JPH03201367A - Manufacture of paste type electrode - Google Patents

Manufacture of paste type electrode

Info

Publication number
JPH03201367A
JPH03201367A JP1336228A JP33622889A JPH03201367A JP H03201367 A JPH03201367 A JP H03201367A JP 1336228 A JP1336228 A JP 1336228A JP 33622889 A JP33622889 A JP 33622889A JP H03201367 A JPH03201367 A JP H03201367A
Authority
JP
Japan
Prior art keywords
welding
paste
base
ribbon
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1336228A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yoshida
一博 吉田
Katsuyuki Hata
秦 勝幸
Koji Isawa
浩次 石和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP1336228A priority Critical patent/JPH03201367A/en
Publication of JPH03201367A publication Critical patent/JPH03201367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To efficiently and stably form a highly reliable paste type electrode for use in an alkaline storage battery by continuously welding a ribbon-shaped metal piece by means of ultrasonic seam. CONSTITUTION:The portion of a nickel sintered fiber base serving as a current collecting portion is initially compressed into a sheet metal by a roller to form a plain portion 2, the nickel sintered fiber base being a conductive porous base of three-dimensional structure. The nickel sintered fiber base is filled with a paste containing active material and then the paste on the plain portion 2 is removed and the base is dried and pressed to fabricate a filled base 1. A ribbon-shaped metal piece 3 formed of a nickel-plated steel plate serving as both a current collector and a reinforcing material is made to abut on the rotating chip 4 of an ultrasonic seam welding machine and is given ultrasonic vibration in such a manner as making the piece 3 perpendicular to the longitudinal direction of the plain portion 2, and the base 1 is moved at A speed of 1m/1min and then welding is carried out. Thereby a highly reliable paste type electrode is efficiently and stably obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、アルカリ蓄電池に用いられるペースト式電極
の製造方法に関し、特に導電性多孔体基板へのリボン状
金属片の溶接工程の改良に係わるものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a paste-type electrode used in an alkaline storage battery, and in particular to a method for welding a ribbon-shaped metal piece to a conductive porous substrate. This is related to process improvement.

(従来の技術と問題点) 従来、ニッケルーカドミウム蓄電池に代表されるアルカ
リ蓄電池用電極は、直径数μmの金属ニッケル粉末のス
ラリーを穿孔鋼板へ塗布した後、焼結して導電性多孔体
基板とし、この基板に活物質、例えば水酸化ニッケルを
含浸処理により保持させた焼結式電極が多用されてきた
。しかしながら、このような焼結式電極は製造方法が複
雑であり、コストの低減化が望めないばかりか、電極体
積に対して基板の占める体積が大きく、高容量化の妨げ
になっていた。
(Conventional technology and problems) Conventionally, electrodes for alkaline storage batteries, typified by nickel-cadmium storage batteries, have been made by applying a slurry of metallic nickel powder with a diameter of several μm to a perforated steel plate, and then sintering it to form a conductive porous substrate. Therefore, sintered electrodes in which the substrate is impregnated with an active material, such as nickel hydroxide, have been widely used. However, such a sintered electrode has a complicated manufacturing method, and not only cannot a reduction in cost be expected, but also the substrate occupies a large volume relative to the electrode volume, which is an obstacle to increasing the capacity.

このようなことから、最近活物質を含むペースト状物を
焼結金属繊維基板、金属メツキ繊維基板等の3次元構造
を有する導電性多孔体基板へ充填する非焼結式電極の開
発が盛んに行われている。
For this reason, there has recently been an active development of non-sintered electrodes in which a paste-like material containing an active material is filled into a conductive porous substrate with a three-dimensional structure, such as a sintered metal fiber substrate or a metal-plated fiber substrate. It is being done.

