JPH10214719A - Vertical magnetic recording medium and manufacture thereof - Google Patents

Vertical magnetic recording medium and manufacture thereof

Info

Publication number
JPH10214719A
JPH10214719A JP1537497A JP1537497A JPH10214719A JP H10214719 A JPH10214719 A JP H10214719A JP 1537497 A JP1537497 A JP 1537497A JP 1537497 A JP1537497 A JP 1537497A JP H10214719 A JPH10214719 A JP H10214719A
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording medium
magnetic recording
magnetic domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1537497A
Other languages
Japanese (ja)
Other versions
JP3426894B2 (en
Inventor
Keiichi Nagasaka
恵一 長坂
Mitsumasa Oshiki
満雅 押木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP01537497A priority Critical patent/JP3426894B2/en
Publication of JPH10214719A publication Critical patent/JPH10214719A/en
Application granted granted Critical
Publication of JP3426894B2 publication Critical patent/JP3426894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable improvement of productivity in making small thickness of medium total thickness caused by a film thickness reduction of a magnetic domain controlling magnetic layer by providing with a magnetic recording layer made of hard magnetic material, a back layer made of soft magnetic material and a magnetic domain layer made of manganese back anti-ferromagnetic material to make the layer into a single magnetic domain. SOLUTION: A magnetic recording medium 20 is constituted of a soft magnetic back layer 22 locating under a hard magnetic recording layer 21, a magnetic domain controlling layer 23 made of ferromagnetic material which is provided under the back layer 22 and a substrate 24 provided under the magnetic domain controlling layer 23. A magnetic recording medium 20' having another constitution is constituted of a magnetic domain controlling layer 23' locating on the soft magnetic back layer 22 and a magnetic domain controlling layer 23' which is provided between the hard magnetic recording layer 21 and the soft magnetic back layer 22. As examples of manganese system anti-ferromagnetic material which can be used for the magnetic domain controlling layers 23 and 23' can be given binary alloy system which are represented by PdMn, PtMn and NiMn, and ternary alloy systems which are represented by PdPtMn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録媒体に関
する。より詳しく言えば、本発明は、垂直磁気記録に用
いられる磁気記録層と軟磁性裏打ち層からなる二層膜媒
体に関する。
[0001] The present invention relates to a magnetic recording medium. More specifically, the present invention relates to a two-layer film medium including a magnetic recording layer used for perpendicular magnetic recording and a soft magnetic underlayer.

【0002】[0002]

【従来の技術】近年の記録の高密度化の要求を満たす技
術として、垂直磁気記録方式が注目を浴びている。ま
た、このような記録の高密度化の要求に伴い、記録媒体
そのものも、SN比向上のため、高出力化と並んで低ノ
イズ化が要求されている。
2. Description of the Related Art Perpendicular magnetic recording systems have attracted attention as a technique for meeting the recent demand for higher recording density. In addition, with the demand for such high-density recording, the recording medium itself is required to have low noise as well as high output in order to improve the SN ratio.

【0003】垂直磁気記録媒体は、硬磁性材料の磁気記
録層と、この記録層への記録に用いられる磁束を集中さ
せる役割を担う軟磁性材料の裏打ち層から構成される。
このような構造の垂直磁気記録媒体において問題となる
ノイズの一つであるスパイクノイズは、裏打ち層である
軟磁性層の磁壁によるものである。そのため、垂直磁気
記録媒体の低ノイズ化のためには軟磁性裏打ち層の磁壁
移動を制御する必要がある。
[0003] A perpendicular magnetic recording medium comprises a magnetic recording layer of a hard magnetic material and a backing layer of a soft magnetic material which plays a role of concentrating a magnetic flux used for recording on the recording layer.
Spike noise, which is one of the problems in the perpendicular magnetic recording medium having such a structure, is caused by the domain wall of the soft magnetic layer serving as the backing layer. Therefore, it is necessary to control the domain wall motion of the soft magnetic underlayer in order to reduce the noise of the perpendicular magnetic recording medium.

