JPH10209216A - Chip size package and its production - Google Patents

Chip size package and its production

Info

Publication number
JPH10209216A
JPH10209216A JP1084197A JP1084197A JPH10209216A JP H10209216 A JPH10209216 A JP H10209216A JP 1084197 A JP1084197 A JP 1084197A JP 1084197 A JP1084197 A JP 1084197A JP H10209216 A JPH10209216 A JP H10209216A
Authority
JP
Japan
Prior art keywords
bump
chip
carrier substrate
bumps
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1084197A
Other languages
Japanese (ja)
Other versions
JP3598189B2 (en
Inventor
Kazufumi Yamaguchi
和文 山口
Fumikazu Tateishi
文和 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1084197A priority Critical patent/JP3598189B2/en
Publication of JPH10209216A publication Critical patent/JPH10209216A/en
Application granted granted Critical
Publication of JP3598189B2 publication Critical patent/JP3598189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To joint bumps having high bump height with high accuracy. SOLUTION: In order to form bumps 2 on a semiconductor 1 and bumps 8 having shape and arrangement identical to those of the bumps 2 on a carrier board 3, recesses are made in the carrier board 3 coated with resin by stamping the bumps 2 on the semiconductor 1 and filled with a conductive bump material. This arrangement eliminates positional shift between the bump and the electrode. Alignment is controlled optimally by arranging joint detection elements previously above the semiconductor and the carrier board in the process for jointing a semiconductor wafer or a chip to the carrier board thereby measuring the resistance between a pair of electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体チップを回
路基板に高密度で実装するためのチップサイズパッケー
ジおよびその製造方法に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a chip size package for mounting a semiconductor chip on a circuit board at a high density and a method of manufacturing the same.

【0002】[0002]

【従来の技術】電子機器の小型、高機能化の流れに伴っ
て、高密度実装の要求が高まっている。昨今、表面実装
技術の飛躍的な進歩によって、ある程度こうした要求は
満たされつつある。高密度実装ための要素技術は、パッ
ケージを含めた実装すべき部品の小型化、接続端子の緻
密化、回路パターンの緻密化、低熱抵抗化等である。実
装部品としては主として、IC、LSI等の半導体部品
をはじめ抵抗、コンデンサ等の受動部品が含まれる。
2. Description of the Related Art The demand for high-density mounting has been increasing with the trend of miniaturization and higher functionality of electronic devices. These demands are being met to some extent by recent breakthroughs in surface mount technology. Elemental technologies for high-density mounting include miniaturization of components to be mounted including packages, densification of connection terminals, densification of circuit patterns, low thermal resistance, and the like. The mounted components mainly include passive components such as resistors and capacitors as well as semiconductor components such as ICs and LSIs.

【0003】特に半導体部品の進展は激しく、パッケー
ジの面から見ると、DILパッケージからQFPパッケ
ージ、BGAパッケージへと進展している。BGAパッ
ケージとは図6にその断面図を示すように、半導体チッ
プ1、半導体チップに付けた接続用バンプ2、キャリア
基板3からなる。キャリア基板3は基板側電極7、絶縁
層4,配線層5、ビアホール6、外部接続端子としての
接続用バンプ11等からなり、例えば特開昭61−20
3648、特開平6−296080に開示されている。
半導体チップ1側のキャリア基板3の表面における平面
図を図7(a)に、キャリア基板3の裏面における平面
図を図7(b)に示す。半導体チップ1とキャリア基板
3間では、図7(a)に示すように半導体チップの周辺
の4辺に沿ってパッド、バンプが高密度で配列されて、
キャリア基板3上の電極7と接続されている。外部接続
端子11はキャリア基板3の裏面に2次元、グリッド状
に配置させているために、バンプピッチを規定値とすれ
ば面積あたりのバンプ数を最も多くできる。つまり、キ
ャリア基板3は4辺配列のパッド配列を2次元グリッド
配列にする働きをしている。
[0003] In particular, the progress of semiconductor components has been remarkable, and from the viewpoint of packages, progress has been made from DIL packages to QFP packages and BGA packages. The BGA package includes a semiconductor chip 1, connection bumps 2 attached to the semiconductor chip, and a carrier substrate 3, as shown in a sectional view of FIG. The carrier substrate 3 includes a substrate-side electrode 7, an insulating layer 4, a wiring layer 5, a via hole 6, a connection bump 11 as an external connection terminal, and the like.
3648, and JP-A-6-296080.
FIG. 7A is a plan view of the front surface of the carrier substrate 3 on the semiconductor chip 1 side, and FIG. 7B is a plan view of the rear surface of the carrier substrate 3. Between the semiconductor chip 1 and the carrier substrate 3, pads and bumps are arranged at high density along four sides around the semiconductor chip as shown in FIG.
It is connected to an electrode 7 on the carrier substrate 3. Since the external connection terminals 11 are arranged two-dimensionally in a grid on the back surface of the carrier substrate 3, the number of bumps per area can be maximized by setting the bump pitch to a specified value. That is, the carrier substrate 3 has a function of converting the pad arrangement of the four-sided arrangement into a two-dimensional grid arrangement.

