JPS6340254A - Manufacture of electrode for battery - Google Patents

Manufacture of electrode for battery

Info

Publication number
JPS6340254A
JPS6340254A JP61183959A JP18395986A JPS6340254A JP S6340254 A JPS6340254 A JP S6340254A JP 61183959 A JP61183959 A JP 61183959A JP 18395986 A JP18395986 A JP 18395986A JP S6340254 A JPS6340254 A JP S6340254A
Authority
JP
Japan
Prior art keywords
active material
electrode
welding
current collecting
electrode base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61183959A
Other languages
Japanese (ja)
Inventor
Makoto Kanbayashi
誠 神林
Kensuke Nakatani
中谷 謙助
Kazuaki Ozaki
尾崎 和昭
Masahito Tomita
富田 正仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61183959A priority Critical patent/JPS6340254A/en
Publication of JPS6340254A publication Critical patent/JPS6340254A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PURPOSE:To increase the productivity and reliability by welding a current collecting tab to an electrode substrate by horizontal ultrasonic vibration applied to the electrode substrate. CONSTITUTION:A current collecting tab is welded to an electrode substrate made of three-dimensional porous metal plate by ultrasonic vibration horizontal to the electrode substrate. The tab is welded by applying a pressure of 5kg/cm<2> or more to the substrate by an ultrasonic horn. The part, to which the tab is to be welded, of the substrate is formed by removing active material filled into the substrate by ultrasonic vibration from this part.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はアルカリ蓄電池などに用いられる電池用T1極
の製法に関するものであって、更に詳しくは発泡ニツウ
゛ル、金属繊維焼結体などの三次元多孔金属板を用いた
電極基体への集電タブ取付方法に関するものである。
Detailed Description of the Invention (a) Field of Industrial Application The present invention relates to a method for manufacturing T1 electrodes for batteries used in alkaline storage batteries, etc. The present invention relates to a method for attaching a current collecting tab to an electrode substrate using an original porous metal plate.

(口)従来の技術 アルカリ蓄電池に用いる電極は従来カル臘二ルニッケル
焼結体にニッケル塩、カドミウム塩などの溶液を含浸し
アルカリ処理により活物質化するζ尭結式製法が主流で
あった。しかし近年コスト低減と高エネルギー密、変化
を計る目的で金属1維焼結体、発泡ニンケルなどの三次
元多孔金属板にペースト状の活物質を直接充填する非焼
結式製法が検討されている。この種の非焼結式電極の製
法においては基体が集電機能、活物質保持機能及び極板
形状保持機能を有しているため、焼結式極板では不可欠
のパンチングメタルなどの芯体を使う必要がない。
(Example) Conventional technology Electrodes used in alkaline storage batteries have conventionally been manufactured using the Zeta-type method, in which carbonyl nickel sintered bodies are impregnated with solutions of nickel salts, cadmium salts, etc., and made into active materials by alkali treatment. However, in recent years, non-sintering manufacturing methods have been considered in which a paste-like active material is directly filled into a three-dimensional porous metal plate such as a single metal fiber sintered body or foamed nickel for the purpose of cost reduction, high energy density, and changeability. . In this type of non-sintered electrode manufacturing method, the substrate has a current collecting function, an active material retention function, and an electrode plate shape retention function, so a core material such as punched metal, which is essential for sintered electrode plates, is used. There's no need to use it.