【0004】図1に示したように、従来の垂直磁気記録
媒体10においては、硬磁性記録層11の下に軟磁性裏
打ち層12が配置され、そしてこの軟磁性裏打ち層12
の下層としてCoCrTa/CrやCoSmなどの硬磁
性材料の層13を設けて、これにより軟磁性裏打ち層1
2を単磁区化することで磁壁の移動をなくし、スパイク
ノイズの影響を抑えていた。このように磁区制御用に硬
磁性層13を用いて軟磁性裏打ち層12の磁区制御を行
うためには、硬磁性層13の膜厚は少なくとも100n
mは必要であった。
As shown in FIG. 1, in a conventional perpendicular magnetic recording medium 10, a soft magnetic underlayer 12 is disposed under a hard magnetic recording layer 11, and the soft magnetic underlayer 12
As a lower layer, a layer 13 of a hard magnetic material such as CoCrTa / Cr or CoSm is provided.
By making 2 a single magnetic domain, the movement of the domain wall was eliminated, and the influence of spike noise was suppressed. In order to control the magnetic domain of the soft magnetic underlayer 12 using the hard magnetic layer 13 for controlling the magnetic domain, the thickness of the hard magnetic layer 13 must be at least 100 n.
m was required.

【0005】[0005]

【発明が解決しようとする課題】このような従来の磁区
制御用硬磁性層の膜厚は磁気記録媒体の磁性層全体の膜
厚の約15%を占め、そのため媒体総厚が厚くなる、ま
たスパッタリング手法での磁性層の形成にかかる時間が
長くなり、大量生産に対して不利であるといった問題を
生じていた。
The thickness of such a conventional hard magnetic layer for controlling magnetic domains occupies about 15% of the total thickness of the magnetic layer of a magnetic recording medium, so that the total thickness of the medium increases. The time required for forming the magnetic layer by the sputtering technique becomes longer, which is disadvantageous for mass production.

【0006】そこで、本発明は、軟磁性裏打ち層の効果
的な磁区制御効果が得られ、信号品質が向上(ノイズが
低減)し、そして磁区制御用磁性層膜厚の減少による媒
体総厚の薄厚化により生産性の向上を可能にする、新し
い垂直磁気記録媒体の提供を目的とする。
Accordingly, the present invention provides an effective magnetic domain control effect of the soft magnetic underlayer, improves signal quality (reduces noise), and reduces the total thickness of the medium by reducing the thickness of the magnetic domain control magnetic layer. It is an object of the present invention to provide a new perpendicular magnetic recording medium capable of improving productivity by reducing the thickness.

【0007】[0007]

【課題を解決するための手段】本発明の垂直磁気記録媒
体は、硬磁性材料の磁気記録層と、軟磁性材料の裏打ち
層と、この裏打ち層を単磁区化するための磁区制御層と
を含み、この磁区制御層の材料としマンガン系反強磁性
材料を用いたことを特徴とする。
The perpendicular magnetic recording medium of the present invention comprises a magnetic recording layer of a hard magnetic material, a backing layer of a soft magnetic material, and a magnetic domain control layer for converting the backing layer into a single magnetic domain. And a manganese-based antiferromagnetic material is used as a material of the magnetic domain control layer.

【0008】[0008]

【発明の実施の形態】本発明の垂直磁気記録媒体では、
マンガン系反強磁性材料の磁区制御層は軟磁性裏打ち層
の下層として設けてもよく、あるいはその上層として設
けてもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a perpendicular magnetic recording medium of the present invention,
The magnetic domain control layer of a manganese-based antiferromagnetic material may be provided as a lower layer of the soft magnetic underlayer, or may be provided thereon.

【0009】図2を参照して本発明の垂直磁気記録媒体
を説明すれば、図2(a)は磁区制御層を軟磁性裏打ち
層の下層として設けた態様を示しており、この態様の磁
気記録媒体20においては硬磁性記録層21の下に軟磁
性裏打ち層22が位置し、この裏打ち層22の下にマン
ガン系反強磁性材料からなる磁区制御層23が配置され
ている。この層構成は、先に説明した従来技術の垂直磁
気記録媒体の層構成における磁区制御用の硬磁性材料層
をマンガン系反強磁性材料層に換えたものに相当してい
る。磁区制御層23の下には、磁性層全体を支持する基
板24が位置している。
Referring to FIG. 2, the perpendicular magnetic recording medium of the present invention will be described. FIG. 2A shows an embodiment in which a magnetic domain control layer is provided as a lower layer of a soft magnetic backing layer. In the recording medium 20, a soft magnetic underlayer 22 is located below the hard magnetic recording layer 21, and a magnetic domain control layer 23 made of a manganese-based antiferromagnetic material is arranged below this underlayer 22. This layer configuration corresponds to the above-described layer configuration of the conventional perpendicular magnetic recording medium in which the hard magnetic material layer for controlling magnetic domains is replaced with a manganese-based antiferromagnetic material layer. Under the magnetic domain control layer 23, a substrate 24 supporting the entire magnetic layer is located.