【0004】このような構造にすることによって、高機
能に伴って外部接続端子11の数が増大しても、パッケ
ージサイズの増大を最小限に抑えることを可能にしてい
る。BGAパッケージを用いれば、殆ど半導体チップと
同サイズのパッケージ、つまりチップサイズパッケージ
を実現できる。以降、チップサイズパッケージをCSP
と記す。また、抵抗、コンデンサ等の受動部品も高密度
表面実装の要求に応え、1mm□以下の小型チップ部品
が開発、実用化され、実装の小型化のために電極端子の
引き出し方についても検討がなされている。
[0004] With such a structure, even if the number of external connection terminals 11 increases with high performance, it is possible to minimize the increase in package size. If a BGA package is used, a package almost the same size as a semiconductor chip, that is, a chip size package can be realized. After that, the chip size package was changed to CSP
It is written. In addition, passive components such as resistors and capacitors also respond to the demand for high-density surface mounting, and small chip components of 1 mm □ or less have been developed and put into practical use, and ways to extract electrode terminals have been studied to reduce the size of mounting. ing.

【0005】CSPに於いて、半導体チップの電極(パ
ッド)上に付設したバンプとキャリア基板との接続構
造、接続方法が組立歩留まり、信頼性に大きな影響を与
える。高機能チップになるとパッド数が数百本以上にな
り、0.1mm以下のパッドピッチが必要になる。この
ような微細なパッドピッチの半導体チップをキャリア基
板に精度よく接続する方法の開発が望まれる。そのため
には、バンプ表面の平坦化、バンプピッチの均一化と高
精度位置合わせ技術が必要である。
In the CSP, the connection structure and connection method between the bumps provided on the electrodes (pads) of the semiconductor chip and the carrier substrate greatly affect the assembly yield and reliability. In the case of a high-performance chip, the number of pads becomes several hundred or more, and a pad pitch of 0.1 mm or less is required. It is desired to develop a method for accurately connecting a semiconductor chip having such a fine pad pitch to a carrier substrate. For that purpose, the bump surface is required to be flattened, the bump pitch is made uniform, and a high-precision alignment technique is required.

【0006】[0006]

【発明が解決しようとする課題】CSPは半導体チップ
と電極上に付設したバンプおよびキャリア多層基板から
なる。バンプはバリアメタルを付けたSiウエハ上に感
光性レジストをコートし、半導体チップの電極(パッ
ド)部に一致してフォトリソ法で形成した開口を通じて
ハンダまたはメッキバンプを形成する。また、キャリア
基板側の電極パターンはフォトリソ法で形成されたフォ
トレジストパターンに従ってエッチングすることによっ
て形成される。フォトリソ法では基板上へのフォトレジ
スト塗布、乾燥、露光、現像、硬化の工程が必要であ
り、パターン精度は良いが工数が多く、工程コストが高
い。フリップチップ実装でCSPを作成する場合、半導
体ウエハまたはチップを裏向けにして、バンプと基板上
の電極とを接続する必要があるが、バンプ位置、電極位
置が目視できないために、それらの位置合わせが極めて
難しい。側面に備えた位置基準に対する位置合わせが行
われているが、位置基準に対するずれは致命的な問題と
なり実装歩留まりが低下する。
The CSP comprises a semiconductor chip, bumps provided on electrodes, and a carrier multilayer substrate. The bump is formed by coating a photosensitive resist on an Si wafer to which a barrier metal is attached, and forming a solder or plated bump through an opening formed by a photolithography method so as to match an electrode (pad) portion of the semiconductor chip. Further, the electrode pattern on the carrier substrate side is formed by etching according to a photoresist pattern formed by a photolithography method. The photolithography method requires steps of coating, drying, exposing, developing, and curing a photoresist on a substrate. The pattern accuracy is good, but the number of steps is large, and the process cost is high. When creating a CSP by flip-chip mounting, it is necessary to turn the semiconductor wafer or chip upside down and connect the bumps and the electrodes on the substrate. However, since the bump positions and the electrode positions are not visible, they must be aligned. Is extremely difficult. Although alignment is performed with respect to the position reference provided on the side surface, deviation from the position reference is a fatal problem and the mounting yield is reduced.

【0007】ワイヤボンド法と類似の方法でバンプを形
成するスタッドバンプの場合には、1パッドづつバンプ
を形成するために、機器の制御精度のばらつきにより個
々にパッド位置がずれるという問題ある。この場合、半
導体ウエハまたはチップ上のバンプパターンと基板上の
電極パターンとの位置合わせが充分であっても、個々の
バンプのずれによる実装歩留まりの低下を引き起こす。
[0007] In the case of stud bumps in which bumps are formed by a method similar to the wire bonding method, there is a problem in that since the bumps are formed one pad at a time, the pad positions are individually shifted due to variations in the control accuracy of equipment. In this case, even if the alignment between the bump pattern on the semiconductor wafer or chip and the electrode pattern on the substrate is sufficient, the mounting yield is reduced due to the displacement of each bump.