しかしながら、非焼結式電極は導電性多孔体基板として
通常、焼結金属繊維基板、金属メツキ基板等が用いられ
ているが、これらの基板は機械的強度が従来の焼結式基
板に比べて劣り、単位体積で比較した場合、電気抵抗も
大きい。その結果、電極の集電方法であるリード引出し
によるタブ式集電またはタブレス集電を行う場合、この
基板は前者においては電気抵抗が大きいこと、後者にお
いては機械的強度が弱いことが問題となる。
However, non-sintered electrodes usually use sintered metal fiber substrates, metal plating substrates, etc. as conductive porous substrates, but these substrates have mechanical strength that is lower than that of conventional sintered substrates. It is inferior, and the electrical resistance is also large when compared on a unit volume basis. As a result, when performing tab type current collection or tableless current collection using lead drawers, which are electrode current collection methods, the problem is that this substrate has high electrical resistance in the former case, and weak mechanical strength in the latter case. .

そこで、実用に耐える電極とするため3次元構造を有す
る導電性多孔体基板にペースト状物を充填する前に、該
芯体の集電部となる部分をローラー等で板金状に圧縮し
て無地部とし、その後前記ペースト状物を充填し、更に
無地部上のペースト状物を除去し、無地部に、集電体と
補強材を兼ねるリボン状金属片、例えばニッケルリボン
もしくはリボン状ニッケルメッキ鋼板等を溶接すること
が行われている。
Therefore, in order to make an electrode that can withstand practical use, before filling a conductive porous substrate with a three-dimensional structure with a paste-like material, the part of the core that will become the current collector is compressed into a sheet metal shape with a roller etc. After that, the paste-like material is filled, the paste-like material on the uncoated part is removed, and a ribbon-shaped metal piece, such as a nickel ribbon or a ribbon-shaped nickel-plated steel plate, which serves as a current collector and a reinforcing material is added to the uncoated part. etc. are welded.

上述した無地部へニッケルリボン、ニッケルメッキ鋼板
の溶接は、スポット溶接の溶接母材間に電流を流し、そ
の接触抵抗に起因する発熱により接合するものである。
The above-described welding of a nickel ribbon and a nickel-plated steel plate to a plain area is performed by passing an electric current between the welding base materials in spot welding, and joining is achieved by heat generation caused by the contact resistance.

このため、例えば無地部に少量のペースト状物が残留し
ていA飛現象(スプラッシュ)が発生し、良好な溶接強
度が得られない問題点があった。また前記抵抗溶接は、
その幅の1/2〜173程度の大きさの溶接痕(ナゲツ
ト)しか形成されず、その強度は極めて弱いため、前記
ペースト式電極を捲回した時点で、リボン状金属片が剥
離するなどの問題点があった。
For this reason, for example, a small amount of paste-like material remains in the uncoated area, resulting in the occurrence of an A splash phenomenon, resulting in the problem that good welding strength cannot be obtained. In addition, the resistance welding is
Only a welding mark (nugget) with a size of about 1/2 to 173 of the width is formed, and its strength is extremely weak, so when the paste-type electrode is wound, the ribbon-shaped metal piece may peel off. There was a problem.

上記問題点を解決するために最近、超音波金属溶接を用
いる方法が提案されている。超音波金属溶接は、高周波
数振動を加圧しながら溶接面に対し水平方向にあて、そ
の摩擦熱により再結晶温度付近まで昇温させ、塑性変形
をおこし溶接するものである。このため、電流を必要と
しないため、少量のペースト状物等の絶縁物が溶接面に
存在していても、上記超音波振動により飛散させられる
ため、スプラッシュは起こらずに溶接できる。また、ナ
ゲツトの大きさも溶接チップの接触部分そのままの大き
さになるため、リボン状金属片の幅を溶接することが可
能である。
In order to solve the above problems, a method using ultrasonic metal welding has recently been proposed. In ultrasonic metal welding, high-frequency vibrations are applied horizontally to the welding surface while applying pressure, and the resulting frictional heat raises the temperature to near the recrystallization temperature, causing plastic deformation and welding. Therefore, since no current is required, even if a small amount of insulating material such as a paste-like material is present on the welding surface, it is scattered by the ultrasonic vibration and welding can be performed without splashing. Furthermore, since the size of the nugget is the same as the contact area of the welding tip, it is possible to weld the width of the ribbon-shaped metal piece.