【0010】図2(b)は、磁区制御層を軟磁性裏打ち
層の上層として設けた態様を示しており、この態様の磁
気記録媒体20’においては軟磁性裏打ち層22の上に
磁区制御層23’が位置し、すなわちこの磁区制御層2
3’はその上層である硬磁性記録層21と下層である軟
磁性裏打ち層22との間に配置されている。この態様
は、記録層21へ磁束を集中させるという裏打ち層22
の機能にとってはそれほど有利でないとは言え、裏打ち
層22を単磁区化する点ではこのようにマンガン系反強
磁性材料の磁区制御層23’を裏打ち層22の上層とし
て配置する方が有利であり、そしてそれにより磁区制御
層23’をより薄くすることが可能になる。この態様の
裏打ち層22の下には磁性層全体を支持する基板24が
存在する。
FIG. 2B shows an embodiment in which the magnetic domain control layer is provided as an upper layer of the soft magnetic underlayer. In the magnetic recording medium 20 'of this embodiment, the magnetic domain control layer is provided on the soft magnetic underlayer 22. 23 ', that is, the magnetic domain control layer 2
3 'is disposed between the upper hard magnetic recording layer 21 and the lower soft magnetic underlayer 22. In this embodiment, the backing layer 22 concentrates magnetic flux on the recording layer 21.
Although it is not so advantageous for the function of the above, it is more advantageous to arrange the magnetic domain control layer 23 'of the manganese-based antiferromagnetic material as the upper layer of the backing layer 22 in terms of forming the backing layer 22 into a single magnetic domain. , And thereby the magnetic domain control layer 23 'can be made thinner. Under the backing layer 22 in this embodiment, there is a substrate 24 that supports the entire magnetic layer.

【0011】本発明の磁気記録媒体で磁区制御層の材料
として使用することができるマンガン系反強磁性材料の
例としては、PdMn、PtMn及びNiMnに代表さ
れる二元合金系、そしてPdPtMnといったような三
元合金系を挙げることができる。
Examples of the manganese-based antiferromagnetic material that can be used as the material of the magnetic domain control layer in the magnetic recording medium of the present invention include binary alloys represented by PdMn, PtMn and NiMn, and PdPtMn. Ternary alloys.

【0012】PdPtMnの三元合金系については、4
7〜53原子%がMn、5〜23原子%がPt、そして
残部がPdという合金組成が特に有効である。このよう
な組成のPdPtMn反強磁性材料を使用すれば、およ
そ15nm以上の膜厚で、軟磁性層の磁区制御効果が十
分に得られる。これにより、従来の硬磁性材料では10
0nm程度必要であった磁区制御層の膜厚を薄厚化で
き、そのため生産性を向上させるとともに製造コストを
低減できる。
For the ternary alloy system of PdPtMn, 4
An alloy composition in which 7 to 53 atomic% is Mn, 5 to 23 atomic% is Pt, and the balance is Pd is particularly effective. If a PdPtMn antiferromagnetic material having such a composition is used, the effect of controlling the magnetic domain of the soft magnetic layer can be sufficiently obtained with a film thickness of about 15 nm or more. As a result, in the conventional hard magnetic material, 10
The thickness of the magnetic domain control layer, which was required to be about 0 nm, can be reduced, so that productivity can be improved and manufacturing costs can be reduced.