【0008】本発明は、半導体ウエハまたはチップ上に
形成した第1バンプと実質上同一形状の第2バンプをキ
ャリア基板の実質上同一位置に形成できるために、バン
プ高さの高いバンプ同志を高精度で接続でき、信頼性の
高いCSPを歩留まりよく製造することができる、チッ
プサイズパッケージと製造方法を提供することを目的と
する。
According to the present invention, the second bumps having substantially the same shape as the first bumps formed on the semiconductor wafer or the chip can be formed at substantially the same position on the carrier substrate. It is an object of the present invention to provide a chip size package and a manufacturing method capable of connecting with high accuracy and manufacturing a highly reliable CSP with high yield.

【0009】[0009]

【課題を解決するための手段】本発明は以下の手順で実
行される。すなわち、所望の厚みの樹脂を塗布したキャ
リア基板上に、第1バンプを付けた半導体ウエハをスタ
ンパとしてキャリア基板上に押印または貼り付け、熱硬
化させた後、半導体ウエハまたはチップを引き離す。こ
の押印工程、剥離工程によりキャリア基板上の樹脂に半
導体ウエハ上のバンプに対応した位置に凹型のパターン
が形成される。凹型パターンはキャリア基板上の電極位
置で開口しているが、電極上にわずかに樹脂が残留して
いるために、これをプラズマアッシャーによって除去す
る。
The present invention is implemented by the following procedure. That is, the semiconductor wafer provided with the first bumps is stamped or pasted on the carrier substrate as a stamper on the carrier substrate coated with a resin having a desired thickness, thermally cured, and then the semiconductor wafer or chip is separated. By the stamping step and the peeling step, a concave pattern is formed on the resin on the carrier substrate at a position corresponding to the bump on the semiconductor wafer. The concave pattern is opened at the position of the electrode on the carrier substrate, but since a small amount of resin remains on the electrode, the resin is removed by a plasma asher.

【0010】印刷法で凹部にハンダペーストまたは導電
ペーストを流し込むことによって、半導体基板上の第1
バンプと同一形状の第2バンプをキャリア基板上に形成
する。その後、再度側面ガイドを基準にしてキャリア基
板上にバンプ付き半導体ウエハまたはチップを貼り付け
ることによってバンプと基板電極とを接続する。
[0010] By flowing a solder paste or a conductive paste into the recesses by a printing method, the first paste on the semiconductor substrate is formed.
A second bump having the same shape as the bump is formed on the carrier substrate. Thereafter, the bumps and the substrate electrodes are connected again by attaching a semiconductor wafer or chip with bumps on the carrier substrate with reference to the side guide again.

【0011】更に、キャリア基板上への半導体ウエハま
たはチップを貼り付ける工程において、相互に位置合わ
せを高精度、自動化するために、予め、半導体ウエハま
たはチップ上には一対のバンプとバンプ間配線からなる
接続検出素子を、キャリア基板上には半導体ウエハまた
はチップ上のバンプに対応する一対のバンプとキャリア
基板を貫通する配線と一対の外部電極とを備え、一対の
電極間の抵抗を測定することによって、位置合わせの最
適化制御を行う。
Further, in the step of attaching the semiconductor wafer or chip to the carrier substrate, a pair of bumps and a wiring between bumps are previously formed on the semiconductor wafer or chip in order to highly accurately and automatically perform mutual alignment. A connection detecting element comprising a pair of bumps corresponding to bumps on a semiconductor wafer or a chip on a carrier substrate, a wiring penetrating through the carrier substrate, and a pair of external electrodes, and measuring the resistance between the pair of electrodes. Controls the optimization of positioning.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の一実施の形態におけるCS
Pの断面図である。1は半導体ウエハまたはチップであ
り、各パッド上には導電材料からなる第1バンプ2を形
成している。3はキャリア基板であり、絶縁体4、配線
層5、バイアホール6、基板側電極7等からなる多層基
板であり、4辺配列のパッド配列を2次元グリッド配列
に変換することができる。8はキャリア基板3上に形成
した第2バンプであり、ポリイミドまたはエポキシ樹脂
9で囲まれている。半導体チップ1は第1バンプ2と第
2バンプ8を介してキャリア基板3と接続されている。
なお、10は封止用の樹脂であり、11はCSPとプリ
ント基板とを接続するためのグリッド状に配列されたハ
ンダバンプである。
FIG. 1 shows a CS according to an embodiment of the present invention.
It is sectional drawing of P. Reference numeral 1 denotes a semiconductor wafer or chip, and a first bump 2 made of a conductive material is formed on each pad. Reference numeral 3 denotes a carrier substrate, which is a multilayer substrate including an insulator 4, a wiring layer 5, a via hole 6, a substrate-side electrode 7, and the like, and can convert a four-sided pad array into a two-dimensional grid array. Reference numeral 8 denotes a second bump formed on the carrier substrate 3 and is surrounded by a polyimide or epoxy resin 9. The semiconductor chip 1 is connected to the carrier substrate 3 via the first bump 2 and the second bump 8.
Reference numeral 10 denotes a sealing resin, and reference numeral 11 denotes solder bumps arranged in a grid for connecting the CSP and the printed circuit board.