しかし、前記超音波金属溶接はスポット溶接であり、す
なわち点溶接するものである。例えばタブレス式集電の
場合サイズによっては十数点溶接する必要があるなど量
産の場合には適さず、この溶接工程が律速となってしま
う問題点が新に起こった。
However, the ultrasonic metal welding is spot welding, that is, spot welding. For example, tableless current collectors require welding at more than ten points depending on the size, making them unsuitable for mass production, and a new problem has arisen in that this welding process becomes rate-limiting.

[発明の構成] (課題を解決するための手段) 本発明は3次元構造の導電性多孔体基板の無地部に、集
電体としてリボン状金属片を重ね、該リボン状金属片を
超音波溶接し、該超音波溶接機が回転するチップを備え
、連続的に溶接するペースト式電極の製造方法である。
[Structure of the Invention] (Means for Solving the Problems) The present invention involves stacking a ribbon-shaped metal piece as a current collector on the uncoated portion of a conductive porous substrate having a three-dimensional structure, and applying ultrasonic waves to the ribbon-shaped metal piece. This is a method for manufacturing a paste-type electrode that is continuously welded by welding, and the ultrasonic welding machine is equipped with a rotating tip.

このときの超音波振動の方向は、スポット溶接を用いた
場合と同様に溶接母相面に対して水平方向が好ましい。
The direction of the ultrasonic vibration at this time is preferably horizontal to the weld matrix surface, as in the case of spot welding.

上記3次元構造の導電性多孔体基板は、発泡メタル、焼
結金属繊維基板、金属メツキ繊維基板等を挙げることが
できる。
Examples of the conductive porous substrate having the three-dimensional structure include a foamed metal, a sintered metal fiber substrate, a metal-plated fiber substrate, and the like.

上記ペースト状物は、水酸化ニッケル等の正極活物質と
、カルボキシメチルセルロース、メチルセルロース、ポ
リアクリル酸ソーダ等の結着剤と、水等の溶媒との組成
からなる正極用ペースト状物、酸化カドミウム等の負極
活物質とポリビニルアルコール等の結着剤とエチレング
リコール等の溶媒との組成からなる負極用ペースト状物
を挙げることができる。
The above paste-like material is a positive-electrode paste consisting of a positive electrode active material such as nickel hydroxide, a binder such as carboxymethylcellulose, methylcellulose, or sodium polyacrylate, and a solvent such as water, cadmium oxide, etc. An example of a paste-like material for negative electrodes is a negative electrode active material composed of a negative electrode active material, a binder such as polyvinyl alcohol, and a solvent such as ethylene glycol.

(作 用) 本発明の超音波シーム溶接機を用いれば、リボン状金属
片が強固に溶接され、高信頼性のアルカリ蓄電池用ペー
スト式電極が、これまでより量産的に、しかも確実に製
造することが可能となる。
(Function) By using the ultrasonic seam welding machine of the present invention, ribbon-shaped metal pieces can be firmly welded, and highly reliable paste-type electrodes for alkaline storage batteries can be mass-produced more reliably than ever before. becomes possible.

超音波シーム溶接には、1〉チップが回転し溶接母材が
移動する方式、2)超音波ホーンとチップが溶接母材上
を移動する方式との2つがあるが、生産方法にあわせて
適宜選択すれば良い。
There are two methods of ultrasonic seam welding: 1) a method in which the tip rotates and the welding base material moves, and 2) a method in which an ultrasonic horn and tip move over the welding base material, but the method can be used as appropriate depending on the production method. All you have to do is choose.

第1図に、1〉の場合の超音波溶接機の概略図を、第2
図に2)の場合の同概略図を示す。
Figure 1 shows a schematic diagram of the ultrasonic welding machine in case 1>, and
The same schematic diagram for case 2) is shown in the figure.