【0013】本発明の磁気記録媒体は、従来のものと同
様に適当な基板上にスパッタリング手法により各磁性層
を順次形成することにより容易に製造することができ
る。反強磁性層と接する軟磁性裏打ち層の磁化方向は、
磁場中での熱処理により制御され、一定の方向に固定さ
れる。例えば、放射状の磁場中において適当な温度に加
熱後、冷却すれば、裏打ち層にこの放射状の磁場印加方
向に対応した磁化方向を与えることができる。この熱処
理の温度は180℃以上とするのが好適である。
The magnetic recording medium of the present invention can be easily manufactured by sequentially forming each magnetic layer on a suitable substrate by a sputtering technique in the same manner as the conventional one. The magnetization direction of the soft magnetic underlayer in contact with the antiferromagnetic layer is
It is controlled by heat treatment in a magnetic field and fixed in a certain direction. For example, by heating to an appropriate temperature in a radial magnetic field and then cooling, the backing layer can be given a magnetization direction corresponding to the radial magnetic field application direction. The temperature of this heat treatment is preferably set to 180 ° C. or higher.

【0014】[0014]

【実施例】次に、実施例により本発明を更に説明する。
言うまでもなく、本発明はこれらの実施例に限定される
ものではない。
Next, the present invention will be further described with reference to examples.
Of course, the invention is not limited to these examples.

【0015】シリコン基板上に下地層としてTaを10
nm、その上に軟磁性層としてNiFeを4nm、そし
て反強磁性層としていろいろな組成のPdPtMnを2
5nm、それぞれスパッタリングにより積層して、いろ
いろな試料を作製した。これらの試料について、到達真
空度1×10-4Pa以下の真空中で2.5kOeの直流
磁場を印加しながら、180、200、230、25
0、300℃の各温度で1時間の熱処理を行った。熱処
理後の試料の磁化曲線をVSM装置を用いて室温で測定
し、一方向異方性磁界(Hua)を算出した。この一方
向異方性磁界は軟磁性層へのバイアス効果を示す指標で
ある。
On a silicon substrate, as an underlayer,
4 nm of NiFe as a soft magnetic layer, and 2 mm of PdPtMn of various compositions as an antiferromagnetic layer.
Various samples were produced by laminating each layer by sputtering to a thickness of 5 nm. For these samples, 180, 200, 230, and 25 were applied while applying a DC magnetic field of 2.5 kOe in a vacuum having an ultimate vacuum of 1 × 10 −4 Pa or less.
Heat treatment was performed at 0 and 300 ° C. for 1 hour. The magnetization curve of the heat-treated sample was measured at room temperature using a VSM apparatus, and a unidirectional anisotropic magnetic field (Hua) was calculated. This unidirectional anisotropic magnetic field is an index indicating a bias effect on the soft magnetic layer.

【0016】図3と図4に、それぞれ、一方向異方性磁
界(Hua)の反強磁性材料中のMn組成依存性及びP
t組成依存性を示す。図3は、PdとPtの組成比を
1:1とし、Mn組成を変化させた場合の反強磁性材料
のHuaを示しており、一方、図4は、Mnを50at
%に固定した場合の反強磁性材料のHuaをPt含有量
に対してプロットしたものである。図3と図4のグラフ
から、Mnが47〜53at%、Ptが5〜23at%
の組成範囲で、PdPtMn反強磁性層は熱処理により
Huaが発現することが判る。
FIGS. 3 and 4 show the dependence of the unidirectional anisotropic magnetic field (Hua) on the Mn composition in the antiferromagnetic material and the P, respectively.
It shows t composition dependency. FIG. 3 shows Hua of the antiferromagnetic material when the composition ratio of Pd and Pt is 1: 1 and the Mn composition is changed. On the other hand, FIG.
% Is plotted with respect to the Pt content of Hua of the antiferromagnetic material when fixed to%. From the graphs of FIGS. 3 and 4, Mn is 47 to 53 at% and Pt is 5 to 23 at%.
It can be seen that Hua is developed in the PdPtMn antiferromagnetic layer by the heat treatment in the composition range described above.

【0017】図5は、PdPtMn反強磁性層のHua
の熱処理温度依存性を示しており、このグラフは、組成
依存の調査で最も大きなHuaが発現したPd30Pt20
Mn 50の組成について作成したものである。180℃以
上の温度で熱処理を行うことで、100Oe以上のHu
aの発現することが判る。
FIG. 5 shows Hua of the PdPtMn antiferromagnetic layer.
Shows the temperature dependence of heat treatment.
Pd in which the largest Hua was expressed in the dependence study30Pt20
Mn 50Was created for the composition of 180 ° C or less
By performing the heat treatment at the above temperature, Hu of 100 Oe or more can be obtained.
It can be seen that a is expressed.

