JPH05155630A - Production of silica porous base material - Google Patents

Production of silica porous base material

Info

Publication number
JPH05155630A
JPH05155630A JP32308691A JP32308691A JPH05155630A JP H05155630 A JPH05155630 A JP H05155630A JP 32308691 A JP32308691 A JP 32308691A JP 32308691 A JP32308691 A JP 32308691A JP H05155630 A JPH05155630 A JP H05155630A
Authority
JP
Japan
Prior art keywords
flow rate
gas flow
silica
base material
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32308691A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suda
裕之 須田
Yasuki Odagiri
泰樹 小田切
Eiji Shioda
英司 塩田
Hideaki Okada
英昭 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Tosoh Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Tosoh Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32308691A priority Critical patent/JPH05155630A/en
Publication of JPH05155630A publication Critical patent/JPH05155630A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases

Abstract

PURPOSE:To provide a producing method of a silica porous base material causing neither crack nor peeling at the side face part thereof, improved in reproducibility, stability, and yield of the synthsis. CONSTITUTION:In producing a silica porous base material by VAD method, the silica porous base exhausting a definite quantity of an exhaust gas flow whose rate is 7.5-15 times the total gas flow rate in terms of standard state to be fed to a burner is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気相軸付け法(VAD
法)によるシリカ多孔質母材の製造法に関するものであ
り、さらに詳しくは、シリカ多孔質母材側面部に亀裂や
剥離がないシリカ多孔質母材の製造法に関するものであ
る。VAD法により製造されたシリカ多孔質母材を焼結
することにより石英ガラスが得られる。
BACKGROUND OF THE INVENTION The present invention relates to a vapor phase axial method (VAD).
Method) for producing a porous silica preform, and more specifically, a method for producing a porous silica preform having no cracks or peeling on the side surface of the porous silica preform. Quartz glass is obtained by sintering a porous silica preform manufactured by the VAD method.

【0002】[0002]

【従来の技術】一般に、VAD法によるシリカ多孔質母
材を製造する方法としては、気体のガラス原料、水素ガ
ス、酸素ガス及び不活性ガスをバーナーに供給して、火
炎加水分解させてシリカ微粒子を生成し、このシリカ微
粒子を石英製等の出発部材上に付着,堆積させることに
よりシリカ多孔質母材を製造する方法が用いられる。
2. Description of the Related Art Generally, as a method for producing a porous silica preform by the VAD method, a gaseous glass raw material, hydrogen gas, oxygen gas and an inert gas are supplied to a burner and flame-hydrolyzed to obtain silica fine particles. Is produced, and the silica fine particles are adhered and deposited on a starting member made of quartz or the like to produce a porous silica preform.

【0003】この方法では、気体のガラス原料として四
塩化珪素,三塩化シラン等の珪素化合物が用いられる。
気体のガラス原料の火炎加水分解では水,塩化水素,未
反応のガラス原料,その他窒素等からなる未付着シリカ
微粒子を含んだ高温ガスが生じるため、シリカ多孔質母
材は外部と隔離するための容器内で製造される。容器に
はこれらの高温ガスを排気するための排気口が備えら
れ、容器内の円滑な排気を行うことやシリカ多孔質母材
表面の温度分布を制御する等の理由によりバーナーに供
給するガスとは別に二次ガスが供給される。
In this method, silicon compounds such as silicon tetrachloride and silane trichloride are used as a gaseous glass raw material.
In flame hydrolysis of gaseous glass raw materials, high temperature gas containing water, hydrogen chloride, unreacted glass raw materials, and other non-adhered silica fine particles made of nitrogen, etc. is generated, so that the silica porous base material is isolated from the outside. Manufactured in a container. The container is provided with an exhaust port for exhausting these high-temperature gases, and the gas to be supplied to the burner is used for the purpose of performing smooth exhaust in the container and controlling the temperature distribution on the surface of the porous silica preform. Separately, secondary gas is supplied.

【0004】シリカ多孔質母材の製造においては、気体
のガラス原料の火炎加水分解で生じる高温の排気ガスを
排気する方法が合成の再現性や安定性及び合成収率の向
上に大きな影響を与え、さらに、得られるシリカ多孔質
母材の物性及び生産性を大きく左右する。
In the production of porous silica preform, a method of exhausting high temperature exhaust gas generated by flame hydrolysis of a gaseous glass raw material has a great influence on the reproducibility and stability of the synthesis and the improvement of the synthesis yield. Furthermore, the physical properties and productivity of the obtained silica porous base material are greatly influenced.

【0005】そのため、気体のガラス原料の火炎加水分
解で生じる高温の排気ガスの排気方法に特徴を有するシ
リカ多孔質母材の製造法が種々提案されている。
Therefore, various methods have been proposed for producing a porous silica preform characterized by a method of exhausting high-temperature exhaust gas generated by flame hydrolysis of a gaseous glass raw material.

【0006】例えば、1)VAD法により光ファイバ母
材を製造するに際し、余剰反応物および廃ガスを排出さ
せるガスの流入量および温度を制御すると共に反応容器
の温度を制御しっつ、火炎処理を施して多孔質母材を形
成することにより、反応の再現性や安定性を良好にする
方法(特公昭57−35134号公報)、2)容器から
排出する排気ガスの圧力あるいは風量を制御することに
より、安定に所望なシリカ多孔質母材の径を得る方法
(特開昭58−20745号公報)、3)給気口と排気
口とを備えた容器内でシリカ多孔質母材を堆積成長させ
る方法において、調節弁及びエアフィルターを通して気
体を上記給気口より容器内に導入してその排気口より排
出し、該容器内の気体状態を測定して、当該気体流量を
一定に保つことにより、腐食性の高温ガスに由来する圧
力測定の精度不良を改善して、シリカ多孔質母材の長手
方向の均一性の向上を図る方法(特開昭60−9084
4号公報)などの方法である。
For example, 1) when manufacturing an optical fiber preform by the VAD method, controlling the inflow amount and temperature of the gas for discharging the excess reactant and waste gas, controlling the temperature of the reaction vessel, and flame treatment. To improve the reproducibility and stability of the reaction by forming a porous base material (Japanese Patent Publication No. 57-35134), 2) controlling the pressure or air volume of the exhaust gas discharged from the container. To stably obtain a desired diameter of the porous silica preform (Japanese Patent Laid-Open No. 58-20745), 3) deposit the porous silica preform in a container having an air supply port and an exhaust port. In the growing method, a gas is introduced into the container from the air supply port through the control valve and the air filter and discharged from the exhaust port, the gas state in the container is measured, and the gas flow rate is kept constant. By , To improve the poor accuracy of the pressure measurement derived from the corrosive hot gases, a method to improve the longitudinal uniformity of the silica porous preform (JP 60-9084
No. 4).

【0007】[0007]

【発明の解決しようとする課題】しかしながら、1)の
方法では、容器の温度を制御する必要があり、装置の構
造や温度制御の管理が複雑となり運転コストが高くなる
という問題点を有している。2)の方法では、排気ガス
自体の圧力あるいは風量を制御するため、微妙な圧力変
動や風量変動を制御することが難しく温度変動も大きい
ため、火炎の安定性に乏しく、その結果合成収率や生産
性が悪く、シリカ多孔質母材の側面部に亀裂や剥離が発
生し易いという欠点を有している。一旦、亀裂や剥離が
シリカ多孔質母材に生じると、これらは合成を続ける限
り連鎖的に大きくなり、剥離片がバーナー口内に落下す
る等により合成を継続することは非常に難しい。また、
亀裂や剥離が生じたシリカ多孔質母材を焼結処理して得
られる石英ガラスには、その表面や内部にヒビ割れや構
造的欠陥を有しており、石英ガラスの用途、例えば高温
耐熱材,光学材,電子部品材料等の用途に適さないか、
あるいは適する部分のみを切出して加工しても、著しく
歩留りが悪くなるという問題点を有している。3)の方
法では、二次ガス供給口近傍での圧力や風量を測定して
いるため、実際に反応している火炎近傍での圧力変動に
鋭敏に対応せず、十分な火炎の安定性が得られないこと
から、上記2)の方法と同様の問題点を有している。
However, in the method 1), it is necessary to control the temperature of the container, and there is a problem that the structure of the apparatus and the management of the temperature control are complicated and the operating cost becomes high. There is. In the method 2), since the pressure of the exhaust gas itself or the air volume is controlled, it is difficult to control the subtle pressure fluctuation and air volume fluctuation, and the temperature fluctuation is large, so that the flame stability is poor, and as a result, the synthesis yield and It has a drawback that productivity is poor and cracks and peeling easily occur on the side surface of the silica porous matrix. Once cracks and exfoliation occur in the silica porous matrix, they grow in a chain as long as the synthesis is continued, and it is very difficult to continue the synthesis because the exfoliated pieces fall into the burner mouth. Also,
Quartz glass obtained by sintering a porous silica base material with cracks and peeling has cracks and structural defects on its surface and inside. , Is it not suitable for applications such as optical materials and electronic component materials?
Alternatively, even if only an appropriate portion is cut out and processed, there is a problem that the yield is significantly deteriorated. In the method of 3), since the pressure and the air volume near the secondary gas supply port are measured, it does not respond sharply to the pressure fluctuations near the actually reacting flame, and sufficient flame stability is obtained. Since it cannot be obtained, it has the same problems as the above method 2).

【0008】本発明は以上のような問題点に鑑みてなさ
れたもので、その目的は、シリカ多孔質母材側面部に亀
裂や剥離がなく、合成の再現性や安定性及び合成収率の
向上したシリカ多孔質母材の製造法を提供するものであ
る。
The present invention has been made in view of the above problems, and an object thereof is to prevent reproducibility of synthesis, stability, and synthesis yield without causing cracks or peeling on the side surface of the porous silica matrix material. Provided is an improved method for producing a porous silica preform.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記した
課題を解決するために、排気ガス流量とバーナーに供給
する総ガス流量の関係について種々検討を重ねた結果、
排気ガス流量がバーナーに供給する総ガス流量に対し標
準状態換算で7.5倍未満の場合と、15倍を越える場
合にシリカ多孔質母材側面部での亀裂や剥離が生じるこ
とが多く、さらに、該排気流量がシリカ多孔質母材の合
成の再現性や安定性及び合成収率に大きく影響を与える
ことを見出し本発明を完成するに至ったものである。
In order to solve the above problems, the present inventors have made various studies on the relationship between the exhaust gas flow rate and the total gas flow rate supplied to the burner, and as a result,
When the exhaust gas flow rate is less than 7.5 times the standard state conversion with respect to the total gas flow rate supplied to the burner and when it exceeds 15 times, cracks and peeling often occur on the side surface of the silica porous matrix, Further, they have found that the exhaust flow rate has a great influence on the reproducibility and stability of the synthesis of the silica porous matrix and the synthesis yield, and thus completed the present invention.

【0010】すなわち、本発明は、気体のガラス原料を
酸水素炎バーナーから噴出させて容器内で火炎加水分解
し、これにより生成されるシリカ微粒子を出発部材に堆
積させ、該容器内に二次ガスを送入し、火炎加水分解の
際に発生する排気ガスを排気するシリカ多孔質母材の製
造法において、該バーナーに供給する総ガス流量の標準
状態換算で7.5〜15倍の該排気ガス流量を一定量排
気することを特徴とするシリカ多孔質母材の製造法であ
る。
That is, according to the present invention, a gaseous glass raw material is jetted from an oxyhydrogen flame burner and flame-hydrolyzed in a container, silica fine particles produced thereby are deposited on a starting member, and the secondary particles are stored in the container. In a method for producing a silica porous matrix in which a gas is fed and exhaust gas generated during flame hydrolysis is exhausted, the total gas flow rate supplied to the burner is 7.5 to 15 times the standard state. A method for producing a porous silica preform characterized by exhausting a fixed amount of exhaust gas.

【0011】以下、本発明についてさらに詳細に説明す
る。
The present invention will be described in more detail below.

【0012】本発明の方法においては、バーナーに供給
する総ガス流量の標準状態換算で7.5〜15倍の排気
ガス流量を排気するものである。バーナーに供給する総
ガス流量の標準状態換算で7.5倍未満の場合と15倍
量を越える場合にシリカ多孔質母材側面部に亀裂や剥離
が生じることが多い。その理由については定かではない
が以下のことが考えられる。
In the method of the present invention, the exhaust gas flow rate is 7.5 to 15 times as much as the standard state of the total gas flow rate supplied to the burner. When the total gas flow rate supplied to the burner is converted to less than 7.5 times and exceeds 15 times the standard state, cracks and peeling often occur on the side surface of the porous silica preform. The reason for this is not clear, but the following can be considered.

【0013】すなわち、排気ガス流量がバーナーに供給
する総ガス流量に対し比較的小さい場合は、排気ガス流
が火炎を乱す程度が小さく、火炎安定性は向上する傾向
があり、効率的なシリカ微粒子の堆積が促されて、合成
収率が向上する。しかしその反面、容器内で生成するシ
リカ微粒子のうちで、火炎内での堆積ができなかった未
付着のシリカ微粒子の容器外への排出が十分でないた
め、これがシリカ多孔質母材表面に緩く付着し、シリカ
多孔質母材側面部の亀裂や剥離の原因となる。一方、排
気ガス流量がバーナーに供給する総ガス流量に対し比較
的大きい場合は、排気ガス流が火炎を乱す程度が大き
く、火炎安定性は低下する傾向があり、効率的なシリカ
微粒子の堆積が疎外されて、合成収率が低下する。この
場合は、火炎内での堆積ができなかった未付着のシリカ
微粒子の容器外への排出は比較的良好であるため、シリ
カ多孔質母材表面に緩く付着するシリカ微粒子の層は薄
くなるが、火炎の乱れに起因するシリカ多孔質母材の瞬
間的な温度変化によって亀裂や剥離が生じるものであ
る。
That is, when the exhaust gas flow rate is relatively small with respect to the total gas flow rate supplied to the burner, the exhaust gas flow disturbs the flame to a small extent, and the flame stability tends to be improved, resulting in efficient silica fine particles. Is promoted and the synthetic yield is improved. However, on the other hand, among the silica fine particles generated in the container, the unadhered silica fine particles that could not be deposited in the flame were not sufficiently discharged to the outside of the container. However, this may cause cracking or peeling of the side surface of the porous silica base material. On the other hand, when the exhaust gas flow rate is relatively large with respect to the total gas flow rate supplied to the burner, the exhaust gas flow disturbs the flame to a large extent, and the flame stability tends to decrease, resulting in efficient deposition of silica fine particles. Being marginalized reduces the synthetic yield. In this case, since the unadhered silica fine particles that could not be deposited in the flame were relatively well discharged to the outside of the container, the layer of the silica fine particles loosely attached to the surface of the porous silica preform became thin. The cracks and peeling occur due to the instantaneous temperature change of the porous silica preform due to the disturbance of the flame.

【0014】本発明においては、火炎の安定性を得るた
めに排気ガスの排気には排気ガス流量を一定にして行う
必要がある。排気ガス流量を変動すると火炎の乱れが生
じ、シリカ微粒子の堆積効率の劣化によるシリカ多孔質
母材の合成速度の低下とシリカ微粒子の付着力の強弱に
よるシリカ多孔質母材側面部の亀裂や剥離の原因とな
る。
In the present invention, in order to obtain flame stability, exhaust gas must be exhausted at a constant exhaust gas flow rate. Fluctuations in the exhaust gas flow rate cause flame turbulence, which lowers the synthesis rate of the silica porous base material due to the deterioration of the deposition efficiency of the silica fine particles, and cracks and peeling of the side surfaces of the silica porous base material due to the strength of adhesion of the silica fine particles. Cause of.

【0015】本発明においては、バーナーに供給する総
ガス流量の標準状態換算で7.5〜15倍の排気ガス流
量を排気するものであるため、排気ガス流量の殆どは容
器内に供給される二次ガスである。
In the present invention, since the exhaust gas flow rate is 7.5 to 15 times as much as the standard state of the total gas flow rate supplied to the burner, most of the exhaust gas flow rate is supplied into the container. It is a secondary gas.

【0016】容器内に供給される二次ガス流量は容器内
の圧力が−20〜0mmAqになるように制御すること
が好ましい。容器内の圧力が−20mmAqよりも低い
場合、排気圧が高いために排気圧の小さな変動でも火炎
の乱れを引き起こし好ましくない。また、容器内の圧力
が0mmAqよりも高い場合には、二次ガス流量過剰の
ため、未付着のシリカ微粒子の効率的な容器外への排出
が難しくなり好ましくない。
The flow rate of the secondary gas supplied into the container is preferably controlled so that the pressure inside the container is -20 to 0 mmAq. When the pressure in the container is lower than -20 mmAq, the exhaust pressure is high, and even a small change in the exhaust pressure causes turbulence of the flame, which is not preferable. Further, when the pressure inside the container is higher than 0 mmAq, the secondary gas flow rate is excessive, so that it is difficult to efficiently discharge the unattached silica fine particles to the outside of the container, which is not preferable.

【0017】本発明における二次ガスとしては特に限定
するものではないが、清浄な空気及び/又は不活性ガス
を用いればシリカ多孔質母材に不純物の混入を防ぐので
好ましい。
The secondary gas in the present invention is not particularly limited, but it is preferable to use clean air and / or an inert gas because impurities are prevented from being mixed in the porous silica base material.

【0018】[0018]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明はこれらの実施例に限定されるもので
はない。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0019】実施例1 図1の装置を用い、容器4にバーナー1を所定の位置に
設定し、バーナーに供給するガス2として四塩化珪素8
Nl/min,水素284Nl/min,酸素109N
l/min,窒素62Nl/minを供給し(総ガス流
量463Nl/min)、シリカ多孔質母材3の合成を
行った。容器内に発生する排気ガスは排気口5より容器
外に排出し、排気ガス流量調整器7により流量を制御し
た。排気ガスは水,塩化水素,未反応のガラス原料,そ
の他窒素等からなる未付着シリカ微粒子を含んだ高温ガ
スであるため、排気処理装置6により除塵,除害,除熱
処理した後に送風器8により大気に放出した。この時、
排気ガス9の流量をバーナーに供給するガス2の総流量
の9.7倍である4500Nl/minで一定量排気
し、容器内圧力計11の示す容器内圧力が−20〜0m
mAqになるように二次ガス10の流量を調整して17
時間合成を行った。その結果、合成収率77.2%で側
面に亀裂,剥離のないシリカ多孔質母材が得られた。
Example 1 Using the apparatus shown in FIG. 1, a burner 1 was set in a container 4 at a predetermined position, and silicon tetrachloride 8 was used as a gas 2 to be supplied to the burner.
Nl / min, hydrogen 284Nl / min, oxygen 109N
l / min and 62 Nl / min of nitrogen were supplied (total gas flow rate of 463 Nl / min) to synthesize the porous silica matrix 3. The exhaust gas generated in the container was discharged to the outside of the container through the exhaust port 5, and the flow rate was controlled by the exhaust gas flow rate regulator 7. Since the exhaust gas is a high-temperature gas containing water, hydrogen chloride, unreacted glass raw material, and other non-adhered silica fine particles composed of nitrogen, etc., the exhaust treatment device 6 removes dust, harm, and heat-treats, and then uses the blower 8. Released into the atmosphere. At this time,
The exhaust gas 9 is exhausted at a constant rate of 4500 Nl / min, which is 9.7 times the total flow rate of the gas 2 supplied to the burner, and the in-vessel pressure indicated by the in-vessel pressure gauge 11 is -20 to 0 m.
Adjust the flow rate of the secondary gas 10 to be 17 mAq.
Time synthesis was performed. As a result, a silica porous base material having a synthetic yield of 77.2% and free from cracks or peeling on the side surface was obtained.

【0020】実施例2 図1の装置を用い、バーナーに四塩化珪素8Nl/mi
n,水素275Nl/min,酸素116Nl/mi
n,窒素62Nl/minを供給し(総ガス流量461
Nl/min)、シリカ多孔質母材の合成を行った。排
気ガス流量をバーナーに供給する総ガス流量の13.0
倍である6000Nl/minで一定量排気し、容器内
圧力が−20〜0mmAqになるように二次ガス流量を
調整して10.5時間合成を行った。その結果、合成収
率68.1%で側面に亀裂,剥離のないシリカ多孔質母
材が得られた。
Example 2 Using the apparatus shown in FIG. 1, silicon tetrachloride 8Nl / mi was used as a burner.
n, hydrogen 275 Nl / min, oxygen 116 Nl / mi
n, nitrogen 62 Nl / min is supplied (total gas flow rate 461
Nl / min), and a silica porous base material was synthesized. Exhaust gas flow rate of 13.0 of total gas flow rate supplied to burner
A certain amount of gas was exhausted at 6000 Nl / min, which was doubled, and the secondary gas flow rate was adjusted so that the pressure in the container was −20 to 0 mmAq, and synthesis was performed for 10.5 hours. As a result, a silica porous base material having a synthetic yield of 68.1% and free from cracks or peeling on the side surface was obtained.

【0021】実施例3 図1の装置を用い、バーナーに四塩化珪素10Nl/m
in,水素304Nl/min,酸素120Nl/mi
n,窒素62Nl/minを供給し(総ガス流量496
Nl/min)、シリカ多孔質母材の合成を行った。排
気ガス流量をバーナーに供給する総ガス流量の9.1倍
である4500Nl/minで一定量排気し、容器内圧
力が−20〜0mmAqになるように二次ガス流量を調
整して12時間合成を行った。その結果、合成収率6
5.3%で側面に亀裂,剥離のないシリカ多孔質母材が
得られた。
Example 3 Using the apparatus of FIG. 1, silicon tetrachloride of 10 Nl / m was used as a burner.
in, hydrogen 304 Nl / min, oxygen 120 Nl / mi
n, nitrogen 62 Nl / min is supplied (total gas flow rate 496
Nl / min), and a silica porous base material was synthesized. The exhaust gas flow rate was exhausted at a constant rate of 4500 Nl / min, which is 9.1 times the total gas flow rate supplied to the burner, and the secondary gas flow rate was adjusted so that the internal pressure of the container was -20 to 0 mmAq, and synthesis was performed for 12 hours. I went. As a result, the synthetic yield was 6
At 5.3%, a silica porous base material having no cracks or separation on the side surface was obtained.

【0022】比較例1 図1の装置を用い、バーナーに四塩化珪素8Nl/mi
n,水素284Nl/min,酸素109Nl/mi
n,窒素62Nl/minを供給し(総ガス流量463
Nl/min)、シリカ多孔質母材の合成を行った。排
気ガス流量をバーナーに供給する総ガス流量の7.2倍
である3333Nl/minで一定量排気し、容器内圧
力が−20〜0mmAqになるように二次ガス流量を調
整して合成を行ったところ、合成開始から2時間後にシ
リカ多孔質母材側面部に剥離が生じたために、合成を中
止した。
Comparative Example 1 Using the apparatus shown in FIG. 1, silicon tetrachloride of 8 Nl / mi was used as a burner.
n, hydrogen 284 Nl / min, oxygen 109 Nl / mi
n, nitrogen 62 Nl / min is supplied (total gas flow rate 463
Nl / min), and a silica porous base material was synthesized. The exhaust gas flow rate was exhausted at a fixed amount of 3333 Nl / min, which was 7.2 times the total gas flow rate supplied to the burner, and the secondary gas flow rate was adjusted so that the internal pressure of the container was -20 to 0 mmAq, and synthesis was performed. As a result, peeling occurred on the side surface of the silica porous base material 2 hours after the start of the synthesis, so the synthesis was stopped.

【0023】比較例2 図1の装置を用い、バーナーに四塩化珪素8Nl/mi
n,水素275Nl/min,酸素116Nl/mi
n,窒素62Nl/minを供給し(総ガス流量461
Nl/min)、シリカ多孔質母材の合成を行った。排
気ガス流量をバーナーに供給する総ガス流量の16.3
倍である7500Nl/minで一定量排気し、容器内
圧力が−20〜0mmAqになるように二次ガス流量を
調整して合成を行ったところ、合成を開始してから2.
5時間後にシリカ多孔質母材側面部に剥離が生じたため
に、合成を中止した。
Comparative Example 2 Using the apparatus of FIG. 1, the burner was made of silicon tetrachloride 8 Nl / mi.
n, hydrogen 275 Nl / min, oxygen 116 Nl / mi
n, nitrogen 62 Nl / min is supplied (total gas flow rate 461
Nl / min), and a silica porous base material was synthesized. Exhaust gas flow rate of 16.3 of total gas flow rate supplied to burner
When a certain amount of gas was exhausted at 7500 Nl / min, which was doubled, and the secondary gas flow rate was adjusted so that the pressure in the container became −20 to 0 mmAq, the synthesis was performed.
After 5 hours, the side surface of the silica porous matrix was peeled off, so the synthesis was stopped.

【0024】比較例3 図1の装置を用い、バーナーに四塩化珪素10Nl/m
in,水素304Nl/min,酸素120Nl/mi
n,窒素62Nl/minを供給し(総ガス流量496
Nl/min)、シリカ多孔質母材の合成を行った。排
気ガス流量をバーナーに供給する総ガス流量の6.7倍
である3З33Nl/minで一定量排気し、容器内圧
力が−20〜0mmAqになるように二次ガス流量を調
整して合成を行ったところ、合成開始から3時問後にシ
リカ多孔質母材側面部に剥離が生じたために、合成を中
止した。
Comparative Example 3 Using the apparatus of FIG. 1, a burner was made of silicon tetrachloride of 10 Nl / m.
in, hydrogen 304 Nl / min, oxygen 120 Nl / mi
n, nitrogen 62 Nl / min is supplied (total gas flow rate 496
Nl / min), and a silica porous base material was synthesized. The exhaust gas flow rate was 6.7 times the total gas flow rate supplied to the burner, and a certain amount of gas was exhausted at 33 Nl / min, and the secondary gas flow rate was adjusted so that the internal pressure of the container was -20 to 0 mmAq, and synthesis was performed. However, after 3 hours from the start of the synthesis, peeling occurred on the side surface of the porous silica base material, so the synthesis was stopped.

【0025】比較例4 図1の装置を用い、バーナーに四塩化珪素8Nl/mi
n,水素275Nl/min,酸素116Nl/mi
n,窒素62Nl/minを供給し(総ガス流量461
Nl/min)、シリカ多孔質母材の合成を行った。排
気ガス流量をバーナーに供給する総ガス流量の15.2
倍である7000Nl/minで一定量排気し、容器内
圧力が−20〜0mmAqになるように二次ガス流量を
調整して合成を行ったところ、合成を開始してから2.
5時間後にシリカ多孔質母材側面部に剥離が生じたため
に、合成を中止した。
Comparative Example 4 Using the apparatus shown in FIG. 1, silicon tetrachloride 8Nl / mi was used as a burner.
n, hydrogen 275 Nl / min, oxygen 116 Nl / mi
n, nitrogen 62 Nl / min is supplied (total gas flow rate 461
Nl / min), and a silica porous base material was synthesized. Exhaust gas flow rate of 15.2 of total gas flow rate supplied to burner
When a certain amount of gas was exhausted at 7,000 Nl / min, which was double, and the secondary gas flow rate was adjusted so that the internal pressure of the container was −20 to 0 mmAq, the synthesis was performed.
After 5 hours, the side surface of the silica porous matrix was peeled off, so the synthesis was stopped.

【0026】比較例5 図1の装置を用い、バーナーに四塩化珪素10Nl/m
in,水素304Nl/min,酸素120Nl/mi
n,窒素62Nl/minを供給し(総ガス流量496
Nl/min)、シリカ多孔質母材の合成を行った。排
気ガス流量をバーナーに供給する総ガス流量の9.1倍
である4500Nl/minで一定量排気し、容器内圧
力が−50〜−20mmAqになるように二次ガス流量
を調整して合成を行ったところ、合成を開始してから3
時間後にシリカ多孔質母材側面部に剥離が生じたため
に、合成を中止した。
Comparative Example 5 Using the apparatus shown in FIG. 1, silicon tetrachloride of 10 Nl / m was used as a burner.
in, hydrogen 304 Nl / min, oxygen 120 Nl / mi
n, nitrogen 62 Nl / min is supplied (total gas flow rate 496
Nl / min), and a silica porous base material was synthesized. The exhaust gas flow rate was exhausted at a constant amount of 4500 Nl / min, which is 9.1 times the total gas flow rate supplied to the burner, and the secondary gas flow rate was adjusted so that the internal pressure of the container was -50 to -20 mmAq. When I went, 3 after starting the synthesis
The synthesis was stopped because peeling occurred on the side surface of the porous silica preform after a lapse of time.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
によれば従来の方法における排気ガス流量や排気圧の変
動に伴う火炎の不安定性に起因するシリカ多孔質母材側
面部に生じる亀裂や剥離がなく、シリカ多孔質母材の製
造における合成の再現性や安定性及び合成収率の向上が
図れるという効果を有するものである。
As is apparent from the above description, according to the present invention, cracks are generated in the side surface of the porous silica preform due to the instability of the flame due to the variation of the exhaust gas flow rate and the exhaust pressure in the conventional method. There is no peeling or peeling, and the effect is that the reproducibility and stability of the synthesis in the production of the silica porous base material and the synthesis yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において使用した装置の1例を示す説明
図である。
FIG. 1 is an explanatory diagram showing an example of an apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1:バーナ 2:バーナーに供給するガス 3:シリカ多孔質母材 4:容器 5:排気口 6:排気ガス処理装置 7:排気ガス流量調整器 8:送風器 9:排気ガス 10:二次ガス 11:容器内圧力計 1: Burner 2: Gas supplied to burner 3: Silica porous base material 4: Container 5: Exhaust port 6: Exhaust gas treatment device 7: Exhaust gas flow controller 8: Blower 9: Exhaust gas 10: Secondary gas 11: Pressure gauge in container

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩田 英司 山口県防府市大字大崎276−376 (72)発明者 岡田 英昭 山口県徳山市大字小畑885−4 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiji Shioda 276-376 Osaki, Hofu City, Yamaguchi Prefecture (72) Inventor Hideaki Okada 885-4 Obata, Tokuyama City, Yamaguchi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気体のガラス原料を酸水素炎バーナーか
ら噴出させて容器内で火炎加水分解し、これにより生成
されるシリカ微粒子を出発部材に堆積させ、該容器内に
二次ガスを送入し、火炎加水分解の際に発生する排気ガ
スを排気するシリカ多孔質母材の製造法において、該バ
ーナーに供給する総ガス流量の標準状態換算で7.5〜
15倍の該排気ガス流量を一定量排気することを特徴と
するシリカ多孔質母材の製造法。
1. A gaseous glass raw material is jetted from an oxyhydrogen flame burner to undergo flame hydrolysis in a container, silica fine particles produced thereby are deposited on a starting member, and a secondary gas is fed into the container. However, in the method for manufacturing a silica porous base material for exhausting exhaust gas generated during flame hydrolysis, the total gas flow rate supplied to the burner is 7.5 in terms of standard state.
A method for producing a porous silica preform, comprising exhausting a fixed amount of the exhaust gas flow rate of 15 times.
【請求項2】 容器内の圧力が−20〜0mmAqにな
るように、二次ガス流量を制御することを特徴とする請
求項1に記載のシリカ多孔質母材の製造法。
2. The method for producing a silica porous base material according to claim 1, wherein the flow rate of the secondary gas is controlled so that the pressure in the container is −20 to 0 mmAq.
JP32308691A 1991-12-06 1991-12-06 Production of silica porous base material Pending JPH05155630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32308691A JPH05155630A (en) 1991-12-06 1991-12-06 Production of silica porous base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32308691A JPH05155630A (en) 1991-12-06 1991-12-06 Production of silica porous base material

Publications (1)

Publication Number Publication Date
JPH05155630A true JPH05155630A (en) 1993-06-22

Family

ID=18150923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32308691A Pending JPH05155630A (en) 1991-12-06 1991-12-06 Production of silica porous base material

Country Status (1)

Country Link
JP (1) JPH05155630A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135885A (en) * 1997-10-30 1999-05-21 Matsushita Electric Ind Co Ltd Production of semiconductor and semiconductor laser
KR20030012749A (en) * 2001-08-04 2003-02-12 화이콤(주) The manufacturing system & method for optical fiber soot
JP2015059055A (en) * 2013-09-18 2015-03-30 住友電気工業株式会社 Manufacturing method of glass fine particle deposition body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135885A (en) * 1997-10-30 1999-05-21 Matsushita Electric Ind Co Ltd Production of semiconductor and semiconductor laser
KR20030012749A (en) * 2001-08-04 2003-02-12 화이콤(주) The manufacturing system & method for optical fiber soot
JP2015059055A (en) * 2013-09-18 2015-03-30 住友電気工業株式会社 Manufacturing method of glass fine particle deposition body

Similar Documents

Publication Publication Date Title
JP2867306B2 (en) Method and apparatus for producing semiconductor grade polycrystalline silicon
JPS62171939A (en) Apparatus for production of porous optical fiber preform
JPH05155630A (en) Production of silica porous base material
JP2803510B2 (en) Method and apparatus for manufacturing glass preform for optical fiber
US4170667A (en) Process for manufacturing pure polycrystalline silicon
JP4460062B2 (en) Optical fiber preform manufacturing method
JP2005247624A (en) Method of manufacturing porous preform for optical fiber and glass preform
US3540871A (en) Method for maintaining the uniformity of vapor grown polycrystalline silicon
JP3295444B2 (en) Method for producing porous silica preform
JPH06321554A (en) Production of porous silica preform
JP3143445B2 (en) Manufacturing method of synthetic quartz
EP1853525B1 (en) Process and apparatus for producing porous quartz glass base
JP7399835B2 (en) Method for manufacturing porous glass deposit for optical fiber
JPS623035A (en) Production of porous quartz glass preform
JPS60215515A (en) Preparation of synthetic quartz mass and device therefor
JP2003034867A (en) TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR
JPS6126527A (en) Production of porous quartz glass base material
JPH0222137A (en) Production of synthetic quartz preform
JPH05319849A (en) Production of silica porous preform
JP3785120B2 (en) Method for producing silica porous matrix
JPS62162646A (en) Production of glass fine particle deposit
JPS59128226A (en) Controlling method of exhaust pressure of vad reaction vessel
JP4343146B2 (en) Method and apparatus for manufacturing quartz porous base material
JPH0742129B2 (en) Method for manufacturing base material for optical fiber
JPH05138015A (en) Nozzle for producing semiconductor grade polycrystalline silicon