(実施例) 以下、本発明の実施例を第1及び第2図を基に詳述する
(Example) Hereinafter, an example of the present invention will be described in detail based on FIGS. 1 and 2.

実施例1 水酸化ニッケルを主体とし、導電材としてニッケル粉末
、増粘剤としてカルボキシメチルセルロース、結着剤と
してポリテトラフルオロエチレンとをそれぞれ所定の割
合で混合し、純水を加え混練してペースト状物を調製し
た。
Example 1 A mixture of nickel hydroxide as the main ingredient, nickel powder as a conductive material, carboxymethyl cellulose as a thickener, and polytetrafluoroethylene as a binder in predetermined proportions was mixed with pure water and kneaded to form a paste. I prepared something.

次いで、3次元構造を有する導電性多孔体基板であるニ
ッケル焼結繊維基板の集電部となる部分を、予めローラ
ーで板金状に圧縮し、幅3關、厚さ0.15mmの無地
部2を形成した。つづいて、上記ニッケル焼結繊維基板
に上記活物質を含むペースト状物を充填した後、無地部
2上のペースト状物を除去し、乾燥、プレスし、長さl
 m s幅60關の充填基板1を作成した。ひきつづき
、この充填基板1の無地部2に、集電体と補強材を兼ね
るニッケルメッキ鋼板からなるリボン状金属片3を、第
1図に示す機構の超音波シーム溶接機の回転チップ4に
当接させ、かつ無地部2の長手方向に対して直角方向と
なるように超音波振動を与え、1m/minの速度で充
填基板1を移動させ溶接を行った。このときの超音波溶
接条件は、周波数30kHz 。
Next, a portion of the nickel sintered fiber substrate, which is a conductive porous substrate having a three-dimensional structure, is compressed in advance into a sheet metal shape using a roller to form a plain portion 2 with a width of 3 squares and a thickness of 0.15 mm. was formed. Subsequently, after filling the nickel sintered fiber substrate with a paste-like material containing the active material, the paste-like material on the uncoated area 2 is removed, dried, and pressed to a length of l.
A filled substrate 1 having a width of 60 ms was prepared. Subsequently, a ribbon-shaped metal piece 3 made of a nickel-plated steel plate, which also serves as a current collector and a reinforcing material, is applied to the uncoated area 2 of the filled substrate 1 by a rotary tip 4 of an ultrasonic seam welding machine having the mechanism shown in FIG. Welding was performed by moving the filled substrate 1 at a speed of 1 m/min while applying ultrasonic vibrations so as to make contact with the uncoated portion 2 and in a direction perpendicular to the longitudinal direction of the uncoated portion 2. The ultrasonic welding conditions at this time were a frequency of 30 kHz.

加圧力50kg/c+n回転チップ径50mm、該チッ
プ幅3關とした。
The pressing force was 50 kg/c+n, the rotating tip diameter was 50 mm, and the tip width was 3 mm.

実施例2 充填基板1を固定し、超音波溶接機が移動する第2図に
示す装置を用いた以外、実施例1と同様に製造した。
Example 2 A device was manufactured in the same manner as in Example 1, except that the apparatus shown in FIG. 2 in which the filled substrate 1 was fixed and the ultrasonic welding machine was moved was used.

比較例1 実施例1と同様な充填基板を製造した後、超音波スポッ
ト溶接を全長に渡り行った。このとき、チップ径3II
I11のものを用い、その他の条件は実施例1と同様に
製造した。
Comparative Example 1 After manufacturing a filled substrate similar to Example 1, ultrasonic spot welding was performed over the entire length. At this time, the tip diameter is 3II
The product was manufactured in the same manner as in Example 1 except that No. I11 was used, and the other conditions were the same as in Example 1.

比較例2 実施例1と同様な充填基板を製造した後、電気抵抗シー
ム溶接を全長に渡り行った。このときの条件は、溶接時
間101Sv溶接電流2.5kAで行った。
Comparative Example 2 After manufacturing a filled substrate similar to Example 1, electric resistance seam welding was performed over the entire length. The conditions at this time were a welding time of 101 Sv and a welding current of 2.5 kA.