【0014】半導体ウエハまたはチップ1上に形成した
第1バンプと実質上同一形状の第2バンプ8をキャリア
基板3側の対応する位置に形成している。第2バンプ8
は次の製造法で示すようにスタンパ法によって形成す
る。互いに実装すべき半導体ウエハまたはチップ1上の
第1バンプ2に対応させて第2バンプ8を形成している
ために、つまり、第1バンプ2の位置がずれていても、
第2バンプ8が呼応してずれるために位置合わせ不良に
よる実装歩留まりの低下が最小限に抑えられる。
A second bump 8 having substantially the same shape as the first bump formed on the semiconductor wafer or chip 1 is formed at a corresponding position on the carrier substrate 3 side. Second bump 8
Is formed by a stamper method as shown in the following manufacturing method. Since the second bumps 8 are formed corresponding to the first bumps 2 on the semiconductor wafer or chip 1 to be mounted on each other, that is, even if the position of the first bumps 2 is shifted,
Since the second bumps 8 are correspondingly displaced, a decrease in mounting yield due to misalignment is minimized.

【0015】また、バンプが高く(>50μm)なって
も、キャリア基板3側のバンプは樹脂で包まれているた
めに、半導体ウエハまたはチップ1とキャリア基板3と
の接続工程において、バンプ材料が平面方向に流れな
い。よって、微細接続が可能になる。CSPにおいては
信頼性の面から半導体ウエハまたはチップ1の熱膨張係
数とキャリア基板3の熱膨張係数のマッチングが必要で
ある。つまり、熱膨張係数に大きなミスマッチがある場
合、熱サイクルテストに於いてバンプ部に剪断応力がか
かり電気的接続が破壊する。しかし本構造では2段バン
プになっているために、従来のCSPに比べてバンプの
高さが倍になり、そのために剪断応力が減少し、半導体
ウエハまたは半導体チップ1とキャリア基板3との間の
熱膨張係数のミスマッチによる信頼性の低下が最小限に
抑えられる。更に、接続後には、第1バンプ2、第2バ
ンプ8共に樹脂で囲まれているために、熱膨張歪みによ
るストレスが緩和される。
Even if the bumps become high (> 50 μm), the bump material on the carrier substrate 3 side is wrapped with resin, so that in the step of connecting the semiconductor wafer or chip 1 and the carrier substrate 3, the bump material is Does not flow in the plane direction. Therefore, fine connection is possible. In the CSP, matching between the thermal expansion coefficient of the semiconductor wafer or chip 1 and the thermal expansion coefficient of the carrier substrate 3 is required from the viewpoint of reliability. That is, when there is a large mismatch in the coefficient of thermal expansion, a shear stress is applied to the bump portion in the thermal cycle test, and the electrical connection is broken. However, in the present structure, the bump height is doubled as compared with the conventional CSP due to the two-stage bump, so that the shear stress is reduced, and the distance between the semiconductor wafer or the semiconductor chip 1 and the carrier substrate 3 is reduced. Is reduced to a minimum due to a mismatch in the thermal expansion coefficient. Further, after the connection, since the first bumps 2 and the second bumps 8 are both surrounded by the resin, stress due to thermal expansion distortion is reduced.

【0016】図2は本発明によるCSPの製造方法を示
す。図2(a)に示すように、キャリア基板3上に基板
側電極7を形成する。この電極7のある側をキャリア基
板3の表面とし、図2(b)に示すように、ここにポリ
イミドまたはエポキシ樹脂9の前駆体を塗布する。乾燥
後、図2(c)に示すように、この表面にバンプ付き半
導体ウエハまたはチップ1を裏向けにして押印または張
り合わせる。
FIG. 2 shows a method for manufacturing a CSP according to the present invention. As shown in FIG. 2A, a substrate-side electrode 7 is formed on the carrier substrate 3. The side where the electrode 7 is located is the surface of the carrier substrate 3, and a precursor of polyimide or epoxy resin 9 is applied here as shown in FIG. After drying, as shown in FIG. 2 (c), the semiconductor wafer or chip 1 with bumps is imprinted or bonded on this surface with its back face down.

【0017】この工程によって、半導体ウエハまたはチ
ップ1上のバンプが未硬化の樹脂中に侵入し、樹脂層を
押しのけキャリア基板3上の電極7近傍に到達する。こ
の状態で、これらの樹脂を熱硬化させる。硬化温度は約
150〜300Cである。硬化後、第1バンプ付き半導
体ウエハまたはチップ1をキャリア基板3から離す。こ
の工程によって、図2(d)に示すようにキャリア基板
3上に、半導体ウエハまたはチップ1上の第1バンプ2
と対をなす窪み9aが形成される。
In this step, the bumps on the semiconductor wafer or chip 1 penetrate into the uncured resin, push the resin layer, and reach the vicinity of the electrodes 7 on the carrier substrate 3. In this state, these resins are thermally cured. The curing temperature is about 150-300C. After curing, the first bumped semiconductor wafer or chip 1 is separated from the carrier substrate 3. By this step, the first bump 2 on the semiconductor wafer or chip 1 is formed on the carrier substrate 3 as shown in FIG.
And a pair of recesses 9a are formed.