ところで焼結式極板では、芯体の一部を電池端子へ接続
きれる集電タブとして利用することができるが前記非焼
結式極板においては芯体を有していないので、別途集電
タブを取付ける必要があり、旦この取付けに難点がある
。つまり基体が90%以上の高多孔度のものであるため
集電〃ブの溶接が難しく機械的強度、電導度が低くなる
という問題点がある。尚、実際に行なわれている集電タ
ブの取り付は方法は活物質充填面に集電タブとなる金属
板をスポット溶接するか、特開昭57−80672号公
報に記載されたようにあらかじめ集電タブ溶接部をプレ
スし1多孔度を下げ活物質が充填されないようにしてお
き一連の充填等の工程が終了した後、集電タブ11#接
部の表面に付着した活物質をブラッシングなどにより除
去し、しかる後集電タブをスポット溶接するものである
。しかし前者は活物質充填以降の生産性を著しく低下さ
せるという問題点があり、また後者は工程的に複雑であ
るうえ、生産性が悪く、活物質の除去が不十分になりや
すく溶接の信頼性が低下するという問題点がある。
By the way, in a sintered electrode plate, a part of the core can be used as a current collecting tab that can be connected to the battery terminal, but in the non-sintered electrode plate, since it does not have a core, it is necessary to collect the current separately. It is necessary to install a tab, which is difficult to install. In other words, since the base has a high porosity of 90% or more, it is difficult to weld the current collector and the mechanical strength and electrical conductivity are low. In addition, the method of actually installing the current collecting tab is to spot weld a metal plate that will become the current collecting tab to the active material filled surface, or to install it in advance as described in Japanese Patent Application Laid-Open No. 57-80672. Press the welded part of the current collector tab to reduce the porosity and prevent it from being filled with active material. After completing a series of steps such as filling, brush the active material that has adhered to the surface of the contact part of the current collector tab 11#. After that, the current collecting tab is spot welded. However, the former has the problem of significantly reducing productivity after filling the active material, and the latter has a complicated process, poor productivity, and tends to result in insufficient removal of the active material, resulting in poor welding reliability. There is a problem in that the value decreases.

また更には三次元多孔金属板を基体に用いた電極におい
て集電方法が問題になるのは基体自体は高い4f率を有
するが高多孔度であるため、これをそのまま集電タブと
して用いると抵抗損が大きくなること、機械的強度が小
さく切断しやすいこと、金属板の集電タブを溶接する場
合でも基体とタブの物性が非常に異なるため、安定した
溶接強度が得にくいことなどが大きな理由である。
Furthermore, the problem with the current collection method for electrodes using a three-dimensional porous metal plate as the base is that the base itself has a high 4F ratio but is highly porous, so if it is used as a current collector tab, there will be resistance. The main reasons are that the loss is large, the mechanical strength is low and it is easy to cut, and even when welding current collector tabs of metal plates, it is difficult to obtain stable welding strength because the physical properties of the base and tab are very different. It is.

またこの種の非焼結式製法においては、基体への活物質
充填、乾燥、加圧、切断という一連の工程をとるのが普
通であり、極板のエネルギー密度を高める目的で多孔度
を50%以下にするという加圧の際極板において1%程
度の伸びが発生する。
In addition, in this type of non-sintering manufacturing method, it is common to take a series of steps such as filling the substrate with active material, drying, pressurizing, and cutting. % or less, an elongation of about 1% occurs in the electrode plate.

この時基体中に活物質が均一に充填されていればこの伸
びも均一なものになるが、均一に充填されていないと伸
びが均一にならず、極板加圧の際、歪みや、反りが発生
するという問題点もある。
At this time, if the active material is uniformly filled in the substrate, the elongation will be uniform, but if it is not filled uniformly, the elongation will not be uniform, and when the electrode plate is pressurized, distortion or warping may occur. There is also the problem that this occurs.

(ハ)発明が解決しようとする問題点 本発明は前記問題点に鑑みなされたものであって、発泡
ニッケルや金属a維焼結体などの三次元多孔金属板より
なる電極基体への集電タブの溶接方法を改良し、高い生
産性と優れた信頼性を有する電池用を極の製法を提供す
るものである。
(c) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems. The present invention improves the tab welding method and provides a manufacturing method for battery electrodes with high productivity and excellent reliability.