以上の各実施例1.2及び比較例1.2のそれぞれをA
、B、CSDとし、その充填基板を、長辺の一端に幅1
.5m膓のリード溶接部がくるように、Harm X 
40mmの大きさに切断し、第3図の矢印で示す方向に
リードを引張り引張強度を測定した。それと同時に、長
さ1m全長を溶接するのに要した時間を測定した。それ
ぞれの測定はn−10で、その平均値を第1表に示す。
Each of the above Examples 1.2 and Comparative Example 1.2 was
, B, CSD, and its filling substrate has a width of 1 at one end of the long side.
.. Harm
The lead was cut into a size of 40 mm and the tensile strength was measured by pulling the lead in the direction shown by the arrow in FIG. At the same time, the time required to weld the entire length of 1 m was measured. Each measurement was n-10, and the average value is shown in Table 1.

第1表 第1表から分かるように、引張強度、溶接に要する時間
ともに実施例が、比較例に比べ有利である。第4図に引
張強度と引張距離との関係を、それぞれ波形で示した。
As can be seen from Table 1, the Examples are more advantageous than the Comparative Examples in both tensile strength and time required for welding. FIG. 4 shows the relationship between tensile strength and tensile distance using waveforms.

第4図からも本発明の実施例は比較例に比べ波形面積が
大きく、その分強度が大きいことを示している。
FIG. 4 also shows that the example of the present invention has a larger waveform area than the comparative example, and the intensity is correspondingly larger.

[発明の効果] 以上詳述したように、本発明の連続的に超音波シーム溶
接する製造方法により、3次元構造を有する導電性多孔
体基板に対して、リボン状金属片を強固に、しかも早く
確実に溶接でき、高信頼性のアルカリ蓄電池用ペースト
式電極を、能率よく安定して製造する方法が堤供できる
[Effects of the Invention] As described in detail above, the continuous ultrasonic seam welding manufacturing method of the present invention makes it possible to firmly attach a ribbon-shaped metal piece to a conductive porous substrate having a three-dimensional structure. It is possible to provide a method for efficiently and stably manufacturing paste-type electrodes for alkaline storage batteries that can be welded quickly and reliably and are highly reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明のペースト式電極のリボン状金
属片を超音波シーム溶接する装置の概略斜視図、第3図
は引張強度試験の原理図、第4図は本実施例A、Bと比
較例C,Dのそれぞれで得られた引張強度の波形図を示
す。 1・・・充填基板      2・・・無地部3・・・
リボン状金属片   4・・・回転チップ5・・・超音
波ホーン
Figures 1 and 2 are schematic perspective views of an apparatus for ultrasonic seam welding of ribbon-shaped metal pieces of a paste-type electrode of the present invention, Figure 3 is a principle diagram of a tensile strength test, and Figure 4 is a diagram of this embodiment A. , B and Comparative Examples C and D, respectively. 1... Filled substrate 2... Plain part 3...
Ribbon-shaped metal piece 4... Rotating chip 5... Ultrasonic horn

Claims (1)

【特許請求の範囲】[Claims]  活物質を含むペースト状物の充填部とペースト状物の
存在しない無地部とを有する3次元構造の導電性多孔体
基板の前記無地部に、集電体としてリボン状金属片を重
ねて溶接するペースト式電極の製造方法において、該リ
ボン状金属片を連続的に超音波シーム溶接することを特
徴とするペースト式電極の製造方法。
A ribbon-shaped metal piece is overlapped and welded as a current collector on the plain part of a conductive porous substrate having a three-dimensional structure, which has a part filled with a paste-like substance containing an active material and a plain part without the paste-like substance. A method for manufacturing a paste-type electrode, characterized in that the ribbon-shaped metal piece is continuously ultrasonic seam welded.
JP1336228A 1989-12-27 1989-12-27 Manufacture of paste type electrode Pending JPH03201367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336228A JPH03201367A (en) 1989-12-27 1989-12-27 Manufacture of paste type electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336228A JPH03201367A (en) 1989-12-27 1989-12-27 Manufacture of paste type electrode