【0018】その後、図示しないが、電極7上、つまり
窪み9aの底にわずかに残った樹脂層をプラズマアッシ
ャーで除去する。図2(e)に示すように、キャリア基
板上の窪みに印刷法によって導電ペーストまたはハンダ
ペーストを埋める。導電ペーストの場合、その表面にメ
ッキまたは蒸着等の方法でAu膜を付ければ表面が更に
安定化できる。この工程により、キャリア基板3側に半
導体ウエハまたはチップ1上の第1バンプ2と対をなす
同一形状の第2バンプ8が同一位置に形成される。
Thereafter, although not shown, the resin layer slightly remaining on the electrode 7, that is, on the bottom of the depression 9a is removed by a plasma asher. As shown in FIG. 2E, a conductive paste or a solder paste is buried in the depression on the carrier substrate by a printing method. In the case of a conductive paste, the surface can be further stabilized by applying an Au film to the surface by plating or vapor deposition. By this step, the second bumps 8 of the same shape that form a pair with the first bumps 2 on the semiconductor wafer or chip 1 are formed at the same positions on the carrier substrate 3 side.

【0019】次に、図2(f)に示すように、半導体ウ
エハはたはチップ1を裏向けにして、周辺部の基準辺と
キャリア基板3の周辺部の基準とを位置合わせしながら
キャリア基板3表面に張り合わせる。そして、側面から
封止用樹脂10を注入し、これを硬化することによっ
て、CSPは完成する。
Next, as shown in FIG. 2 (f), the semiconductor wafer or the chip 1 is turned upside down, and the carrier is aligned while the reference side of the peripheral portion and the reference of the peripheral portion of the carrier substrate 3 are aligned. It is attached to the surface of the substrate 3. The CSP is completed by injecting the sealing resin 10 from the side surface and curing the resin.

【0020】本製造方法ではバンプ形状の形成にフォト
リソ法に比べて簡便な押印法つまりスタンパ法を用いて
いるために、ポリイミドまたはエポキシ樹脂9に感光性
を付与する必要がない。よって、これらの樹脂材料の選
択範囲が広く、より吸湿特性などの点で、より信頼性の
高い樹脂を選定することができる。
In the present manufacturing method, since the stamping method, that is, the stamping method, which is simpler than the photolithographic method, is used for forming the bump shape, there is no need to impart photosensitivity to the polyimide or epoxy resin 9. Therefore, the selection range of these resin materials is wide, and it is possible to select a resin with higher reliability in terms of moisture absorption characteristics and the like.

【0021】図3は半導体ウエハまたはチップ1上のバ
ンプとキャリア基板3上の2段のバンプからなる3段バ
ンプの構造を持ったCSPを示す。本実施の形態は図1
に比べて第3バンプ12が追加された構造になってい
る。一般に、半導体ウエハまたはチップの熱膨張係数と
キャリア基板の熱膨張係数に差があり、熱サイクルテス
トに於いて、バンプ部に剪断応力がかかり接続不良にな
ることを既に説明したが、本実施の形態のように3段バ
ンプにしてバンプを更に高くすると、剪断応力は更に緩
和され信頼性が向上する。本実施の形態のCSPは図2
の製造方法に於ける図2(b)から図2(e)の工程を
追加することによって、第3バンプ12を形成すること
ができる。
FIG. 3 shows a CSP having a three-stage bump structure composed of a bump on a semiconductor wafer or chip 1 and a two-stage bump on a carrier substrate 3. This embodiment is shown in FIG.
The structure has a third bump 12 added thereto. In general, it has already been described that there is a difference between the thermal expansion coefficient of a semiconductor wafer or a chip and the thermal expansion coefficient of a carrier substrate, and in a thermal cycle test, a shear stress is applied to a bump portion to cause a connection failure. When the bumps are made higher by forming three bumps as in the embodiment, the shear stress is further reduced, and the reliability is improved. The CSP of the present embodiment is shown in FIG.
The third bump 12 can be formed by adding the steps of FIGS. 2B to 2E in the manufacturing method of FIG.

【0022】次に、半導体ウエハまたはチップ1とキャ
リア基板3との接続時の高精度位置合わせについて述べ
る。この位置合わせ構造および方法は特に高い位置合わ
せ精度が要求されるウエハレベルでのCSPの作成に効
果がある。
Next, a description will be given of a high-precision alignment when the semiconductor wafer or chip 1 and the carrier substrate 3 are connected. This alignment structure and method are particularly effective for producing a CSP at the wafer level where high alignment accuracy is required.

