱落させたニッケル多孔
体上の幅7mm、長さ3mmの範囲を加圧プレス部5と
して一定圧力にてニッケル極表面に対して垂直方向から
加圧プレスし、その厚さを大部分の電極厚さ100%に
対して20%である0.16mmまで調整した。As shown in FIG. 1, a part of the central part of the upper edge of the nickel electrode 1 thus obtained is 8 mm wide and 4 m long.
The ultrasonic transducer is applied in the range of m and the frequency is 28 kHz.
Ultrasonic vibration of z and amplitude of 100 μm was oscillated to remove 0.04 g of the active material in that portion. Therefore, as for the active material residual ratio, 0.01 g is 20 wt% because 100 wt% of the active material in that portion is 0.05 g. A nickel current collector plate 2 having a length of 10 mm, a width of 2 mm, and a thickness of 0.15 mm is welded to the sponge-like nickel porous body, which is a porous metal body remaining in the active material falling-off portion 3, at the resistance welding portion 4,
A range of 7 mm in width and 3 mm in length on the nickel porous body from which the active material has been removed, including the welded portion 4, is pressed as a pressing portion 5 from a direction perpendicular to the nickel electrode surface at a constant pressure. The thickness was adjusted to 0.16 mm, which is 20% for most electrode thicknesses of 100%.
【0021】この本発明の電極Aについて、溶接強度を
測定するためにプッシュプルゲージにて引張強度を測定
した。また、このニッケル極を正極とし、水素吸蔵合金
極を負極とし、ポリプロピレン製セパレータを介して渦
巻状に巻回して電池ケースに挿入しアルカリ性電解液を
注入し、封口板を正極ニッケル集電板に抵抗溶接し、封
口して作製した電池の内部抵抗を測定した。これらの結
果を(表1)に示す。また、従来の電極と、前記の電極
Aにおけるプレス条件、超音波振動条件を変えて作製し
た電極について評価した結果についても(表1)に示
す。For the electrode A of the present invention, the tensile strength was measured with a push-pull gauge in order to measure the welding strength. The nickel electrode was used as a positive electrode, the hydrogen storage alloy electrode was used as a negative electrode, spirally wound through a polypropylene separator, inserted into the battery case, injected with an alkaline electrolyte, and the sealing plate was used as a positive nickel current collector plate. The internal resistance of the battery produced by resistance welding and sealing was measured. The results are shown in (Table 1). Table 1 also shows the results of evaluation of a conventional electrode and an electrode manufactured by changing the pressing conditions and ultrasonic vibration conditions for the electrode A.
【0022】[0022]
【表1】 [Table 1]
【0023】(表1)における本発明の電極は、溶接引
張強度が従来の電極に比べて強く、また電池の内部抵抗
についても低くでき、抵抗溶接部のはがれ不良を防止し
て電池の放電効率を向上することができた。The electrode of the present invention shown in Table 1 has a higher welding tensile strength than the conventional electrode, and can also lower the internal resistance of the battery. Could be improved.
【0024】[0024]
【発明の効果】以上のように、本発明では、抵抗溶接し
た金属集電板に加圧部分を設けたので超音波振動により
露出した3次元的金属多孔体と、金属集電板との接触面
積が増大し、抵抗溶接部の金属多孔体への食い込み量が
増すため、溶接引張強度を向上することができ、金属集
電板のはずれ等の不具合がない良好な電極が得られる。As described above, according to the present invention, since the pressurized portion is provided on the resistance-welded metal current collector plate, the contact between the three-dimensional porous metal body exposed by the ultrasonic vibration and the metal current collector plate is achieved. Since the area is increased and the amount of bite of the resistance welded portion into the porous metal body is increased, the welding tensile strength can be improved, and a good electrode free from defects such as the detachment of the metal current collector plate can be obtained.
【0025】また、この電極を用いて作製した電池の内
部抵抗も低減するので、放電効率の良好な電池が得られ
る。Further, since the internal resistance of a battery manufactured using this electrode is also reduced, a battery having good discharge efficiency can be obtained.
【図1】本発明の実施例におけるニッケル極の表面図FIG. 1 is a surface view of a nickel electrode according to an embodiment of the present invention.
【図2】本発明の実施例におけるニッケル極の断面図FIG. 2 is a sectional view of a nickel electrode according to an embodiment of the present invention.
【図3】従来のニッケル極の表面図FIG. 3 is a surface view of a conventional nickel electrode.
【図4】従来のニッケル極の断面図FIG. 4 is a sectional view of a conventional nickel electrode.
1 ニッケル極 2 ニッケル集電板 3 活物質脱落部 4 抵抗溶接部 5 加圧プレス部 6 ニッケル多孔体 DESCRIPTION OF SYMBOLS 1 Nickel electrode 2 Nickel current collecting plate 3 Active material falling-off part 4 Resistance welding part 5 Pressing part 6 Nickel porous body
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 克也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Katsuya Okamoto, Inventor 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (5)
属多孔体と、その空間内に充填された活物質とからな
り、超音波振動により活物質のみを脱落させた一部分に
金属集電板を抵抗溶接し、ついで溶接された金属集電板
の表面に対し、その垂直方向から一定圧力にて加圧する
ことを特徴とする電池用電極の製造法。1. A metal plate comprising a plate-shaped porous metal body having a three-dimensionally continuous space and an active material filled in the space, and a portion of the metal material collected only in the active material dropped by ultrasonic vibration. A method for producing an electrode for a battery, comprising: performing resistance welding on an electric plate; and then pressing the surface of the welded metal current collector plate at a constant pressure in a vertical direction.
Hzから40kHzであり、かつ振幅が50〜150μ
mである超音波振動により、金属多孔体の空間から活物
質のみを脱落させる請求項1記載の電池用電極の製造
法。2. The oscillation frequency of the ultrasonic vibrator is 15k.
Hz to 40 kHz, and the amplitude is 50 to 150 μ
The method for producing an electrode for a battery according to claim 1, wherein only the active material is dropped from the space of the porous metal body by the ultrasonic vibration of m.
る活物質重量比率が、その脱落させる部分全体に充填さ
れた活物質100重量%に対して20重量%以下である
請求項1記載の電池用電極の製造法。3. The battery according to claim 1, wherein the weight ratio of the active material remaining in the portion to be dropped by the ultrasonic vibration is 20% by weight or less with respect to 100% by weight of the active material filled in the entire portion to be dropped. Method of manufacturing electrodes.
が、電極上に配置する金属集電板の部分全体の範囲B以
上であって、電極における活物質を脱落させた範囲C以
下である請求項1記載の電池用電極の製造法。4. A range A in which the current collector plate is pressed from its vertical direction.
2. The method for producing a battery electrode according to claim 1, wherein the length of the electrode is not less than the range B of the entire portion of the metal current collector plate disposed on the electrode and not more than the range C of the electrode from which the active material has been dropped.
さが、活物質を脱落させていない電極部分の厚さ100
%に対してその10%〜50%である請求項1記載の電
池用電極の製造法。5. The thickness of the electrode after pressing the portion of the active material from which the active material has fallen is equal to the thickness of the electrode portion from which the active material has not fallen.
The method for producing an electrode for a battery according to claim 1, wherein the content is 10% to 50% with respect to%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9026478A JPH10223216A (en) | 1997-02-10 | 1997-02-10 | Manufacture of electrode for cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9026478A JPH10223216A (en) | 1997-02-10 | 1997-02-10 | Manufacture of electrode for cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10223216A true JPH10223216A (en) | 1998-08-21 |
Family
ID=12194618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9026478A Pending JPH10223216A (en) | 1997-02-10 | 1997-02-10 | Manufacture of electrode for cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10223216A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016208238A1 (en) * | 2015-06-25 | 2016-12-29 | Necエナジーデバイス株式会社 | Method for manufacturing electrochemical device |
-
1997
- 1997-02-10 JP JP9026478A patent/JPH10223216A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016208238A1 (en) * | 2015-06-25 | 2016-12-29 | Necエナジーデバイス株式会社 | Method for manufacturing electrochemical device |
JPWO2016208238A1 (en) * | 2015-06-25 | 2018-04-12 | Necエナジーデバイス株式会社 | Method for manufacturing electrochemical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002019447A1 (en) | Method and device for manufacturing electrode plate for cell, and cell using the electrode plate | |
JPH0927342A (en) | Cylindrical battery | |
JP2001102084A (en) | Alkali storage battery and method for manufacturing it | |
JPH10223216A (en) | Manufacture of electrode for cell | |
JP3849478B2 (en) | Alkaline storage battery and method of manufacturing the same | |
JPH04123757A (en) | Preparation of nickel electrode | |
JP2000106169A (en) | Electrode manufacturing method and battery | |
JP3738125B2 (en) | Alkaline storage battery using non-sintered electrode and method for manufacturing the same | |
JPH10125332A (en) | Manufacture of battery electrode | |
JP3424482B2 (en) | Alkaline storage battery | |
JP2002175833A (en) | Alkali secondary battery | |
KR100276634B1 (en) | Alkali battery metal hydride electrode and its manufacturing method | |
JP3953139B2 (en) | Non-sintered nickel electrode for alkaline storage battery | |
JP3857751B2 (en) | Battery with non-sintered electrode plate | |
JPH09199137A (en) | Electrode for storage battery | |
JP2762517B2 (en) | Method of manufacturing spiral electrode group for alkaline battery | |
JP2708123B2 (en) | Manufacturing method of paste electrode | |
JP2001250531A (en) | Method of producing electrode for battery | |
JP3081272B2 (en) | Method for manufacturing battery with spiral electrode body | |
JPH03201367A (en) | Manufacture of paste type electrode | |
JP2765905B2 (en) | Manufacturing method of battery electrode | |
JPH11162447A (en) | Cylindrical battery with spiral electrode body and its manufacture | |
JP5125246B2 (en) | Method for manufacturing electrode for secondary battery | |
JP2000195511A5 (en) | ||
JPH0231721Y2 (en) |