Publications (1)

Publication Number Publication Date
JPH03201367A true JPH03201367A (en) 1991-09-03

Family

ID=18296965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336228A Pending JPH03201367A (en) 1989-12-27 1989-12-27 Manufacture of paste type electrode

Country Status (1)

Country Link
JP (1) JPH03201367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723307A1 (en) * 1995-01-18 1996-07-24 Matsushita Electric Industrial Co., Ltd. Paste type electrode for storage battery and process for producing the same
US5840444A (en) * 1995-01-18 1998-11-24 Matsushita Electric Industrial Co., Ltd. Electrode for storage battery and process for producing the same
EP1146578A1 (en) * 2000-04-10 2001-10-17 Matsushita Electric Industrial Co., Ltd. Battery electrode and manufacturing method and apparatus for the same
US7094048B2 (en) * 1999-10-28 2006-08-22 Xerox Corporation Flexible imaging member belt seam smoothing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723307A1 (en) * 1995-01-18 1996-07-24 Matsushita Electric Industrial Co., Ltd. Paste type electrode for storage battery and process for producing the same
US5840444A (en) * 1995-01-18 1998-11-24 Matsushita Electric Industrial Co., Ltd. Electrode for storage battery and process for producing the same
US7094048B2 (en) * 1999-10-28 2006-08-22 Xerox Corporation Flexible imaging member belt seam smoothing method
EP1146578A1 (en) * 2000-04-10 2001-10-17 Matsushita Electric Industrial Co., Ltd. Battery electrode and manufacturing method and apparatus for the same
JP2001297747A (en) * 2000-04-10 2001-10-26 Matsushita Electric Ind Co Ltd Electrode for battery and its manufacturing method and manufacturing device
US6815120B2 (en) 2000-04-10 2004-11-09 Matsushita Electric Industrial Co., Ltd. Battery electrode and manufacturing method and apparatus for the same
US6972044B2 (en) 2000-04-10 2005-12-06 Matsushita Electric Industrial Co., Ltd. Battery electrode and manufacturing method and apparatus for the same

Similar Documents

Publication Publication Date Title
JPH03201367A (en) Manufacture of paste type electrode
JPH02250261A (en) Manufacture of paste type electrode for alkaline storage battery
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
CN112397683B (en) Electrodeless ear lithium battery and preparation method thereof
JPH04123757A (en) Preparation of nickel electrode
JP2007234445A (en) Battery
JP2005129497A (en) Electrode plate for alkaline storage battery, its manufacturing method, and alkaline storage battery
JP2002367607A (en) Non-sintered electrode for alkali storage battery, and alkali storage battery using the same
JP4857548B2 (en) Secondary battery electrode paste coating method and secondary battery electrode paste coating and drying apparatus
JP3081272B2 (en) Method for manufacturing battery with spiral electrode body
JP2002175833A (en) Alkali secondary battery
JP2002246032A (en) Collector substrate for electrode for alkaline secondary battery, electrode using the same, and alkaline secondary battery with electrode assembled therein
JPH09199117A (en) Positive plate and its manufacture
JPH09199137A (en) Electrode for storage battery
JPS6340254A (en) Manufacture of electrode for battery
JPH0679066U (en) Paste type electrode
JPH01265452A (en) Manufacture of paste type electrode
JP4766832B2 (en) Current collector with terminal, electrochemical element using the same
JPH0513064A (en) Manufacture of electrode plate for alkaline storage battery
JP2762517B2 (en) Method of manufacturing spiral electrode group for alkaline battery
JPH10125332A (en) Manufacture of battery electrode
JPH02197054A (en) Manufacture of electrode for alkaline battery
JPH08138680A (en) Electrode base plate for battery and manufacture thereof
JPH04188563A (en) Manufacture of paste-form positive nickel electrode
JPH07101606B2 (en) Method for manufacturing battery plate