(ニ)問題点を解決するための手段 本発明は三次元多孔金属板よりなる電極基体に、前記電
極基体に対して水平方向の超音波振動により集電タブを
溶接することを要旨とするものである。尚、この時電極
基体に対して5 kg / cm 2以上の超音波ホー
ンによる加圧下で溶接するのが望ましい、また集電タブ
を溶接する所定部分は、一旦活物質を充填した電極基体
から活物質を除去して形成しても良く、この所定部分は
超音波振動による活物質除去操作を行なうのが好適であ
る。
(d) Means for solving the problem The gist of the present invention is to weld a current collecting tab to an electrode base made of a three-dimensional porous metal plate by ultrasonic vibration in a horizontal direction with respect to the electrode base. It is. At this time, it is preferable to weld the electrode base under a pressure of 5 kg/cm2 or more using an ultrasonic horn, and the predetermined part where the current collecting tab will be welded should be welded from the electrode base filled with the active material. The active material may be formed by removing a substance, and it is preferable to perform an active material removal operation using ultrasonic vibration for this predetermined portion.

また更には、活物質を充填した電極基体に直接集電タブ
を溶接することも可爺であって、この時には活物質を充
填した電極基体に集電タブをti、置し、前記集電タブ
を載置した反対面の前記集電タブに対向する電極基体の
部分に超音波振動するホーンを押圧し、溶接するのが良
く、またこの時ホーンは活物質を充填した電極基体に接
触する以前に超音波振動を開始している事が好ましい。
Furthermore, it is also possible to weld the current collecting tab directly to the electrode base filled with the active material. In this case, the current collecting tab is placed on the electrode base filled with the active material, and the current collecting tab is It is best to press an ultrasonic vibrating horn to the part of the electrode base facing the current collecting tab on the opposite side on which the electrode base is placed and weld it. It is preferable that the ultrasonic vibration is started at .

(ホ)作用 溶接物である電極基体に集電タブを重ね合せ、加圧状態
で溶接物に対し水平方向に超音波振動を加えることで前
記溶接物間に発生する摩擦熱が金属同志を溶融、溶着さ
せる。また溶接の際、抵抗溶接の場合には夾雑物が入り
込んだり、残存しているとスパークして溶接不良となる
が、本発明の超音波による溶接法では夾雑物を超音波振
動で排出してしまうので、活物質の除去が完全でなくて
も十分侶頼性の高い溶接状1が得られる。本発明法によ
れば電極基体に活物質を充填する以前に集電タブ溶接部
を形成する必要がないので、活物質充填の均一性に優れ
、プレスした時反りなとが生じない。
(e) Action By overlapping the current collecting tab on the electrode base, which is the welded object, and applying horizontal ultrasonic vibration to the welded object under pressure, the frictional heat generated between the welded objects melts the metals together. , to weld. Furthermore, during welding, in the case of resistance welding, impurities may enter or remain, causing sparks and welding defects, but in the ultrasonic welding method of the present invention, impurities are removed by ultrasonic vibration. Therefore, even if the active material is not completely removed, a sufficiently reliable welded shape 1 can be obtained. According to the method of the present invention, there is no need to form a current collector tab weld before filling the electrode base with the active material, so the active material filling is excellent in uniformity and no warping occurs when pressed.

くべ)実施例 実験例1 第1表に活物質除去の程度と超音波溶接、抵抗溶接にお
ける集電タブ引張り強度(#接強度)を比較した結果を
示す。用いた基体は日付け650g/m2、繊維径30
μ、M&維長30mmのニッケル繊維焼結体であり、充
填活物質は水酸化ニッケルを主成分としたものである。
Example) Experimental Example 1 Table 1 shows the results of comparing the degree of active material removal and the tensile strength (#contact strength) of the current collecting tab in ultrasonic welding and resistance welding. The substrate used was 650g/m2 and fiber diameter was 30.
It is a nickel fiber sintered body with μ, M & fiber length of 30 mm, and the filling active material is mainly composed of nickel hydroxide.