【0018】図6は、PdPtMn反強磁性層のHua
の膜厚依存性を示しており、このグラフもやはり、組成
依存の調査で最も大きなHuaが発現したPd30Pt20
Mn 50の組成について作成したものである。PdPtM
nの膜厚が15nmでも、熱処理後にはHuaが発現す
ることが確認できる。
FIG. 6 shows Hua of the PdPtMn antiferromagnetic layer.
This graph also shows the composition dependence.
Pd in which the largest Hua was expressed in the dependence study30Pt20
Mn 50Was created for the composition of PdPtM
Hua develops after heat treatment even when the film thickness of n is 15 nm.
Can be confirmed.

【0019】熱処理後のPdPtMnにおいてこのよう
に一方向異方性磁界が発現することにより、数Oeの印
加磁界で磁化が飽和するNiFe軟磁性層は単磁区構造
となり、磁壁が消失するものと考えられる。これらの結
果は、NiFe軟磁性層が4nmの実験試料についての
ものであるが、実際の記録媒体においても、比較的薄い
例えば数十nmのマンガン系反強磁性材料を用いること
で、同様の原理により軟磁性層を単磁区化させる効果が
期待できる。
It is considered that the NiFe soft magnetic layer, whose magnetization is saturated by an applied magnetic field of several Oe, has a single magnetic domain structure and the domain wall disappears due to the appearance of the unidirectional anisotropic magnetic field in PdPtMn after the heat treatment. Can be These results are for an experimental sample in which the NiFe soft magnetic layer is 4 nm, but the same principle can be applied to an actual recording medium by using a relatively thin manganese-based antiferromagnetic material of, for example, several tens nm. Thus, an effect of making the soft magnetic layer a single magnetic domain can be expected.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
垂直磁気記録媒体のノイズ低減のための軟磁性裏打ち層
の磁区制御を比較的薄い膜厚のマンガン系反強磁性層で
行うことができ、媒体総厚の薄厚化、製造コストの低減
や作製時間の短縮化による生産性向上に寄与するところ
が大きい。
As described above, according to the present invention,
The magnetic domain of the soft magnetic backing layer for noise reduction in perpendicular magnetic recording media can be controlled with a relatively thin manganese-based antiferromagnetic layer, reducing the total thickness of the media, reducing manufacturing costs and manufacturing time. It greatly contributes to the improvement of productivity by shortening the time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の垂直磁気記録媒体の構造説明図である。FIG. 1 is a structural explanatory view of a conventional perpendicular magnetic recording medium.

【図2】本発明の垂直磁気記録媒体の構造説明図であっ
て、(a)は反強磁性材料からなる磁区制御層を軟質磁
性裏打ち層の下に設けた態様の構造を示すものであり、
(b)は反強磁性材料からなる磁区制御層を軟質磁性裏
打ち層の上に設けた態様の構造を示すものである。
FIG. 2 is an explanatory view of a structure of a perpendicular magnetic recording medium of the present invention, wherein (a) shows a structure of an embodiment in which a magnetic domain control layer made of an antiferromagnetic material is provided below a soft magnetic underlayer. ,
(B) shows a structure in which a magnetic domain control layer made of an antiferromagnetic material is provided on a soft magnetic underlayer.

【図3】一方向異方性磁界(Hua)のPdPtMn反
強磁性材料中のMn組成依存性を示すグラフである。
FIG. 3 is a graph showing the dependence of the unidirectional anisotropic magnetic field (Hua) on the Mn composition in a PdPtMn antiferromagnetic material.

【図4】一方向異方性磁界(Hua)のPdPtMn反
強磁性材料中のPt組成依存性を示すグラフである。
FIG. 4 is a graph showing a Pt composition dependency of a unidirectional anisotropic magnetic field (Hua) in a PdPtMn antiferromagnetic material.

【図5】PdPtMn反強磁性層のHuaの熱処理温度
依存性を示すグラフである。
FIG. 5 is a graph showing the heat treatment temperature dependence of Hua in a PdPtMn antiferromagnetic layer.

【図6】PdPtMn反強磁性層のHuaの膜厚依存性
を示すグラフである。
FIG. 6 is a graph showing a Hua film thickness dependency of a PdPtMn antiferromagnetic layer.