【0023】本発明の位置合わせは図4に示すように、
予め、半導体ウエハまたはチップ1およびキャリア基板
3の四角に接続検出用の結線を施したバンプ付きの接続
検出素子13a、13b、13c、13dを形成してお
く。接続検出素子13aの断面を図5に示す。図5
(a)は半導体ウエハまたはチップ1側に形成した接続
検出素子13aの断面図であり、配線14を施した一対
の第1バンプ2からなる。図5(b)はキャリア基板3
側に形成した接続検出素子13aの断面図であり、キャ
リア基板3に設けた一対の第2バンプ8および各第2バ
ンプ8に接続したスルーホール15またはバイアホール
6で結線した一対の外部検出端子16からなる。
The alignment of the present invention is as shown in FIG.
Connection detection elements 13a, 13b, 13c, and 13d with bumps in which connections for connection detection are formed in the squares of the semiconductor wafer or chip 1 and the carrier substrate 3 are formed in advance. FIG. 5 shows a cross section of the connection detecting element 13a. FIG.
3A is a cross-sectional view of the connection detecting element 13a formed on the semiconductor wafer or chip 1 side, and is composed of a pair of first bumps 2 provided with wirings 14. FIG. FIG. 5B shows the carrier substrate 3.
FIG. 10 is a cross-sectional view of the connection detection element 13a formed on the side of the semiconductor device, showing a pair of second bumps 8 provided on the carrier substrate 3 and a pair of external detection terminals connected by through holes 15 or via holes 6 connected to the respective second bumps 8; It consists of 16.

【0024】これらの検出素子を用いた位置合わせ方法
について、その動作を説明する。実装時の位置ずれによ
り、互いに対応する第1バンプ2と第2バンプ8が接続
されていなかった場合、外部検出端子間16は非導通、
あるいは電気抵抗が非常に大きくなる。位置ずれが小さ
い場合、外部検出端子16間の電気抵抗は小さく、構造
上から見積もられる値になる。4角の外部検出端子の抵
抗値がすべて小さくなった場合が最適の位置合わ状態、
つまり、最適の接続状態である。4角が最適の位置合わ
せ状態であれば、当然それより内部にある動作に必要な
第1バンプ、第2バンプ間の接続は最適状態にある。4
角に接続検出素子を配置した場合、平面的な位置合わせ
に限らず、高さ方向の傾きの精度も検出することができ
る。例えば、接続検出素子13a、13b、13c、1
3dのそれぞれの抵抗値をR(a)、R(b)、R
(c)、R(d)とし、R(a)>R(b)≒R(d)
>R(c)の場合、検出素子13a側でウエハまたはチ
ップ1とキャリア基板3間のギャップが大であることを
示す。図4には4角に接続検出素子13を配置した場合
について説明をしたが、スペースが無ければ両端に一対
の接続検出素子13を配置しても平面的な位置合わせの
検出は可能である。反対に、更に詳しい位置情報を得る
ためには、もっと多数の対をなす接続検出素子13を配
置することも可能である。
The operation of the positioning method using these detecting elements will be described. If the first bump 2 and the second bump 8 corresponding to each other are not connected due to a displacement during mounting, the external detection terminals 16 are non-conductive,
Alternatively, the electric resistance becomes very large. When the displacement is small, the electric resistance between the external detection terminals 16 is small, which is a value estimated from the structure. The optimum alignment state is when the resistance values of the four external detection terminals are all small.
That is, the connection state is optimal. If the four corners are in the optimum alignment state, the connection between the first bump and the second bump necessary for the operation inside the four corners is in the optimum state. 4
When the connection detecting elements are arranged at the corners, not only the planar alignment but also the accuracy of the inclination in the height direction can be detected. For example, the connection detecting elements 13a, 13b, 13c, 1
3d are represented by R (a), R (b), R
(C), R (d), and R (a)> R (b) ≒ R (d)
> R (c) indicates that the gap between the wafer or chip 1 and the carrier substrate 3 is large on the detection element 13a side. FIG. 4 illustrates the case where the connection detection elements 13 are arranged at four corners. However, if there is no space, even if a pair of connection detection elements 13 are arranged at both ends, planar alignment can be detected. Conversely, in order to obtain more detailed position information, it is possible to arrange a larger number of pairs of connection detecting elements 13.

【0025】以上の説明では製版用のポリイミドまたは
エポキシ樹脂を使った場合について説明したが、半導体
デバイスが熱破壊する温度400C以下で硬化するこ
と、吸湿性が小さいことおよび離型特性の良好な樹脂で
あればその他の樹脂も使用可能である。
In the above description, the case where a polyimide or epoxy resin for plate making is used has been described. However, the resin must be cured at a temperature of 400 ° C. or less at which the semiconductor device thermally breaks down, have low hygroscopicity, and have good mold release characteristics. If so, other resins can be used.

【0026】[0026]

【発明の効果】以上説明したところから明らかなよう
に、本発明によれば、半導体ウエハまたはチップ上に形
成した第1バンプと実質上同一形状の第2バンプをキャ
リア基板の実質上同一位置に形成できるために、またバ
ンプ高さの高いバンプ同志を高精度で接続できるため
に、信頼性の高いCSPを歩留まりよく製造することが
できる。
As is apparent from the above description, according to the present invention, the second bump having substantially the same shape as the first bump formed on the semiconductor wafer or the chip is provided at the substantially same position on the carrier substrate. Because it can be formed, and since bumps having a high bump height can be connected with high accuracy, a highly reliable CSP can be manufactured with high yield.

【0027】また、フォトリソ工程が不要であるため
に、プロセスが簡便で、工程コストも安い。
Further, since no photolithography step is required, the process is simple and the process cost is low.

【0028】半導体ウエハまたはチップおよびキャリア
基板の2角または4角に位置検出素子を設けることによ
り、位置合わせ状態を電気信号として検出できるため
に、位置合わせに関して高精度の制御が可能になる。
By providing the position detecting elements at two or four corners of the semiconductor wafer or chip and the carrier substrate, the alignment state can be detected as an electric signal, so that high-precision control can be performed on the alignment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態によるCSPの構造を示
す断面図
FIG. 1 is a sectional view showing a structure of a CSP according to an embodiment of the present invention;

【図2】本発明によるCSPの製造方法FIG. 2 shows a method for manufacturing a CSP according to the present invention.

【図3】本発明による3段バンプの構造を持ったCSP
の断面図
FIG. 3 shows a CSP having a three-stage bump structure according to the present invention.
Cross section of

【図4】本発明によるCSPの実装に用いる接続検出素
子の平面図
FIG. 4 is a plan view of a connection detection element used for mounting a CSP according to the present invention.

【図5】本発明によるCSPの実装に用いる接続検出素
子の断面図
FIG. 5 is a cross-sectional view of a connection detection element used for mounting a CSP according to the present invention.

【図6】従来例におけるCSPの断面図FIG. 6 is a sectional view of a CSP in a conventional example.

【図7】キャリア基板の表面および裏面における平面図FIG. 7 is a plan view of the front and back surfaces of the carrier substrate.

【符号の説明】[Explanation of symbols]

1・・・・半導体ウエハまたはチップ 2・・・・パッド上に形成した第1バンプ 3・・・・キャリア基板 7・・・・基板側電極 8・・・・キャリア基板上に形成した第2バンプ 9・・・・ポリイミドまたはエポキシ樹脂 10・・・封止用樹脂 11・・・CSPとプリント基板とを接続するハンダバ
ンプ 13a、13b、13c、13d・・・接続検出素子 14・・・半導体ウエハまたはチップ上に設けた配線層 15・・・スルーホール導電層 16・・・外部検出端子
1 ··· semiconductor wafer or chip 2 ··· first bump formed on pad 3 ··· carrier substrate 7 ··· substrate-side electrode 8 ··· second formed on carrier substrate Bump 9 ... Polyimide or epoxy resin 10 ... Resin for sealing 11 ... Solder bump 13a, 13b, 13c, 13d ... Connection detecting element 14 ... Semiconductor wafer Alternatively, a wiring layer provided on the chip 15: a through-hole conductive layer 16: an external detection terminal

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】半導体ウエハまたはチップ上に形成した第
1バンプと実質上同一形状、同一配置の第2バンプがキ
ャリア基板上に形成されていることを特徴とするチップ
サイズパッケージ。
1. A chip size package, wherein a second bump having substantially the same shape and arrangement as a first bump formed on a semiconductor wafer or chip is formed on a carrier substrate.
【請求項2】実質上同一形状、同一配置の第2バンプ
が、前記第1バンプを付けた半導体ウエハや半導体チッ
プを、樹脂を塗布したキャリア基板に押印後、剥離する
ことによって形成された凹部に形成されたものであるこ
とを特徴とする請求項1のチップサイズパッケージ。
2. A recess formed by peeling a semiconductor wafer or a semiconductor chip provided with the first bump on a carrier substrate coated with a resin and then peeling the second bump having substantially the same shape and the same arrangement. 2. The chip size package according to claim 1, wherein the chip size package is formed on a chip.
【請求項3】第1バンプと実質上同一形状の第3バンプ
が、前記キャリア基板上に既に形成した前記第2バンプ
上の実質上対応する位置に形成されていることを特徴と
する請求項1のチップサイズパッケージ。
3. A third bump having substantially the same shape as the first bump is formed at a substantially corresponding position on the second bump already formed on the carrier substrate. 1 chip size package.
【請求項4】第1バンプ付きの半導体ウエハまたはチッ
プをスタンパとして、樹脂の前駆体を塗布したキャリア
基板に押し当て熱硬化することによって、第1バンプに
対応したキャリア基板の位置に凹部を形成し、そこにハ
ンダまたは導電ペーストを埋め込むことによって、基板
側の第2バンプを形成した後、スタンパとして使った前
記第1バンプ付き半導体ウエハやチップを前記キャリア
基板に接続することを特徴とするチップサイズパッケー
ジの製造方法。
4. A concave portion is formed at a position on the carrier substrate corresponding to the first bump by pressing the semiconductor wafer or chip having the first bump on a carrier substrate coated with a resin precursor by using the stamper as a stamper and thermally curing the resin. And forming a second bump on the substrate side by embedding solder or conductive paste therein, and connecting the semiconductor wafer or chip with the first bump used as a stamper to the carrier substrate. Manufacturing method of size package.
【請求項5】ポリイミド樹脂またはエポキシ樹脂の前駆
体を塗布することを特徴とする請求項4のチップサイズ
パッケージの製造方法。
5. The method according to claim 4, wherein a precursor of a polyimide resin or an epoxy resin is applied.
【請求項6】キャリア基板として全層バイアホールを形
成した多層キャリア基板を用いることを特長とする請求
項4のチップサイズパッケージの製造方法。
6. A method for manufacturing a chip-size package according to claim 4, wherein a multilayer carrier substrate having all-layer via holes is used as the carrier substrate.
【請求項7】半導体ウエハまたはチップ上に設けた配線
を施した一対のバンプと、キャリア基板上に設けた一対
のバンプまたは電極、および一対の外部電極を有する接
続検出素子を備えたことを特徴とするチップサイズパッ
ケージ。
7. A connection detecting element having a pair of wiring-provided bumps provided on a semiconductor wafer or chip, a pair of bumps or electrodes provided on a carrier substrate, and a pair of external electrodes. And chip size package.
【請求項8】半導体ウエハまたはチップの4角または2
角に請求項7の接続検出素子を配置し、各接続検出素子
の外部電極端子間の抵抗値を検出し、各外部電極端子間
の抵抗値を最小化するように制御することによるチップ
サイズパッケージの実装位置合わせの方法。
8. A corner or two corners of a semiconductor wafer or chip.
A chip size package by arranging the connection detection elements according to claim 7 at corners, detecting a resistance value between external electrode terminals of each connection detection element, and performing control so as to minimize a resistance value between each external electrode terminal. How to align the mounting position.
JP1084197A 1997-01-24 1997-01-24 Chip size package, its manufacturing method, and its mounting alignment method Expired - Fee Related JP3598189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1084197A JP3598189B2 (en) 1997-01-24 1997-01-24 Chip size package, its manufacturing method, and its mounting alignment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084197A JP3598189B2 (en) 1997-01-24 1997-01-24 Chip size package, its manufacturing method, and its mounting alignment method

Publications (2)

Publication Number Publication Date
JPH10209216A true JPH10209216A (en) 1998-08-07
JP3598189B2 JP3598189B2 (en) 2004-12-08

Family

ID=11761588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084197A Expired - Fee Related JP3598189B2 (en) 1997-01-24 1997-01-24 Chip size package, its manufacturing method, and its mounting alignment method

Country Status (1)

Country Link
JP (1) JP3598189B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047167A1 (en) * 2002-11-21 2004-06-03 Nec Corporation Semiconductor device, wiring substrate, and method for manufacturing wiring substrate
JP2010010586A (en) * 2008-06-30 2010-01-14 Dainippon Printing Co Ltd Flip-connection package and method of manufacturing flip-connection package

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047167A1 (en) * 2002-11-21 2004-06-03 Nec Corporation Semiconductor device, wiring substrate, and method for manufacturing wiring substrate
CN100377337C (en) * 2002-11-21 2008-03-26 日本电气株式会社 Semiconductor device, wiring substrate, and method for manufacturing wiring substrate
US7728439B2 (en) 2002-11-21 2010-06-01 Nec Corporation Semiconductor device, wiring substrate, and method for manufacturing wiring substrate
JP2010010586A (en) * 2008-06-30 2010-01-14 Dainippon Printing Co Ltd Flip-connection package and method of manufacturing flip-connection package

Also Published As

Publication number Publication date
JP3598189B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
US7161242B2 (en) Semiconductor device, semiconductor device substrate, and manufacturing method thereof that can increase reliability in mounting a semiconductor element
JP2996510B2 (en) Electronic circuit board
US6780675B2 (en) Flip-chip technique for chip assembly
US8004089B2 (en) Semiconductor device having wiring line and manufacturing method thereof
US6016013A (en) Semiconductor device mounting structure
US5636104A (en) Printed circuit board having solder ball mounting groove pads and a ball grid array package using such a board
US4466181A (en) Method for mounting conjoined devices
KR19980063339A (en) Manufacturing Method of Semiconductor Device and Semiconductor Device
JPH1116933A (en) Manufacture of circuit board having metallic bump and semiconductor chip package using this circuit board
US7972903B2 (en) Semiconductor device having wiring line and manufacturing method thereof
US6256207B1 (en) Chip-sized semiconductor device and process for making same
US6507118B1 (en) Multi-metal layer circuit
US20080251944A1 (en) Semiconductor device
US20060097400A1 (en) Substrate via pad structure providing reliable connectivity in array package devices
US10276523B1 (en) Semiconductor logic device and system and method of embedded packaging of same
JP3598189B2 (en) Chip size package, its manufacturing method, and its mounting alignment method
JPH0425038A (en) Semiconductor device and manufacture of the same and electronic circuit utilizing the semiconductor device
JPH11121524A (en) Semiconductor device
US20020093089A1 (en) Compliant mounting interface for electronic devices
KR20030085449A (en) An improved flip chip package
JP2002231765A (en) Semiconductor device
US6960518B1 (en) Buildup substrate pad pre-solder bump manufacturing
JP2001007491A (en) Electronic circuit device and manufacture of it
US6831361B2 (en) Flip chip technique for chip assembly
JP3115802B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

A131 Notification of reasons for refusal

Effective date: 20031224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

A131 Notification of reasons for refusal

Effective date: 20040615

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040805

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Effective date: 20040913

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080917

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080917

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090917

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100917

LAPS Cancellation because of no payment of annual fees