超音波による活物質除去は周波数40KHz、振幅50
μの振動を基体に与え行った。超音波による集1タブ溶
接はホー〉・による加圧を10kg/cm2とし、周波
数20KHz、振幅40μの超音波振動を基体に対し水
平方向に加え行い発振時間を0゜1秒とした。
Active material removal by ultrasonic waves has a frequency of 40 KHz and an amplitude of 50
A vibration of μ was applied to the substrate. For welding tabs using ultrasonic waves, the pressure applied by a hoist was 10 kg/cm2, and ultrasonic vibrations with a frequency of 20 KHz and an amplitude of 40 μ were applied to the substrate in the horizontal direction, and the oscillation time was 0°1 second.

(以下余白) 第1表 注1ニ一部基体に活物質の微量残留あり注2ニスパーク
による基体損傷発生 性3:活物質充填前に溶接 第1表より、超音波溶接によるものは活物質除去条件を
変化させても安定した溶接状態を保持することがわかる
。また引張りゃ度に蕩があるのは抵抗rII接が点溶接
であるのに対し、超計波溶接は面溶接になっていること
に基づくものである。
(Leaving space below) Table 1 Note 1: A small amount of active material remains on some substrates Note 2: Possibility of substrate damage due to varnish sparks 3: Welding before filling active material From Table 1, active material is removed by ultrasonic welding. It can be seen that a stable welding state is maintained even when the conditions are changed. Moreover, the reason why there is a difference in tensile strength is that resistance rII contact is spot welded, whereas ultrameter wave welding is surface welded.

尚、超音波により活物質の除去を行なうと基体自身も損
傷を受けこの傾向は超「波発振時間が長いものほど大き
く、集電タブの溶接強度が低くなる。この傾向は超音波
溶接よりも抵抗溶接によく表われており、これは超音波
溶接は一旦こわれた基体が集電タブ溶接待再度溶着され
るので、強度低下が現われにくく抵抗溶接と差が出たと
考えられる。
Note that when the active material is removed by ultrasonic waves, the substrate itself is also damaged, and this tendency is greater as the ultrasonic wave oscillation time is longer, and the welding strength of the current collector tab is lower. This is often seen in resistance welding, and it is thought that this is different from resistance welding because in ultrasonic welding, the broken base is re-welded during the welding of the current collector tab, so the strength decrease is less likely to occur.

尚、活物質を除去した電極基体に対し垂直方向の超音波
振動を与え溶接を試みたが、良好な結果は得られなかっ
た。
An attempt was made to weld the electrode base from which the active material had been removed by applying ultrasonic vibration in the vertical direction, but no good results were obtained.

実験例2 実験例1の場合と異なり電極基体より活物質が除去され
ていないと電極基体と集電タブとの間に夾雑物が存在し
、溶接しにくくなる。そこで第2表には、種々の条件を
設定し、活物質の除去並びに溶接状態について検討した
結果を示す。
Experimental Example 2 Unlike in Experimental Example 1, if the active material is not removed from the electrode base, contaminants will exist between the electrode base and the current collecting tab, making welding difficult. Therefore, Table 2 shows the results of studies regarding active material removal and welding conditions under various conditions.

(以下余白) WJ2表 第2表において0″、○″、△″、 ×″はそれぞれ、きわめて良、良、可、不可を示す。こ
の結果より電極基体に対しホーンを水平振動させなから
集電タブをホーンが接する電極基体の反対面一ヒに配置
し、加圧しながら超音波溶接することが好適条件である
ことを見い出した。
(Margins below) In Table 2 of WJ2, 0″, ○″, Δ″, and ×″ indicate extremely good, good, fair, and poor, respectively. From this result, it has been found that the preferred conditions are to place the current collecting tab on the opposite side of the electrode base where the horn comes into contact, and perform ultrasonic welding while applying pressure, without causing the horn to vibrate horizontally with respect to the electrode base.

尚、垂直振動によるものは、実験例1と同じく摩擦によ
る発熱匿が足りないため、溶接はできなかった。また、
集電タブが溶接きれた電極の活物質除去状態をi’aす
ると、活物質が充填された電極基体において超音波振動
を電極基体に対し水平方向に与えるものは垂直方向に与
えるものに比t〜、活物質の除去率が低く、特に加圧下
ではその傾向が著しいことがわかる。またホーンと基体
との間に集電タブが入ると、これがスクリーンとなって
活物質の除去率が低下するので、好ましくない。
As with Experimental Example 1, welding due to vertical vibration was not possible due to insufficient heat retention due to friction. Also,
If we consider the active material removed state of the electrode with the current collecting tab completely welded, then in the electrode base filled with active material, the one that applies ultrasonic vibration horizontally to the electrode base is compared to the one that applies it vertically. ~, it can be seen that the removal rate of the active material is low, and this tendency is particularly remarkable under pressure. Furthermore, if a current collecting tab is inserted between the horn and the substrate, this is not preferable because it acts as a screen and reduces the removal rate of the active material.

実施例1 目付650g/m2、多孔度94%のニッケルms焼結
体を用い、水酸化ニッケル95重量部水酸化コバルト5
重量部からなる活物質に、1%のヒドロキシプロピルセ
ルロース(RPC)溶液を加えペースト状としたものを
充填、乾燥後、 1000kg / aTl’で加圧す
る。この電極基体に対し周波数40にHz、振幅40μ
の超音波振動を1秒間(#%去開面積5×10副与え活
物質を除去した後、ホーンによる加圧を10kg /(
12と12、周波数20にHz、振幅50μ、発振時間
0.1秒の条件で水平方向の超音波振動を与え集電タブ
を溶接し、本発明電極Aとした。
Example 1 Using a nickel ms sintered body with a basis weight of 650 g/m2 and a porosity of 94%, 95 parts by weight of nickel hydroxide and 5 parts by weight of cobalt hydroxide
A paste made by adding 1% hydroxypropyl cellulose (RPC) solution to the active material consisting of parts by weight is filled, dried, and then pressurized at 1000 kg/aTl'. For this electrode base, the frequency is 40 Hz and the amplitude is 40μ.
After removing the active material by applying ultrasonic vibration of
12 and 12, horizontal ultrasonic vibration was applied under the conditions of a frequency of 20 Hz, an amplitude of 50 μ, and an oscillation time of 0.1 seconds, and the current collecting tab was welded to prepare electrode A of the present invention.

比較例1 実施例1と同一基体に集電クブを抵抗溶接後、実施例1
に準し活物質を充填し、乾燥、加圧し比較電極Cとした
Comparative Example 1 After resistance welding a current collector to the same base as in Example 1, Example 1
Comparative electrode C was obtained by filling an active material in the same manner as described above, drying, and pressurizing the electrode.

比較例2 実施例1に準じ活物質除去を行ない1次いで抵抗溶接に
より集電タブを溶接し比較電極りとした。
Comparative Example 2 The active material was removed in the same manner as in Example 1, and then a current collector tab was welded by resistance welding to obtain a comparative electrode.

実施例2 実施例1と同様にして活物質を充填した電極基体の一方
の面上に集電タブを置き、他方の一方の面の電極基体上
方から電極基体に対して水平に振動している超音波ホー
ンを押しあて、電極基体を加圧し集電タブを超音波溶接
きせた。尚この時の条件はホーンによる加圧を5 kg
/cm2とし、超音波周波数20KHz、振幅50μ、
2.5秒とした。これを本発明電極Bとした。
Example 2 A current collecting tab was placed on one side of an electrode base filled with an active material in the same manner as in Example 1, and the current collection tab was vibrated horizontally with respect to the electrode base from above the other side of the electrode base. An ultrasonic horn was pressed against the electrode base, and the current collecting tab was ultrasonically welded. The conditions at this time are 5 kg of pressure using the horn.
/cm2, ultrasonic frequency 20KHz, amplitude 50μ,
The time was set to 2.5 seconds. This was designated as electrode B of the present invention.