【符号の説明】[Explanation of symbols]

10、20、20’…垂直磁気記録媒体 11、21…硬磁性記録層 12、22…軟磁性裏打ち層 13…磁区制御用硬磁性層 23、23’…磁区制御用反強磁性層 24…基板 10, 20, 20 ': perpendicular magnetic recording medium 11, 21, hard magnetic recording layer 12, 22: soft magnetic backing layer 13: hard magnetic layer for controlling magnetic domains 23, 23': antiferromagnetic layer for controlling magnetic domains 24: substrate

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 硬磁性材料の磁気記録層と、軟磁性材料
の裏打ち層と、この裏打ち層を単磁区化するための磁区
制御層とを含み、この磁区制御層の材料としマンガン系
反強磁性材料を用いたことを特徴とする垂直磁気記録媒
体。
1. A magnetic recording layer of a hard magnetic material, a backing layer of a soft magnetic material, and a magnetic domain control layer for converting the backing layer into a single magnetic domain. A perpendicular magnetic recording medium using a magnetic material.
【請求項2】 前記磁区制御層を前記軟磁性裏打ち層の
下層として設けたことを特徴とする、請求項1記載の垂
直磁気記録媒体。
2. The perpendicular magnetic recording medium according to claim 1, wherein the magnetic domain control layer is provided as a lower layer of the soft magnetic underlayer.
【請求項3】 前記磁区制御層を前記軟磁性裏打ち層の
上層として設けたことを特徴とする、請求項1記載の垂
直磁気記録媒体。
3. The perpendicular magnetic recording medium according to claim 1, wherein the magnetic domain control layer is provided as an upper layer of the soft magnetic underlayer.
【請求項4】 前記磁区制御層のマンガン系反強磁性材
料がPdMn、PtMnもしくはNiMnの二元合金、
あるいはPdPtMnの三元合金であることを特徴とす
る、請求項2又は3記載の垂直磁気記録媒体。
4. The manganese-based antiferromagnetic material of the magnetic domain control layer is a binary alloy of PdMn, PtMn or NiMn,
4. The perpendicular magnetic recording medium according to claim 2, wherein the perpendicular magnetic recording medium is a ternary alloy of PdPtMn.
【請求項5】 前記マンガン系反強磁性材料がPdPt
Mnの三元合金であり、47〜53原子%がMn、5〜
23原子%がPt、そして残部がPdという組成を有す
ることを特徴とする、請求項4記載の垂直磁気記録媒
体。
5. The method according to claim 1, wherein the manganese-based antiferromagnetic material is PdPt.
A ternary alloy of Mn, with 47 to 53 atomic% of Mn,
5. The perpendicular magnetic recording medium according to claim 4, wherein the composition has a composition of 23 atomic% of Pt and the balance of Pd.
【請求項6】 前記磁区制御層の膜厚が15nm以上で
あることを特徴とする、請求項5記載の垂直磁気記録媒
体。
6. The perpendicular magnetic recording medium according to claim 5, wherein the thickness of the magnetic domain control layer is 15 nm or more.
【請求項7】 硬磁性材料の磁気記録層と、軟磁性材料
の裏打ち層と、この裏打ち層と接触しそして当該裏打ち
層を単磁区化するためのマンガン系反強磁性材料からな
る磁区制御層とを含む垂直磁気記録媒体の製造方法であ
って、磁区制御層と接する軟磁性材料の裏打ち層の磁化
方向の固定を磁場中において180℃以上の温度で熱処
理することにより行うことを特徴とする垂直磁気記録媒
体製造方法。
7. A magnetic recording layer of a hard magnetic material, a backing layer of a soft magnetic material, and a magnetic domain control layer made of a manganese-based antiferromagnetic material for contacting the backing layer and making the backing layer a single magnetic domain. And fixing the magnetization direction of the soft magnetic material backing layer in contact with the magnetic domain control layer by performing a heat treatment at a temperature of 180 ° C. or more in a magnetic field. Perpendicular magnetic recording medium manufacturing method.
JP01537497A 1997-01-29 1997-01-29 Perpendicular magnetic recording medium and manufacturing method thereof Expired - Fee Related JP3426894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01537497A JP3426894B2 (en) 1997-01-29 1997-01-29 Perpendicular magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01537497A JP3426894B2 (en) 1997-01-29 1997-01-29 Perpendicular magnetic recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10214719A true JPH10214719A (en) 1998-08-11
JP3426894B2 JP3426894B2 (en) 2003-07-14

