JPH10218612A - Production of silicon nitride powder - Google Patents

Production of silicon nitride powder

Info

Publication number
JPH10218612A
JPH10218612A JP9034382A JP3438297A JPH10218612A JP H10218612 A JPH10218612 A JP H10218612A JP 9034382 A JP9034382 A JP 9034382A JP 3438297 A JP3438297 A JP 3438297A JP H10218612 A JPH10218612 A JP H10218612A
Authority
JP
Japan
Prior art keywords
gas
silicon nitride
producing
nitriding
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9034382A
Other languages
Japanese (ja)
Inventor
Hirofumi Fukuoka
宏文 福岡
Yoshiharu Konya
義治 紺谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP9034382A priority Critical patent/JPH10218612A/en
Publication of JPH10218612A publication Critical patent/JPH10218612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing silicon nitride powder by a direct nitrification method using a nitrification oven equipped with a gas-charging pipe and a gas-discharging pipe and used for producing the silicon nitride, enabling to prevent the gas-discharging pipe from clogging by the deposition and adhesion of silicon monoxide to the inside of the gas- discharging pipe, and enabling to constantly stably and continuously operate also a nitrification oven for continuously producing the silicon nitride over a long time, even when the continuous nitrification oven is used, thereby enabling to efficiency and profitably produce the silicon nitride powder. SOLUTION: This method for producing silicon nitride powder comprises directly nitrifying metal silicon with a non-oxidizing gas containing nitrogen gas or ammonia gas in a temperature range of 1,150-1,500 deg.C by the use of a nitrifying over equipped with a gas-charging pipe and a gas-discharging pipe and used for producing the silicon nitride. Therein, the linear rate for discharging the gas after the nitrification reaction is 3 to 50m/s in a temperature range of 1,000-1,200 deg.C in the gas-discharging pipe. In the method for producing the silicon nitride powder, a nitrification over for continuously producing the silicon nitride is used as the nitrification oven for producing the silicon nitride, and a nitrification produce/discharged gas ratio after the nitrification reaction is 0.03-0.3kg/m<3> in a temperature range of 1,000-1,200 deg.C in the gas-discharging pipe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス導入管と排ガ
ス排気管とを備えた窒化ケイ素製造用窒化炉を用いて金
属ケイ素から直接窒化法により窒化ケイ素粉末を製造す
る方法において、排気管内への一酸化ケイ素の析出・付
着による排気管の閉塞を防止し得て、窒化炉を長時間に
わたって定常安定運転して連続的に窒化ケイ素粉末を製
造することができる窒化ケイ素粉末の製造方法に関す
る。
The present invention relates to a method for producing silicon nitride powder directly from metallic silicon by a nitriding method using a nitriding furnace for producing silicon nitride provided with a gas introduction pipe and an exhaust gas exhaust pipe. The present invention relates to a method for producing a silicon nitride powder capable of preventing clogging of an exhaust pipe due to precipitation and adhesion of silicon monoxide, and continuously producing silicon nitride powder by operating a nitriding furnace in a stable and stable manner for a long time.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
金属ケイ素を窒素ガス又はアンモニアガスを含む非酸化
性ガスで直接窒化し、窒化ケイ素粉末を製造する際に
は、前記非酸化性ガスを導入するガス導入管と排ガスを
排出する排気管とを備えた窒化ケイ素製造用窒化炉が使
用されるが、この窒化ケイ素製造用窒化炉においては、
金属ケイ素表面の自然酸化膜から下記反応式で示される
ように一酸化ケイ素ガスが発生する。この一酸化ケイ素
ガスは排ガスに同伴され、排出管内壁に析出・付着し、
排気管が狭小化し易いため、炉内圧が上昇し、定常安定
運転が困難になったり、最悪の場合、排気管が閉塞し、
炉の運転自体を中断せざるを得なくなるといった問題が
あった。
2. Description of the Related Art
Metal silicon is directly nitrided with a non-oxidizing gas containing nitrogen gas or ammonia gas, and when producing silicon nitride powder, comprises a gas introducing pipe for introducing the non-oxidizing gas and an exhaust pipe for discharging exhaust gas. Silicon nitride production nitriding furnace is used, in this silicon nitride production nitriding furnace,
A silicon monoxide gas is generated from the natural oxide film on the metal silicon surface as shown by the following reaction formula. This silicon monoxide gas is entrained in the exhaust gas and precipitates and adheres to the inner wall of the discharge pipe.
Since the exhaust pipe is easily narrowed, the furnace pressure rises, making steady and stable operation difficult, or in the worst case, the exhaust pipe becomes blocked,
There was a problem that the operation of the furnace itself had to be interrupted.

【0003】Si+SiO2 → 2SiO SiO2 → SiO+1/2O2 SiO2+H2 → SiO+H2[0003] Si + SiO 2 → 2SiO SiO 2 → SiO + 1 / 2O 2 SiO 2 + H 2 → SiO + H 2 O

【0004】この場合、上記一酸化ケイ素析出物は、排
気管内壁に非常に強固に付着するため、高温運転途中で
の除去は困難であり、一般的な方策としては、運転終了
後、排気管内を掃除したり、交換したりする方法が採ら
れていた。
In this case, since the silicon monoxide deposit adheres very strongly to the inner wall of the exhaust pipe, it is difficult to remove it during high-temperature operation. There was a way to clean and replace the garbage.

【0005】しかし、このような方法は、短時間で運転
を終わる場合には効果的であるものの、長時間運転、し
かも常に新しい金属ケイ素を供給して窒化を連続運転で
行う場合には適用が困難であった。特に連続金属ケイ素
窒化炉、例えば流動層反応炉、回転炉、移動層反応炉、
トンネル炉等を使用する場合、とりわけ金属ケイ素と窒
化ガスとの接触効率の高い流動層反応炉、回転炉、移動
層反応炉を用いた場合、その傾向は顕著であり、このた
め、排出管内壁への一酸化ケイ素ガス析出物の析出・付
着を防止する対策が課題となっていた。
However, such a method is effective when the operation is completed in a short time, but is applicable when the operation is performed for a long time and nitriding is performed by continuously supplying new metal silicon and performing nitriding continuously. It was difficult. In particular, a continuous metal silicon nitriding furnace, such as a fluidized bed reactor, a rotary furnace, a moving bed reactor,
This tendency is remarkable when using a tunnel furnace or the like, especially when using a fluidized bed reactor, a rotary furnace, or a moving bed reactor having high contact efficiency between metal silicon and a nitriding gas. A measure to prevent the deposition and adhesion of silicon monoxide gas deposits on the surface has been an issue.

【0006】本発明は、上記事情に鑑みなされたもの
で、ガス導入管と排ガス排気管とを備えた窒化ケイ素製
造用窒化炉を用いて金属ケイ素から直接窒化法により窒
化ケイ素粉末を製造する方法において、一酸化ケイ素析
出物の排気管内壁への析出・付着を防止でき、窒化炉を
長時間にわたって連続的に定常安定運転して窒化ケイ素
粉末を製造することができる窒化ケイ素粉末の製造方法
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is directed to a method of producing silicon nitride powder directly from metallic silicon using a nitriding furnace for producing silicon nitride having a gas introduction pipe and an exhaust gas exhaust pipe. In the method for producing silicon nitride powder, it is possible to prevent the deposition and adhesion of silicon monoxide deposits on the inner wall of the exhaust pipe, and to continuously and stably operate the nitriding furnace for a long time to produce silicon nitride powder. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を重ねた結
果、ガス導入管と排ガス排気管とを備えた窒化ケイ素製
造用窒化炉を用いて金属ケイ素を窒素ガス又はアンモニ
アガスを含む非酸化性ガスで1,150〜1,500℃
の温度域で直接窒化し、窒化ケイ素粉末を製造する際、
前記排気管中の1,000〜1,200℃の温度域にお
ける排ガス線速を3〜50m/sの範囲にすることによ
り、一酸化ケイ素析出物の排気管内壁への析出・付着を
防止でき、窒化炉を長時間にわたって連続的に定常安定
運転して窒化ケイ素粉末を製造し得ることを見出した。
Means for Solving the Problems and Embodiments of the Invention The present inventor has conducted intensive studies to achieve the above object, and as a result, has found that a nitriding furnace for producing silicon nitride equipped with a gas inlet pipe and an exhaust gas exhaust pipe. 1,150 to 1,500 ° C. using a non-oxidizing gas containing nitrogen gas or ammonia gas
When nitriding directly in the temperature range of to produce silicon nitride powder,
By setting the exhaust gas linear velocity in the temperature range of 1,000 to 1,200 ° C. in the exhaust pipe to a range of 3 to 50 m / s, it is possible to prevent the deposition and adhesion of silicon monoxide deposits on the inner wall of the exhaust pipe. It has been found that silicon nitride powder can be produced by continuously and stably operating a nitriding furnace for a long time.

【0008】即ち、本発明者は、窒化ケイ素製造用窒化
炉を用いた直接窒化では、上記排気管内壁への一酸化ケ
イ素の析出が1,000〜1,200℃という特定温度
域で起こっており、その場合、排気管内のガス線速と一
酸化ケイ素の析出量とに相関が見られ、排ガス線速が大
きい程、一酸化ケイ素の析出量が少ないことを見出し、
上記温度域で窒化反応後の一酸化ケイ素を含有する排ガ
ス線速を3〜50m/sの範囲に調整して前記排ガスを
高速で流通させることで、上記一酸化ケイ素の排気管内
壁への析出・付着を防止でき、上記問題点を解決できる
こと、更に、一酸化ケイ素ガスの発生が比較的大きく、
一酸化ケイ素が排気管内壁へ析出・付着し易い流動層反
応炉、回転炉、移動層反応炉のような連続反応方式の場
合、反応炉内で窒化した窒化ケイ素を含む窒化生成物を
連続的に排ガスに同伴させて排出する場合、反応炉内で
窒化した窒化ケイ素を含む窒化生成物を上記特定線速を
有する高速の排ガスに同伴させ、かつ窒化生成物/上記
排ガス比を0.03〜0.3kg/m3の一定範囲とす
ることが有効であり、これにより排出管内壁に析出・付
着した一酸化ケイ素を効率的に除去することもでき、反
応炉の運転を途中で中断する必要がなくなること、それ
故、連続反応方式でも長時間にわたって安定的に運転を
行って窒化ケイ素粉末を製造できることを知見し、本発
明をなすに至ったものである。
That is, the present inventor has found that in direct nitridation using a nitriding furnace for producing silicon nitride, the deposition of silicon monoxide on the inner wall of the exhaust pipe occurs in a specific temperature range of 1,000 to 1,200 ° C. In that case, a correlation is found between the gas linear velocity in the exhaust pipe and the amount of silicon monoxide deposited, and the larger the exhaust gas linear velocity, the smaller the amount of silicon monoxide deposited,
By adjusting the linear velocity of the exhaust gas containing silicon monoxide after the nitriding reaction in the above temperature range to a range of 3 to 50 m / s and flowing the exhaust gas at a high speed, the silicon monoxide is deposited on the inner wall of the exhaust pipe. That adhesion can be prevented and the above problems can be solved, and furthermore, the generation of silicon monoxide gas is relatively large,
In the case of a continuous reaction system such as a fluidized bed reactor, a rotary furnace, or a moving bed reactor in which silicon monoxide is likely to precipitate and adhere to the inner wall of the exhaust pipe, nitriding products including silicon nitride nitrided in the reactor are continuously discharged. When the exhaust gas is discharged together with the exhaust gas, the nitrided product containing silicon nitride nitrided in the reactor is accompanied by the high-speed exhaust gas having the specific linear velocity, and the ratio of the nitrided product / the exhaust gas is 0.03 to 0.03. It is effective to set the range to 0.3 kg / m 3 , and it is possible to efficiently remove silicon monoxide deposited and adhered to the inner wall of the discharge pipe, and it is necessary to interrupt the operation of the reactor on the way. It has been found that silicon nitride powder can be produced by operating stably for a long time even in a continuous reaction system to produce silicon nitride powder, and the present invention has been accomplished.

【0009】従って、本発明は、窒素ガス又はアンモニ
アガスを含む非酸化性ガスを導入するガス導入管と、排
ガスを排出する排ガス排気管とを備えた窒化ケイ素製造
用窒化炉を用いて、金属ケイ素を前記非酸化性ガスによ
り1,150〜1,500℃の温度域で直接窒化し、窒
化ケイ素粉末を製造する方法において、前記排気管中の
1,000〜1,200℃の温度域における排ガスの線
速を3〜50m/sの範囲にすることを特徴とする窒化
ケイ素粉末の製造方法を提供する。
Accordingly, the present invention provides a method for manufacturing a silicon nitride by using a nitriding furnace having a gas introduction pipe for introducing a non-oxidizing gas containing nitrogen gas or ammonia gas and an exhaust gas exhaust pipe for discharging exhaust gas. In a method for producing silicon nitride powder by directly nitriding silicon in a temperature range of 1,150 to 1,500 ° C. with the non-oxidizing gas, a method of producing a silicon nitride powder in a temperature range of 1,000 to 1,200 ° C. in the exhaust pipe. Provided is a method for producing silicon nitride powder, characterized in that the linear velocity of exhaust gas is in the range of 3 to 50 m / s.

【0010】更に、本発明は、上記方法において、窒化
炉に金属ケイ素を連続的に供給すると共に、ガス導入管
から非酸化性ガスを連続的に導入し、かつ生成した窒化
ケイ素を含む窒化生成物を排ガスと共に排ガス排気管か
ら連続的に排出して窒化ケイ素粉末を連続的に製造する
際に、排出管の1,000〜1,200℃の温度域にお
ける窒化生成物/排ガス比を0.03〜0.3kg/m
3とすることを特徴とする連続的な窒化ケイ素粉末の製
造方法を提供する。
Further, according to the present invention, in the above-mentioned method, while continuously supplying metallic silicon to a nitriding furnace, continuously introducing a non-oxidizing gas from a gas introducing pipe, and further comprising a nitriding method containing the produced silicon nitride. When the product is continuously discharged from the exhaust gas exhaust pipe together with the exhaust gas to continuously produce silicon nitride powder, the nitriding product / exhaust gas ratio in the temperature range of 1,000 to 1,200 ° C. of the exhaust pipe is set to 0.1. 03-0.3kg / m
3. A method for continuously producing silicon nitride powder, which is characterized in that:

【0011】以下、本発明につき更に詳述する。本発明
の窒化ケイ素粉末の製造方法は、窒素ガス又はアンモニ
アガスを含む非酸化性ガスを導入するガス導入管と、排
ガスを排出する排気管とを備えた窒化ケイ素製造用窒化
炉を用いて金属ケイ素を窒素ガス又はアンモニアガスを
含む非酸化性ガスで1,150〜1,500℃の温度域
で直接窒化する。
Hereinafter, the present invention will be described in more detail. The method for producing a silicon nitride powder according to the present invention uses a nitriding furnace for producing silicon nitride provided with a gas introduction pipe for introducing a non-oxidizing gas containing nitrogen gas or ammonia gas, and an exhaust pipe for discharging exhaust gas. Silicon is directly nitrided with a non-oxidizing gas containing nitrogen gas or ammonia gas in a temperature range of 1,150 to 1,500 ° C.

【0012】この場合、窒化ケイ素製造用窒化炉として
は、バッチ炉等の非連続型の窒化ケイ素製造用窒化炉
や、例えば流動層反応炉、回転炉、移動層反応炉、トン
ネル炉等の連続金属ケイ素窒化炉を使用することができ
るが、中でも連続金属ケイ素窒化炉、とりわけ流動層反
応炉が好適に使用される。
In this case, the nitriding furnace for producing silicon nitride may be a discontinuous nitriding furnace for producing silicon nitride such as a batch furnace, or a continuous furnace such as a fluidized bed reactor, a rotary furnace, a moving bed reactor, or a tunnel furnace. Although a metal silicon nitriding furnace can be used, a continuous metal silicon nitriding furnace, especially a fluidized bed reactor is preferably used.

【0013】上記窒化炉に備えられる排ガス排気管は、
1,000〜1,200℃の高温に耐えられればその材
質は特に限定されないが、例えばアルミナ、ムライト、
ジルコニア、炭化ケイ素、窒化ケイ素といったセラミッ
クスや、これらの表面をCVD、CVR処理したもの、
あるいはモリブデン、タングステンといった耐熱金属等
が好適に用いられる。
The exhaust gas exhaust pipe provided in the nitriding furnace is
The material is not particularly limited as long as it can withstand a high temperature of 1,000 to 1,200 ° C. For example, alumina, mullite,
Ceramics such as zirconia, silicon carbide, and silicon nitride, and those obtained by subjecting their surfaces to CVD and CVR treatments,
Alternatively, a heat-resistant metal such as molybdenum or tungsten is preferably used.

【0014】ここで、原料として用いる金属ケイ素粉末
は特に制限されないが、短時間で窒化を終了させるため
に150メッシュパス、特に325メッシュパスの金属
ケイ素粉末を用いることが好ましい。
Here, the metal silicon powder used as a raw material is not particularly limited, but it is preferable to use a 150 mesh pass, particularly a 325 mesh pass metal silicon powder in order to complete nitriding in a short time.

【0015】また、流動層反応炉、回転炉、移動層反応
炉等の連続金属ケイ素窒化炉を用いて連続反応を行う場
合には、金属ケイ素粉末の流動性を向上させるため、上
記金属ケイ素粉末にポリビニルアルコール等の結合剤を
添加し、平均粒径が100μm〜10mm、特に300
μm〜1mmに造粒したものを使用することがより好適
である。
When the continuous reaction is carried out using a continuous metal silicon nitriding furnace such as a fluidized bed reactor, a rotary furnace, a moving bed reactor, etc., the metal silicon powder is used to improve the fluidity of the metal silicon powder. A binder such as polyvinyl alcohol is added to the mixture, and the average particle size is 100 μm to 10 mm, particularly 300 μm.
It is more preferable to use those granulated to μm to 1 mm.

【0016】上記金属ケイ素粉末の窒化に用いる非酸化
性ガスは、窒素ガス及びアンモニアガスのいずれか一方
又は双方を含み、更に必要により水素ガスを混入した
り、アルゴンやヘリウム等の希ガスで希釈した通常の窒
化用ガスとすることができ、その導入量は通常の導入量
でよい。
The non-oxidizing gas used for nitriding the metal silicon powder contains one or both of a nitrogen gas and an ammonia gas, and further incorporates a hydrogen gas if necessary, or is diluted with a rare gas such as argon or helium. A normal nitriding gas can be used, and the introduced amount may be a normal introduced amount.

【0017】また、窒化反応温度は1,150〜1,5
00℃、好ましくは1,200〜1,400℃である。
The nitriding reaction temperature is 1,150 to 1,5.
00 ° C, preferably 1,200 to 1,400 ° C.

【0018】本発明においては、上記のように直接窒化
法で窒化ケイ素粉末を製造する方法において、窒化の際
に発生する一酸化ケイ素ガスを含む排ガスを排気管内で
高速で流通させることで一酸化ケイ素ガスの析出・付着
を防止させるものであり、特に一酸化ケイ素ガスの析出
が排気管内の1,000〜1,200℃の温度域で発生
するため、該温度域でのガス線速を特定範囲とすること
が重要である。
According to the present invention, in the method for producing silicon nitride powder by the direct nitriding method as described above, the exhaust gas containing silicon monoxide gas generated during nitriding is caused to flow at a high speed in an exhaust pipe to thereby form a mono-oxide. Prevents the deposition and adhesion of silicon gas. In particular, since the deposition of silicon monoxide gas occurs in the temperature range of 1,000 to 1,200 ° C. in the exhaust pipe, the gas linear velocity in the temperature range is specified. It is important to have a range.

【0019】この場合、排気管内のガス線速は、窒化炉
に導入される前記非酸化性ガスの導入量から窒化で使用
される窒素ガス及びアンモニアガスの使用量を差し引い
た量を排ガス量とし、この排ガス量を排気管の断面積で
割った値として計算することができ、本発明では、1,
000〜1,200℃の温度域における前記排気管内の
排ガスのガス線速を3〜50m/s、好ましくは5〜3
0m/s、より好ましくは7〜20m/sの範囲とす
る。ガス線速が3m/s未満では、その効果は少なく、
一酸化ケイ素ガスが排気管に析出・付着してしまい、ガ
ス線速が50m/sより大きくなると、特に効果の向上
が見られないばかりでなく、排気管内が摩耗したり、非
酸化性ガス(窒化ガス)が大量に必要となるため、コス
ト高になるおそれがある。
In this case, the gas linear velocity in the exhaust pipe is obtained by subtracting the amount of the nitrogen gas and the amount of the ammonia gas used for nitriding from the amount of the non-oxidizing gas introduced into the nitriding furnace as the amount of the exhaust gas. This exhaust gas amount can be calculated as a value obtained by dividing the exhaust gas amount by the cross-sectional area of the exhaust pipe.
The gas linear velocity of the exhaust gas in the exhaust pipe in the temperature range of 000 to 1,200 ° C. is 3 to 50 m / s, preferably 5 to 3 m / s.
0 m / s, more preferably in the range of 7 to 20 m / s. If the gas linear velocity is less than 3 m / s, the effect is small,
When the silicon monoxide gas is deposited and adheres to the exhaust pipe and the gas linear velocity is higher than 50 m / s, not only the effect is not particularly improved, but also the exhaust pipe is worn or the non-oxidizing gas ( Since a large amount of nitriding gas is required, the cost may increase.

【0020】上記範囲にガス線速を制御するには、非酸
化性ガス量(窒化ガス量)を制御する方法、排気管径を
制御するといった方法を窒化炉の運転条件、状態により
選択することができる。
In order to control the gas linear velocity within the above range, a method of controlling the amount of non-oxidizing gas (amount of nitriding gas) and a method of controlling the diameter of the exhaust pipe are selected according to the operating conditions and conditions of the nitriding furnace. Can be.

【0021】また、流動層反応炉、回転炉、移動層反応
炉を用いて連続運転を行った場合、常に新しい金属ケイ
素粉末が供給されるため、一酸化ケイ素ガスの発生が大
きくなり、排気管内への一酸化ケイ素の析出・付着が多
くなる場合がある。この場合は、窒化ケイ素粉末を含む
窒化生成物を上記特定範囲のガス線速を有する高速の排
ガスに同伴させ、排気管内壁に析出・付着した一酸化ケ
イ素を掻き取ることが効果的であり、このためには、排
出管の1,000〜1,200℃の温度域における窒化
生成物/排ガス比を0.03〜0.3kg/m3、特に
0.05〜0.2kg/m3とすることが好ましい。窒
化生成物/排ガス比が0.03kg/m3未満では、掻
き取る効果が少なくなる場合があり、逆に0.3kg/
3より多いと排気管内壁が摩耗し、製品中に不純物と
して存在し、品質が低下する場合がある。
When continuous operation is performed using a fluidized-bed reactor, a rotary furnace, or a moving-bed reactor, new metal silicon powder is always supplied, so that the amount of silicon monoxide gas is increased and the exhaust gas is exhausted. Precipitation and adhesion of silicon monoxide to silicon may increase. In this case, it is effective to entrain the nitrided product containing the silicon nitride powder with the high-speed exhaust gas having the gas linear velocity in the above-described specific range and scrape off the silicon monoxide deposited and adhered to the exhaust pipe inner wall, For this purpose, the nitriding product / exhaust gas ratio in the temperature range of 1,000 to 1,200 ° C. of the discharge pipe is set to 0.03 to 0.3 kg / m 3 , particularly 0.05 to 0.2 kg / m 3 . Is preferred. If the nitriding product / exhaust gas ratio is less than 0.03 kg / m 3 , the scraping effect may be reduced, and conversely, 0.3 kg / m 3.
If it is more than m 3, the inner wall of the exhaust pipe will be worn and present as impurities in the product, which may lower the quality.

【0022】このようにして窒化反応により得られた窒
化ケイ素粉末は、排ガスに同伴して排出され、回収する
ことができる。
The silicon nitride powder obtained by the nitriding reaction as described above is discharged together with the exhaust gas and can be recovered.

【0023】[0023]

【発明の効果】本発明の窒化ケイ素粉末の製造方法によ
れば、ガス導入管と排ガス排気管とを備えた窒化ケイ素
製造用窒化炉を用いて直接窒化法により窒化ケイ素粉末
を製造する際、排気管内への一酸化ケイ素の析出・付着
による排気管の閉塞を防止でき、連続窒化ケイ素製造用
窒化炉を用いても長時間にわたって定常安定で継続的に
運転が可能であり、窒化ケイ素粉末を効率よく、工業的
に有利に製造することができる。
According to the method for producing silicon nitride powder of the present invention, when producing silicon nitride powder by a direct nitriding method using a nitriding furnace for producing silicon nitride provided with a gas introduction pipe and an exhaust gas exhaust pipe, It is possible to prevent clogging of the exhaust pipe due to deposition and adhesion of silicon monoxide in the exhaust pipe, and it is possible to operate continuously and stably for a long time even with a nitriding furnace for continuous silicon nitride production. It can be produced efficiently and industrially advantageously.

【0024】[0024]

【実施例】以下、実施例及び比較例を示して本発明を具
体的に説明するが、本発明は下記実施例に制限されるも
のではない。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0025】〔実施例1〕325#アンダーの金属ケイ
素粉末を窒化ケイ素製トレイに1kg仕込み、このトレ
イ20個、計20kgをバッチ炉内に仕込んだ。その
後、窒素6m3/Hr、水素2m3/Hrの混合ガスを流
入しつつ100℃/Hrの昇温速度で昇温し、1,40
0℃で5時間の窒化を行った。なお、この際の排気管は
内径 40mmのアルミナ質のものを用いた。この場
合、窒化率が100%と仮定すると、窒化による窒素消
費量は平均2.1m3/Hrであるから、残ったガス量
より1,100〜1,200℃の排気管におけるガス線
速は6.1〜6.6m/sと推測できる。
Example 1 1 kg of 325 # metal silicon powder was placed in a silicon nitride tray, and 20 trays, 20 kg in total, were placed in a batch furnace. Thereafter, nitrogen 6 m 3 / Hr, the temperature was raised at a heating rate of hydrogen 2m 3 / Hr 100 ℃ / Hr while flowing a mixed gas of, 1,40
Nitriding was performed at 0 ° C. for 5 hours. In this case, the exhaust pipe used was an alumina pipe having an inner diameter of 40 mm. In this case, assuming that the nitriding rate is 100%, the nitrogen consumption by nitriding is 2.1 m 3 / Hr on average, so the gas linear velocity in the exhaust pipe at 1,100 to 1,200 ° C. is smaller than the remaining gas amount. It can be estimated from 6.1 to 6.6 m / s.

【0026】得られた窒化ケイ素粉末は窒化率100%
であった。また、炉を解体し、排気管内の観察及び一酸
化ケイ素析出量を測定したところ、排気管内への一酸化
ケイ素の析出量は約4gであり、ほとんど狭小化は起こ
っていないことが確認された。
The obtained silicon nitride powder has a nitriding ratio of 100%.
Met. Further, the furnace was dismantled, and observation in the exhaust pipe and measurement of silicon monoxide deposition amount revealed that the amount of silicon monoxide deposited in the exhaust pipe was about 4 g, and it was confirmed that almost no narrowing had occurred. .

【0027】〔比較例1〕比較のため、窒化ガスとして
窒素3m3/Hr、水素1m3/Hrの混合ガスを流入す
る以外は実施例1と同様な条件で窒化を行った。この場
合、窒化率が100%と仮定すると、実施例1と同様に
窒素消費量は2.1m3/Hrであるから、残ったガス
量より1,100〜1,200℃の排気管におけるガス
線速は、2.0〜2.1m/sと推測できる。
Comparative Example 1 For comparison, nitriding was performed under the same conditions as in Example 1 except that a mixed gas of 3 m 3 / Hr of nitrogen and 1 m 3 / Hr of hydrogen was introduced as a nitriding gas. In this case, assuming that the nitriding rate is 100%, the nitrogen consumption is 2.1 m 3 / Hr as in Example 1, so that the gas in the exhaust pipe at 1,100 to 1,200 ° C. is smaller than the remaining gas amount. The linear velocity can be estimated to be 2.0 to 2.1 m / s.

【0028】得られた窒化ケイ素粉末は、窒化率100
%であった。また、炉を解体し、排気管内の観察及び一
酸化ケイ素析出量を測定したところ、排気管内への一酸
化ケイ素の析出量は約53gであり、排気管断面積の7
0%が閉塞しており、直ちに交換が必要な状態であっ
た。
The obtained silicon nitride powder has a nitriding ratio of 100
%Met. When the furnace was dismantled and the inside of the exhaust pipe was observed and the amount of silicon monoxide deposited was measured, the amount of silicon monoxide deposited in the exhaust pipe was about 53 g, and the exhaust pipe cross-sectional area was 7%.
0% was blocked and needed immediate replacement.

【0029】〔実施例2,3、比較例2,3〕図1に示
す連続流動層反応装置を用い、窒化ケイ素粉末を製造し
た。窒化原料は、325#アンダーの金属ケイ素粉末を
平均粒子径0.6mmに造粒したものを用い、この造粒
粒子をホッパー1からスクリューフィーダー2内に仕込
んだ。一方、予め内径250mmの処理装置本体(反応
器)3内のガス分散板4上に窒化ケイ素粉末を25kg
仕込み、ガスブレンダー5中で混合された表1に示す流
量の窒素ガス/水素ガスの混合ガスをガス導入管6より
ガス分散室7を通してガス分散板4の通気孔より反応域
1aに流入させ、流動層8を形成した後、加熱装置9を
加熱し、温度を1,300℃に昇温した。
Examples 2 and 3 and Comparative Examples 2 and 3 Silicon nitride powder was produced using the continuous fluidized bed reactor shown in FIG. The nitriding raw material was obtained by granulating 325 # under metal silicon powder to an average particle diameter of 0.6 mm, and the granulated particles were charged from the hopper 1 into the screw feeder 2. On the other hand, 25 kg of silicon nitride powder was previously placed on a gas dispersion plate 4 in a processing apparatus main body (reactor) 3 having an inner diameter of 250 mm.
The mixed gas of nitrogen gas / hydrogen gas at the flow rate shown in Table 1 mixed in the gas blender 5 was allowed to flow from the gas introduction pipe 6 through the gas dispersion chamber 7 into the reaction zone 1a through the vent hole of the gas dispersion plate 4, After forming the fluidized bed 8, the heating device 9 was heated to raise the temperature to 1,300 ° C.

【0030】次に、スクリューフィーダー2を作動し、
上記造粒原料を金属ケイ素供給管10を通して表1に示
す割合で連続的に供給し、1ヶ月の連続運転を行った。
流動層8内で窒化された窒化生成物粉末は表1に示す内
径のアルミナ製排気管11から排ガスに同伴されて排出
され、回収器12により回収された。また、圧力計13
により炉内圧を測定し、排気管の狭小化を予測できるよ
うになっている。
Next, the screw feeder 2 is operated,
The granulated raw material was continuously supplied at a rate shown in Table 1 through a metal silicon supply pipe 10, and a continuous operation was performed for one month.
The nitrided product powder nitrided in the fluidized bed 8 was discharged from the alumina exhaust pipe 11 having the inner diameter shown in Table 1 with the exhaust gas, and was recovered by the recovery device 12. In addition, pressure gauge 13
This makes it possible to measure the furnace pressure and predict the narrowing of the exhaust pipe.

【0031】それぞれの条件における窒化ケイ素反応
率、窒素消費量、排気管ガス線速、窒化ケイ素/排ガス
比を表1に併記する。
Table 1 also shows the silicon nitride reaction rate, nitrogen consumption, exhaust pipe gas linear velocity, and silicon nitride / exhaust gas ratio under each condition.

【0032】また、それぞれの実験終了後、装置を解体
し、排気管内への一酸化ケイ素の析出量の重量測定、窒
化生成物内のアルミニウム含有量測定を行った。結果を
表2に示す。
After completion of each experiment, the apparatus was disassembled, and the weight of the amount of silicon monoxide deposited in the exhaust pipe and the aluminum content in the nitrided product were measured. Table 2 shows the results.

【0033】表2の結果より、本発明の製造方法によれ
ば、排気管への一酸化ケイ素の付着を防止して定常安定
に連続運転で窒化ケイ素粉末を製造できることが確認さ
れた。
From the results shown in Table 2, it was confirmed that according to the production method of the present invention, silicon nitride powder can be produced in a stable and continuous operation by preventing silicon monoxide from adhering to the exhaust pipe.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で使用した連続流動層反応装置
の概略図である。
FIG. 1 is a schematic view of a continuous fluidized bed reactor used in Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 ホッパー 2 スクリューフィーダー 3 処理装置本体 4 ガス分散板 5 ガスブレンダー 6 ガス導入管 7 ガス分散室 8 流動層 9 加熱装置 10 金属ケイ素供給管 11 排気管 12 回収器 13 圧力計 DESCRIPTION OF SYMBOLS 1 Hopper 2 Screw feeder 3 Processing apparatus main body 4 Gas dispersion plate 5 Gas blender 6 Gas introduction pipe 7 Gas dispersion chamber 8 Fluidized bed 9 Heating device 10 Metal silicon supply pipe 11 Exhaust pipe 12 Recoverer 13 Pressure gauge

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒素ガス又はアンモニアガスを含む非酸
化性ガスを導入するガス導入管と、排ガスを排出する排
ガス排気管とを備えた窒化ケイ素製造用窒化炉を用い
て、金属ケイ素を前記非酸化性ガスにより1,150〜
1,500℃の温度域で直接窒化し、窒化ケイ素粉末を
製造する方法において、前記排気管中の1,000〜
1,200℃の温度域における排ガスの線速を3〜50
m/sの範囲にすることを特徴とする窒化ケイ素粉末の
製造方法。
1. A method according to claim 1, further comprising: using a nitriding furnace for producing silicon nitride, comprising: a gas introducing pipe for introducing a non-oxidizing gas containing nitrogen gas or ammonia gas; and an exhaust gas exhaust pipe for discharging exhaust gas. 1,150- depending on oxidizing gas
In a method for producing silicon nitride powder by directly nitriding in a temperature range of 1,500 ° C.,
The linear velocity of the exhaust gas in the temperature range of 1,200 ° C is 3 to 50
m / s, a method for producing silicon nitride powder.
【請求項2】 請求項1記載の製造方法において、窒化
炉に金属ケイ素を連続的に供給すると共に、ガス導入管
から非酸化性ガスを連続的に導入し、かつ生成した窒化
ケイ素を含む窒化生成物を排ガスと共に排ガス排気管か
ら連続的に排出して窒化ケイ素粉末を連続的に製造する
際に、排出管の1,000〜1,200℃の温度域にお
ける窒化生成物/排ガス比を0.03〜0.3kg/m
3とすることを特徴とする連続的な窒化ケイ素粉末の製
造方法。
2. The method according to claim 1, wherein metal silicon is continuously supplied to the nitriding furnace, a non-oxidizing gas is continuously introduced from a gas introduction pipe, and the nitriding includes the generated silicon nitride. When the silicon nitride powder is continuously produced by continuously discharging the product together with the exhaust gas from the exhaust gas exhaust pipe, the nitriding product / exhaust gas ratio in the temperature range of 1,000 to 1,200 ° C. of the exhaust pipe is set to 0. 0.03 to 0.3 kg / m
3. A continuous method for producing silicon nitride powder, wherein
【請求項3】 窒化ケイ素製造用窒化炉が流動層反応炉
である請求項1又は2記載の窒化ケイ素粉末の製造方
法。
3. The method for producing silicon nitride powder according to claim 1, wherein the nitriding furnace for producing silicon nitride is a fluidized bed reactor.
JP9034382A 1997-02-03 1997-02-03 Production of silicon nitride powder Pending JPH10218612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9034382A JPH10218612A (en) 1997-02-03 1997-02-03 Production of silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9034382A JPH10218612A (en) 1997-02-03 1997-02-03 Production of silicon nitride powder

Publications (1)

Publication Number Publication Date
JPH10218612A true JPH10218612A (en) 1998-08-18

Family

ID=12412629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9034382A Pending JPH10218612A (en) 1997-02-03 1997-02-03 Production of silicon nitride powder

Country Status (1)

Country Link
JP (1) JPH10218612A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160548A (en) * 2004-12-06 2006-06-22 Japan Atomic Energy Agency Single crystal silicon nitride nanosheet and its producing method
KR101467438B1 (en) * 2013-01-10 2014-12-03 조항선 Method of fabricating silicon nitride powder
KR20220106119A (en) 2019-11-28 2022-07-28 가부시끼가이샤 도꾸야마 Manufacturing method of silicon nitride sintered compact
KR20220110741A (en) 2019-12-05 2022-08-09 가부시끼가이샤 도꾸야마 Method for manufacturing metal nitride
CN115650183A (en) * 2022-10-28 2023-01-31 福建新航凯材料科技有限公司 Silicon nitride production process and equipment
KR20230160278A (en) 2021-03-30 2023-11-23 가부시끼가이샤 도꾸야마 Method for manufacturing silicon nitride sintered body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160548A (en) * 2004-12-06 2006-06-22 Japan Atomic Energy Agency Single crystal silicon nitride nanosheet and its producing method
JP4572382B2 (en) * 2004-12-06 2010-11-04 独立行政法人 日本原子力研究開発機構 Single crystal silicon nitride nanosheet and manufacturing method thereof
KR101467438B1 (en) * 2013-01-10 2014-12-03 조항선 Method of fabricating silicon nitride powder
KR20220106119A (en) 2019-11-28 2022-07-28 가부시끼가이샤 도꾸야마 Manufacturing method of silicon nitride sintered compact
KR20220110741A (en) 2019-12-05 2022-08-09 가부시끼가이샤 도꾸야마 Method for manufacturing metal nitride
KR20230160278A (en) 2021-03-30 2023-11-23 가부시끼가이샤 도꾸야마 Method for manufacturing silicon nitride sintered body
CN115650183A (en) * 2022-10-28 2023-01-31 福建新航凯材料科技有限公司 Silicon nitride production process and equipment
CN115650183B (en) * 2022-10-28 2023-12-19 福建新航凯材料科技有限公司 Silicon nitride production process and equipment

Similar Documents

Publication Publication Date Title
JPH10218612A (en) Production of silicon nitride powder
JP4451671B2 (en) SiO manufacturing method and manufacturing apparatus
JP6809248B2 (en) How to use electrodes for electric furnaces, electric furnaces and electric furnaces
JP3189507B2 (en) Surface treatment equipment
JP3722736B2 (en) Method for producing lower silicon oxide powder
JP3737863B2 (en) Method for producing granular polysilicon
JPH0925112A (en) Treatment of metal silicate and apparatus therefor
JPH08224462A (en) Reactor
JPH0586476A (en) Chemical vapor growth device
JPS63147812A (en) Production of silicon carbide powder
JPS58213607A (en) Preparation of silicon imide and/or silicon nitride
KR101030433B1 (en) Chemical vapor deposition apparatus which consists of chamber shield and Method for fabricating chamber shield
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JPS63195102A (en) Continuous production of aluminum nitride powder and device therefor
JP3673294B2 (en) Method and apparatus for producing vapor grown carbon fiber
JPS5941772B2 (en) Ultrafine powder synthesis furnace
JPH01308812A (en) Continuous production of aluminum nitride powder and unit therefor
JP4319316B2 (en) Method for producing ceramic tubular molded body
JPS60251112A (en) Process and device for preparing silicon
JP2006097114A (en) Corrosion-resistant spray deposit member
JPS631196Y2 (en)
Sekiya Ceramic Coating on Die Casting Dies
JPH05155630A (en) Production of silica porous base material
JPS6250466A (en) Production of article having silicon nitride film
JPH03115183A (en) Refractory material