上記本発明電極A、B比較電極C,Dについて集電タブ
の引張り強度、溶接不良発生率を測定し、結果を第3表
に示す。
The tensile strength of the current collecting tab and the incidence of welding defects were measured for the electrodes A and B of the invention and the comparative electrodes C and D, and the results are shown in Table 3.

第3表 尚、サンプル数は200個にて行ったものである。第3
表の如く、本発明電極A、Bは大きな集電クブ引張り強
度を有し、溶接不良発生がないものであり、高い信頼性
と高い生産性を併せもつものである。
In Table 3, the number of samples was 200. Third
As shown in the table, the electrodes A and B of the present invention have a large current collecting tube tensile strength, are free from welding defects, and have both high reliability and high productivity.

また実施例において活物質充填後プレスを行ったものを
例示したが、これは非焼結式電極の充填密度を高め高エ
ネルギー密度化を計るためのものであり、必ずしも必要
なものではなく溶接効果において何ら影響を与えるもの
ではない。
In addition, in the example, pressing was performed after filling the active material, but this was done to increase the packing density of the non-sintered electrode and achieve high energy density, and is not necessarily necessary, but to improve the welding effect. It does not have any impact on the

次に超音波溶接の条件は実施例において周波数20KH
z、振幅50μ、を1つの条件としているが、他の条件
でも可能であって何らこれらにおいて限定きれるもので
はない。
Next, the conditions for ultrasonic welding are as follows: In the example, the frequency is 20KH.
z and an amplitude of 50 μ are used as one of the conditions, but other conditions are also possible and the present invention is not limited to these conditions in any way.

したがって種々の条件、更には基体損傷の影響を小びく
するため緩い条件の採用が可能である。
Therefore, it is possible to adopt various conditions, and even looser conditions in order to reduce the influence of damage to the substrate.

尚、振幅、振動数、発振時間を上げることは多量の摩擦
熱の発生を意味し、過剰の熱は基体の溶断を引き起こす
恐れがありかえって不都合である。
Incidentally, increasing the amplitude, frequency, and oscillation time means generating a large amount of frictional heat, and excessive heat may cause melting of the base, which is rather disadvantageous.

一方、溶接物に対する超音波ホーンによる加圧は大きな
影響があり4 kg/Cm’以下では数〜10%程度の
溶接不良が発生し、更に3 kg/crn’ではほとん
ど溶接できなくなる。これは加圧がツノ\さいと集電タ
ブと接触する基体の接触面積が小さくなって、発熱量が
小なく溶接できにくくなるためである。
On the other hand, the pressurization of the workpiece by an ultrasonic horn has a great influence, and if the pressure is less than 4 kg/cm', welding defects will occur by several to 10%, and if the pressure is 3 kg/cm', welding will hardly be possible. This is because if the pressure is too high, the contact area of the current collector tab and the base body will be small, and the amount of heat generated will be small, making it difficult to weld.

更に、本発明電極Aと本発明電極Bを対比すると集電タ
ブ引張り強度においては、本発明電極Aが優れており、
これは基本と集電タブとの間の活物質の夾雑物が除去き
れているため、金属同志の密着性が向上したことに基づ
くものである。しかしながら工程所要時間に関して言え
ば、本発明電極Aは完成twAとする迄に活物質除去、
集電タブ溶接という2工程からなるため工程所要時間が
長くなるのに対し、本発明電極Bは活物質除去並びに集
電タブが一度に行なえ工程所要数が削減でき工程所要時
間が本発明層mAに対し短くなるので、工程の高速化が
計れるという利点がある。
Furthermore, when comparing electrode A of the present invention and electrode B of the present invention, electrode A of the present invention is superior in terms of current collecting tab tensile strength.
This is because impurities in the active material between the base and the current collecting tab have been completely removed, resulting in improved adhesion between metals. However, in terms of the time required for the process, the electrode A of the present invention requires active material removal,
In contrast, the electrode B of the present invention can remove the active material and the current collector tab at the same time, reducing the number of steps required, and the time required for the process is longer than that of the electrode B of the present invention. This has the advantage of speeding up the process.

(ト)発明の効果 本発明の製法によれば、溶接強度に優れた三次元多孔金
属板を用いた電極が得られる。また、本発明製法を用い
れば、製造工程の簡略化が計れ高い信頼性と生産性を有
する電極が得られるものであり、その工業的価値はきわ
めて大きい。
(G) Effects of the Invention According to the manufacturing method of the present invention, an electrode using a three-dimensional porous metal plate with excellent welding strength can be obtained. Further, by using the manufacturing method of the present invention, the manufacturing process can be simplified and an electrode having high reliability and productivity can be obtained, and its industrial value is extremely large.

Claims (6)

【特許請求の範囲】[Claims] (1)三次元多孔金属板よりなる電極基体に、前記電極
基体に対して水平方向の超音波振動により集電タブを溶
接することを特徴とする電池用電極の製法。
(1) A method for manufacturing a battery electrode, which comprises welding a current collecting tab to an electrode base made of a three-dimensional porous metal plate by ultrasonic vibration in a horizontal direction with respect to the electrode base.
(2)前記集電タブを溶接する所定部分は、一旦活物質
を充填した電極基体から活物質を除去して形成すること
を特徴とする特許請求の範囲第(1)項記載の電池用電
極の製法。
(2) The battery electrode according to claim (1), wherein the predetermined portion to which the current collecting tab is welded is formed by removing the active material from an electrode base that has been filled with the active material. manufacturing method.
(3)前記活物質を除去する方法が超音波振動により行
なうことを特徴とする特許請求の範囲第(2)項記載の
電池用電極の製法。
(3) The method for manufacturing a battery electrode according to claim (2), wherein the method for removing the active material is performed by ultrasonic vibration.
(4)前記水平方向の超音波振動により溶接する時、前
記電極基体に対して5kg/■^2以上の超音波ホーン
による加圧下で溶接することを特徴とする特許請求の範
囲第(1)項記載の電池用電極の製法。
(4) When welding using the horizontal ultrasonic vibration, welding is performed under pressure applied to the electrode base by an ultrasonic horn of 5 kg/■^2 or more. Method for manufacturing electrodes for batteries as described in Section 1.
(5)活物質を充填した電極基体に集電タブを載置し、
前記集電タブを載置した反対面の前記集電タブに対向す
る前記電極基体の部分に超音波振動するホーンを押圧し
、溶接することを特徴とする特許請求の範囲第(1)項
記載の電池用電極の製法。
(5) Place the current collection tab on the electrode base filled with the active material,
Claim 1, characterized in that an ultrasonically vibrating horn is pressed against a portion of the electrode base opposite to the current collecting tab on the opposite side on which the current collecting tab is placed, and welding is performed. A manufacturing method for battery electrodes.
(6)前記超音波振動するホーンが活物質を充填した電
極基体に接触する以前に超音波振動を開始していること
を特徴とする特許請求の範囲第(5)項記載の電池用電
極の製法。
(6) The battery electrode according to claim (5), wherein the ultrasonic vibration is started before the ultrasonic vibrating horn comes into contact with the electrode base filled with the active material. Manufacturing method.
JP61183959A 1986-08-05 1986-08-05 Manufacture of electrode for battery Pending JPS6340254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61183959A JPS6340254A (en) 1986-08-05 1986-08-05 Manufacture of electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61183959A JPS6340254A (en) 1986-08-05 1986-08-05 Manufacture of electrode for battery

Publications (1)

Publication Number Publication Date
JPS6340254A true JPS6340254A (en) 1988-02-20

Family

ID=16144812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61183959A Pending JPS6340254A (en) 1986-08-05 1986-08-05 Manufacture of electrode for battery

Country Status (1)

Country Link
JP (1) JPS6340254A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226655A (en) * 1989-02-27 1990-09-10 Fuji Elelctrochem Co Ltd Manufacture of battery with lead terminal
US5314544A (en) * 1993-05-18 1994-05-24 Saft America, Inc. High-speed non-destructive cleaning of metal foam substrate of electromechanical cell electrodes
EP0924783A1 (en) * 1997-12-22 1999-06-23 Japan Storage Battery Company Limited Porous pasted electrode, cell using the same and process for producing electrode
EP1146578A1 (en) * 2000-04-10 2001-10-17 Matsushita Electric Industrial Co., Ltd. Battery electrode and manufacturing method and apparatus for the same
JP2010188755A (en) * 2009-02-16 2010-09-02 Kanto Auto Works Ltd Engine hood seal structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031066A (en) * 1983-08-01 1985-02-16 Nec Corp Test apparatus of logical integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031066A (en) * 1983-08-01 1985-02-16 Nec Corp Test apparatus of logical integrated circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226655A (en) * 1989-02-27 1990-09-10 Fuji Elelctrochem Co Ltd Manufacture of battery with lead terminal
US5314544A (en) * 1993-05-18 1994-05-24 Saft America, Inc. High-speed non-destructive cleaning of metal foam substrate of electromechanical cell electrodes
EP0924783A1 (en) * 1997-12-22 1999-06-23 Japan Storage Battery Company Limited Porous pasted electrode, cell using the same and process for producing electrode
US6241790B1 (en) 1997-12-22 2001-06-05 Japan Storage Battery Co., Ltd. Electrode, cell using the same and process for producing electrode
EP1146578A1 (en) * 2000-04-10 2001-10-17 Matsushita Electric Industrial Co., Ltd. Battery electrode and manufacturing method and apparatus for the same
US6815120B2 (en) 2000-04-10 2004-11-09 Matsushita Electric Industrial Co., Ltd. Battery electrode and manufacturing method and apparatus for the same
US6972044B2 (en) 2000-04-10 2005-12-06 Matsushita Electric Industrial Co., Ltd. Battery electrode and manufacturing method and apparatus for the same
JP2010188755A (en) * 2009-02-16 2010-09-02 Kanto Auto Works Ltd Engine hood seal structure

Similar Documents

Publication Publication Date Title
US6972044B2 (en) Battery electrode and manufacturing method and apparatus for the same
JPS6340254A (en) Manufacture of electrode for battery
JP4233606B2 (en) Coiled electrode assembly and manufacturing method thereof
JPS6340252A (en) Manufacture of electrode for battery
JP3356181B2 (en) Manufacturing method of battery electrode
JP4016214B2 (en) Battery electrode manufacturing method
JPH04123757A (en) Preparation of nickel electrode
JP2000106169A (en) Electrode manufacturing method and battery
JPH1154106A (en) Removing method of active material and manufacture of electrode by using this method
JPH0513064A (en) Manufacture of electrode plate for alkaline storage battery
JP2765905B2 (en) Manufacturing method of battery electrode
JP4381599B2 (en) Method for manufacturing reinforced winding electrode assembly
JPH0679066U (en) Paste type electrode
JP2000195511A5 (en)
JP3081272B2 (en) Method for manufacturing battery with spiral electrode body
JPH03201367A (en) Manufacture of paste type electrode
JP3913395B2 (en) Method for producing alkaline storage battery
JPH0963575A (en) Manufacture of electrode plate for battery
JP2000195511A (en) Electrode, manufacture of electrode, and battery
JPH02226655A (en) Manufacture of battery with lead terminal
JPH08138680A (en) Electrode base plate for battery and manufacture thereof
JPH09231958A (en) Manufacture of electrode plate for alkaline storage battery
JPH01265452A (en) Manufacture of paste type electrode
US3692586A (en) Method of battery plate manufacture utilizing ultrasonic vibrations
JPH10223216A (en) Manufacture of electrode for cell