Family

ID=11887011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01537497A Expired - Fee Related JP3426894B2 (en) 1997-01-29 1997-01-29 Perpendicular magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3426894B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074638A (en) * 2000-08-24 2002-03-15 Fujitsu Ltd Magnetic information recording medium
JP2002367160A (en) * 2001-06-05 2002-12-20 Fuji Electric Co Ltd Manufacturing method of magnetic recording medium, and magnetic recording medium
US6667117B2 (en) 2000-04-06 2003-12-23 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and a manufacturing method for the same
US7045225B2 (en) 2002-11-26 2006-05-16 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and manufacturing method thereof
US7166375B2 (en) 2000-12-28 2007-01-23 Showa Denko K.K. Magnetic recording medium utilizing a multi-layered soft magnetic underlayer, method of producing the same and magnetic recording and reproducing device
US7465502B2 (en) 2005-02-18 2008-12-16 Seagate Technology Llc Composite magnetic recording structure having a metamagnetic layer with field induced transition to ferromagnetic state
JP4591806B2 (en) * 2001-05-14 2010-12-01 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667117B2 (en) 2000-04-06 2003-12-23 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and a manufacturing method for the same
US6764721B2 (en) 2000-04-06 2004-07-20 Fuji Electric Co., Ltd. Manufacturing method for a perpendicular magnetic recording medium
JP2002074638A (en) * 2000-08-24 2002-03-15 Fujitsu Ltd Magnetic information recording medium
US7166375B2 (en) 2000-12-28 2007-01-23 Showa Denko K.K. Magnetic recording medium utilizing a multi-layered soft magnetic underlayer, method of producing the same and magnetic recording and reproducing device
JP4591806B2 (en) * 2001-05-14 2010-12-01 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium and manufacturing method thereof
JP2002367160A (en) * 2001-06-05 2002-12-20 Fuji Electric Co Ltd Manufacturing method of magnetic recording medium, and magnetic recording medium
US7045225B2 (en) 2002-11-26 2006-05-16 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and manufacturing method thereof
US7465502B2 (en) 2005-02-18 2008-12-16 Seagate Technology Llc Composite magnetic recording structure having a metamagnetic layer with field induced transition to ferromagnetic state

Also Published As

Publication number Publication date
JP3426894B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
US20020027753A1 (en) Magneto-resistance effect type composite head and production method thereof
US6020060A (en) Magnetic recording medium, process for producing the same and magnetic disk device
JPH08255342A (en) Production of magnetic recording medium
JP3426894B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPH11328647A (en) Magnetic recording medium and manufacture of magnetic recording medium
JP2004152454A (en) Magnetic head and its manufacturing method
JP2001006158A (en) Magnetic recording medium
JPH06314617A (en) Exchange connection film and magnetoresistance effect element
JP2001256619A (en) Magnetoresistive head and magnetic recording and reproducing device using the same
US5242762A (en) Magnetic recording medium having an underlayer and a thin film magnetic layer which consists of a specified cobalt-platinum-palladium alloy
JP2000306218A (en) Magnetoresistance effect type head and magnetic recording and reproducing device
JPH10340431A (en) Magneto-resistance effect type head and magnetic recording/reproducing device
JP2002092843A (en) Magnetic recording medium
JPH08203035A (en) Magnetoresistance effect film, magnetoresistance effect element, magnetic head and magnetic recording and reproducing device
JP2833586B2 (en) Magnetoresistive element and method of manufacturing the same
JPH11284248A (en) Magnetoresistance effect element
JP2000311327A (en) Magnetic recording medium
JPH1174123A (en) Magneto-resistance effect film
JP2002183927A (en) Perpendicular magnetic recording medium
JP2853204B2 (en) Method of manufacturing magnetoresistive element
JPH10261520A (en) Magnetic recording medium and its manufacture
KR100234173B1 (en) Magnetoresistive device of thin film magnetic head
JPS61258331A (en) Magnetic recording medium
JP2001110030A (en) Magnetic recording medium
JPH06309631A (en) Magnetoresistance effect head

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees