JPH10202171A - Method for fine shaping and its device - Google Patents

Method for fine shaping and its device

Info

Publication number
JPH10202171A
JPH10202171A JP2716297A JP2716297A JPH10202171A JP H10202171 A JPH10202171 A JP H10202171A JP 2716297 A JP2716297 A JP 2716297A JP 2716297 A JP2716297 A JP 2716297A JP H10202171 A JPH10202171 A JP H10202171A
Authority
JP
Japan
Prior art keywords
mask
substrate
nozzle
opening
ultrafine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2716297A
Other languages
Japanese (ja)
Other versions
JP3015869B2 (en
Inventor
Jun Aketo
純 明渡
Ryutaro Maeda
龍太郎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9027162A priority Critical patent/JP3015869B2/en
Publication of JPH10202171A publication Critical patent/JPH10202171A/en
Application granted granted Critical
Publication of JP3015869B2 publication Critical patent/JP3015869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to form a fine and highly precise shaped product by ejecting an ultrafine particle. SOLUTION: When forming a finely shaped product by ejecting an ultrafine particle material to the surface of a substrate 4 through a nozzle 6 and stacking the ultrafine particle material, a mask 5 with an opening which constitutes a specified opening pattern is arranged between the nozzle 6 and the substrate 4. Further, the ultrafine particle material is ejected to the substrate 4 through the opening of the mask 5 while the nozzle 6 is relatively displaced with the mask 5 in such a state that the distance between the mask 5 and the growth face of the shaped product or the surface of the substrate 4 is maintained constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、超微粒子材料をノズ
ルを通して基板上に噴射し堆積させて微細形状の造形を
行う微細造形技術に関するものである。このような微細
造形技術はマイクロマシンの製作、微細加工技術及び半
導体部品の実装等に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microfabrication technique for forming a fine shape by spraying and depositing ultrafine particles onto a substrate through a nozzle. Such microfabrication technology is used for manufacturing micromachines, microfabrication technology, mounting semiconductor components, and the like.

【0002】[0002]

【従来の技術】金属、セラミックス等の超微粒子を微小
なノズルから基板等の上に噴射、堆積させて、微細な機
構部品を形成する技術が開発されている。超微粒子を微
小なノズルから噴出させて造形物を形成するには、その
噴射を平面の基板上にする場合と穴や溝を予め形成した
型に対してする場合とがある。
2. Description of the Related Art A technique has been developed for forming ultra-fine mechanical parts by spraying and depositing ultrafine particles of metal, ceramics, etc. from a fine nozzle onto a substrate or the like. In order to eject a superfine particle from a minute nozzle to form a molded article, there are a case where the ejection is performed on a flat substrate and a case where a hole or a groove is formed in a mold in advance.

【0003】[0003]

【発明が解決しようとする課題】しかし、図11に示す
ように、ノズル内における超微粒子流は、中心部が周辺
部に比べて流速が速い。このため超微粒子を平面の基板
上に噴射した場合は図12に示すように、中心部が周辺
部より流速が早い為に堆積速度が大きく造形物の成長表
面は平面でなくなる。また、図13に示すように、型の
穴の中に噴射した場合も、型の穴の中に入った超微粒子
流は型の穴の底部から堆積するが、穴の中で行場のなく
なった搬送ガス流は型の穴内で乱流と成り、堆積する超
微粒子流に乱れを生じ、結局図14に示すように造形物
の断面形状は肩のだれた形状と成り、均質高密度な堆積
物である造形物が得られにくい。このようなことから造
形物の微細、高精度な形成が可能な超微粒子堆積技術の
開発が望まれている。この発明は上記のごとき事情に鑑
みてなされたものであって、超微粒子の噴射による造形
物の微細、高精度な形成が可能な超微粒子堆積技術を提
供することを目的とするものである。
However, as shown in FIG. 11, the flow rate of the ultrafine particles in the nozzle is higher at the central portion than at the peripheral portion. For this reason, when the ultrafine particles are sprayed onto a flat substrate, as shown in FIG. 12, the flow rate is faster at the center than at the periphery, so that the deposition rate is large and the growth surface of the modeled object is not flat. Also, as shown in FIG. 13, when injected into the hole of the mold, the ultra-fine particle flow entering the hole of the mold is deposited from the bottom of the hole of the mold. The transported gas flow becomes turbulent in the hole of the mold, causing turbulence in the flow of ultra-fine particles to be deposited. As a result, as shown in FIG. It is difficult to obtain a shaped object. For this reason, development of an ultrafine particle deposition technique capable of forming a minute and highly accurate formed object is desired. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ultra-fine particle deposition technique capable of forming a fine and high-precision object by jetting ultra-fine particles.

【0004】[0004]

【課題を解決するための手段】この目的に対応して、こ
の発明の微細造形方法は、超微粒子材料をノズルを通し
て基板上に噴射し堆積させて微細形状の造形物を形成す
る場合に、前記ノズルと基板との間に所定の開口パター
ンを構成する開口を有するマスクを配置し、前記マスク
と前記基板上の造形物の成長表面または前記基板の表面
との距離を一定に保った状態で前記ノズルを前記マスク
に対して相対変位させつつ前記超微粒子材料を前記マス
クの開口を通して前記基板に噴射させることを特徴とし
ている。
In response to this object, a micro-fabrication method according to the present invention is characterized in that the ultra-fine particle material is sprayed through a nozzle onto a substrate and deposited to form a micro-shaped molded article. A mask having an opening constituting a predetermined opening pattern is arranged between a nozzle and a substrate, and the distance between the mask and a growth surface of a modeled object on the substrate or the surface of the substrate is kept constant. The method is characterized in that the ultrafine particle material is ejected onto the substrate through an opening of the mask while a nozzle is relatively displaced with respect to the mask.

【0005】またこの発明の微細造形装置は、基板と前
記基板と対向して位置するマスクと前記マスクの開口パ
ターンを構成する開口を通して超微粒子材料を前記基板
上に噴射するノズルとを配設したチャンバーを備え、か
つ前記基板を駆動する基板駆動装置と前記マスクを駆動
するマスク駆動装置と前記ノズルを駆動するノズルる駆
動装置とを有することを特徴としている。
[0005] Further, the microfabrication apparatus of the present invention is provided with a substrate, a mask positioned opposite to the substrate, and a nozzle for jetting ultrafine material onto the substrate through an opening constituting an opening pattern of the mask. It is characterized by having a substrate driving device having a chamber and driving the substrate, a mask driving device for driving the mask, and a nozzle driving device for driving the nozzle.

【0006】[0006]

【発明の実施の形態】以下、この発明の詳細を一実施の
形態を示す図面について説明する。まずこの発明の微細
造形方法で使用する接合微細造形装置について説明す
る。図1及び図2において、1は微細造形装置である。
微細造形装置1はチャンバー2を有する。チャンバー2
の内部は真空装置3によって減圧される。チャンバー2
内には基板4とマスク5とノズル6が配設されている。
基板4は形成された造形物を支持する為のものであり、
マスクは5は基板に対向して位置していてノズル6から
基板4に達する超微粒子流の一部分を遮断するする為の
もので、超微粒子流を通す開口パターンを構成する開口
7を備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings showing an embodiment. First, a description will be given of a bonded microfabrication apparatus used in the microfabrication method of the present invention. 1 and 2, reference numeral 1 denotes a fine modeling device.
The microfabrication apparatus 1 has a chamber 2. Chamber 2
Is depressurized by the vacuum device 3. Chamber 2
A substrate 4, a mask 5, and a nozzle 6 are provided therein.
The substrate 4 is for supporting the formed object,
The mask 5 is located opposite to the substrate and is for blocking a part of the ultra-fine particle flow reaching the substrate 4 from the nozzle 6 and has an opening 7 forming an opening pattern for passing the ultra-fine particle flow. .

【0007】ノズル6はマスク5の開口7を通して超微
粒子材料を基板4上に噴射するものである。基板4、マ
スク5はそれぞれ,基板駆動装置8、マスク駆動装置1
1に取り付けられ、それらの駆動装置に駆動されてチャ
ンバー2内で変位可能である。ノズル6もチャンバー2
内で変位可能に構成してもよい。ノズル6は一体もしく
はは複数体あって、材料である超粒子材料の種類に応じ
て動作する。この実施例ではノズル6は二体(6a、6
b)あって、ノズル6aは高周波誘導加熱装置を備えて
おり、またノズル6bはエアロゾル加熱装置を備えてい
る。またレーザー加工装置12を備えている。レーザー
加工装置12はチャンバー2内でマスク5に開口7を形
成するためのものである。これらの系は操作システム1
3によって制御される。また搬送ガスとしてはヘリウム
を使用し、ガス供給系14が接続している。
[0007] The nozzle 6 sprays an ultra-fine particle material onto the substrate 4 through the opening 7 of the mask 5. The substrate 4 and the mask 5 are a substrate driving device 8 and a mask driving device 1, respectively.
1 and are displaceable in the chamber 2 by being driven by their driving devices. Nozzle 6 is also chamber 2
It may be configured to be displaceable within. The nozzle 6 has one or a plurality of nozzles, and operates according to the type of the super-particle material. In this embodiment, two nozzles 6 (6a, 6
b) The nozzle 6a is provided with a high-frequency induction heating device, and the nozzle 6b is provided with an aerosol heating device. Further, a laser processing device 12 is provided. The laser processing device 12 is for forming the opening 7 in the mask 5 in the chamber 2. These systems are operating system 1
3 is controlled. Helium is used as a carrier gas, and a gas supply system 14 is connected.

【0008】次に本発明の微細造形方法について説明す
る。図3に示すように、超微粒子材料15をノズル6を
通して基板4上に噴射し堆積させて微細形状の造形物1
6の成長表面を形成する場合に、ノズル6と基板4との
間に所定の開口パターンを構成する開口7を有するマス
ク5を配置し、マスク5と基板4上の造形物16との距
離Dを一定に保った状態でノズル6をマスク5に対して
相対変位させつつ超微粒子材料15をマスク5の開口7
を通して基板4に噴射させる。マスク5と基板4上の造
形物16の成長表面との距離Dは超微粒子材料15の種
類やノズル6内の超微粒子流の温度その他の条件で選択
するが、700μm以上であることが望ましい。
Next, the microfabrication method of the present invention will be described. As shown in FIG. 3, the ultrafine particle material 15 is sprayed onto the substrate 4 through the nozzle 6 and deposited thereon to form the finely shaped object 1.
6, a mask 5 having an opening 7 forming a predetermined opening pattern is arranged between the nozzle 6 and the substrate 4, and a distance D between the mask 5 and a model 16 on the substrate 4 is formed. With the nozzle 6 being relatively displaced with respect to the mask 5 while maintaining a constant
Through the substrate 4. The distance D between the mask 5 and the growth surface of the modeled object 16 on the substrate 4 is selected depending on the type of the ultrafine particle material 15, the temperature of the ultrafine particle flow in the nozzle 6, and other conditions, and is preferably 700 μm or more.

【0009】このような構成において、超微粒子材料1
5をノズル6を通して基板4上に噴射し堆積させて微細
形状の造形物16を形成する。この場合、マスク5を通
過する超微粒子流17は、図4及び図5に示すように、
ノズル6をマスク5に対して走査することで、平均化さ
れる。その結果、超微粒子流17中における超微粒子の
密度分布がなくなり、堆積物成長面は平坦になり、均一
かつ緻密な造形物16である膜が得られる。また、図6
及び図7に示すように、超微粒子流はその運動エネルギ
ーが大きいためマスクの開口7を通過後も直進するが、
基板4に堆積しない搬送ガス流は、マスク5と基板4上
造形物の成長表面の間の距離Dを適当に選ぶと、マスク
5を通過後、周りに拡散し、超微粒子流17に乱れを生
じない。
In such a configuration, the ultrafine particle material 1
5 is sprayed onto the substrate 4 through the nozzle 6 and deposited to form a fine-shaped object 16. In this case, the ultrafine particle flow 17 passing through the mask 5 is, as shown in FIGS.
By scanning the nozzle 6 with respect to the mask 5, averaging is performed. As a result, the density distribution of the ultra-fine particles in the ultra-fine particle flow 17 disappears, the deposit growth surface becomes flat, and a film that is a uniform and dense shaped object 16 is obtained. FIG.
As shown in FIG. 7 and FIG. 7, the ultrafine particle flow has a large kinetic energy, so that the flow proceeds straight after passing through the opening 7 of the mask.
When the distance D between the mask 5 and the growth surface of the object on the substrate 4 is appropriately selected, the carrier gas flow not deposited on the substrate 4 diffuses around after passing through the mask 5 and disturbs the ultrafine particle flow 17. Does not occur.

【0010】この状態で基板4上に所望のはパターンの
造形物を形成するには基板4に対してマスク5またはノ
ズル6を相対変位させる。つまりノズル6内の超微粒子
の密度分布を平均化するためのノズル6とマスク5の相
対変位に重畳して、造形物のパターンを形成するための
マスク5またはノズル6と基板4との相対変位が加えら
れる。マスク5の開口7のパターンは基板4に対する造
形物のパターンの描き方によって選択され、例えば図3
に示す例はマスク5に形成すべき造形物のパターンと同
じパターンの開口7が形成されて、ノズル6を基板4に
対して走査して、パターン通りの造形物を形成する例で
ある。この他マスク5の開口7の形状によっては、図8
に示すように、マスク5と基板4を変位させてもよい
し、ノズル6とマスク5を変位させてもよいし、またノ
ズル6と基板4を変位させてもよい。
In this state, to form a desired pattern on the substrate 4, the mask 5 or the nozzle 6 is displaced relative to the substrate 4. That is, the relative displacement between the mask 5 or the nozzle 6 and the substrate 4 for forming a pattern of a modeled object is superimposed on the relative displacement between the nozzle 6 and the mask 5 for averaging the density distribution of the ultrafine particles in the nozzle 6. Is added. The pattern of the opening 7 of the mask 5 is selected depending on how the pattern of the modeled object is drawn on the substrate 4.
In the example shown in FIG. 5, an opening 7 having the same pattern as the pattern of the object to be formed on the mask 5 is formed, and the nozzle 6 is scanned with respect to the substrate 4 to form the object according to the pattern. In addition, depending on the shape of the opening 7 of the mask 5, FIG.
As shown in (5), the mask 5 and the substrate 4 may be displaced, the nozzle 6 and the mask 5 may be displaced, or the nozzle 6 and the substrate 4 may be displaced.

【0011】マスク5の開口7は予め別工程で形成する
こともできるが、図1及び図2に示すように円板状のマ
スク材に必要の都度レーザ加工装置で開口7を形成して
回転させてノズル6と基板4の間に供給してもよいし、
図9に示すようにマスク材ローラから繰り出したマスク
材に必要の都度レーザ加工装置で開口7を形成して、さ
らに繰り出してノズル6と基板4の間に供給してもよ
い。
The opening 7 of the mask 5 can be formed in a separate step in advance. However, as shown in FIGS. May be supplied between the nozzle 6 and the substrate 4,
As shown in FIG. 9, an opening 7 may be formed in the mask material fed from the mask material roller by a laser processing device whenever necessary, and may be further fed and supplied between the nozzle 6 and the substrate 4.

【0012】さらに図10に示すように、マスク5に複
数の開口パターンを形成しておけば、全パターンに対す
るノズル6の走査によって、同時に同じパターンを複数
描くことが出来る。
Further, as shown in FIG. 10, if a plurality of opening patterns are formed in the mask 5, a plurality of the same patterns can be simultaneously drawn by scanning the nozzles 6 for all the patterns.

【0013】[0013]

【実験例】表1に示す微細造形装置を使用してAg超微
粒子及PZT超微粒子について実験を行った。実験条件
を表1に示す。Ag超微粒子については造形物の高さが
40μm、粗さRa=0.3μm、造形物の側面の傾斜
角75°の造形物が得られた。またPZT超微粒子につ
いては、粗さRa=0.8μm、造形物の側面の傾斜角
27°の造形物が得られた。なった。
[Experimental Examples] Experiments were conducted on Ag ultrafine particles and PZT ultrafine particles using the microfabrication apparatus shown in Table 1. Table 1 shows the experimental conditions. With respect to the ultrafine Ag particles, a shaped object having a height of the shaped object of 40 μm, a roughness Ra of 0.3 μm, and an inclination angle of 75 ° on the side surface of the shaped object was obtained. As for the PZT ultrafine particles, a shaped article having a roughness Ra of 0.8 μm and an inclination angle of 27 ° on the side surface of the shaped article was obtained. became.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】以上の説明から明らかな通り、この発明
によれば造形物の微細、高精度な形成が可能な超微粒子
堆積技術を得ることが出来る。
As is apparent from the above description, according to the present invention, it is possible to obtain an ultra-fine particle deposition technique capable of forming minute and high-precision shaped objects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】微細造形装置を示す構成説明図FIG. 1 is a configuration explanatory view showing a microfabrication apparatus.

【図2】微細造形装置のノズルとマスクと基板の関係を
示す構成説明図
FIG. 2 is a configuration explanatory view showing a relationship between a nozzle, a mask, and a substrate of the microfabrication apparatus.

【図3】微細造形方法の原理を示す説明図FIG. 3 is an explanatory view showing the principle of the microfabrication method.

【図4】超微粒子流の挙動を示す説明図FIG. 4 is an explanatory diagram showing the behavior of a flow of ultrafine particles.

【図5】堆積物の成長過程を示す説明図FIG. 5 is an explanatory view showing a growth process of a deposit.

【図6】超微粒子流と搬送ガスの挙動を示す説明図FIG. 6 is an explanatory diagram showing the behavior of the ultrafine particle flow and the carrier gas.

【図7】堆積物を示す断面説明図FIG. 7 is an explanatory sectional view showing a deposit;

【図8】微細造形装置の他の実施例のノズルとマスクと
基板の関係を示す構成説明図
FIG. 8 is a configuration explanatory view showing a relationship between a nozzle, a mask, and a substrate according to another embodiment of the microfabrication apparatus.

【図9】マスクの作成方法を示す構成説明図FIG. 9 is a configuration explanatory view showing a method for creating a mask.

【図10】微細造形方法の他の例を示す説明図FIG. 10 is an explanatory view showing another example of the microfabrication method.

【図11】超微粒子流の挙動を示す説明図FIG. 11 is an explanatory diagram showing the behavior of an ultrafine particle flow.

【図12】堆積物の成長過程を示す説明図FIG. 12 is an explanatory view showing a growth process of a deposit.

【図13】超微粒子流と搬送ガスの挙動を示す説明図FIG. 13 is an explanatory diagram showing the behavior of the ultrafine particle flow and the carrier gas.

【図14】堆積物を示す断面説明図FIG. 14 is an explanatory sectional view showing a deposit;

【符号の説明】[Explanation of symbols]

1 微細造形装置 2 チャンバー 3 真空装置 4 基板 5 マスク 6 ノズル 7 開口 8 基板駆動装置 11 マスク駆動装置 12 レーザー加工装置 13 操作システム 14 ガス供給系 15 超微粒子材料 16 造形物 17 超微粒子材料流 DESCRIPTION OF SYMBOLS 1 Micro modeling apparatus 2 Chamber 3 Vacuum apparatus 4 Substrate 5 Mask 6 Nozzle 7 Opening 8 Substrate driving apparatus 11 Mask driving apparatus 12 Laser processing apparatus 13 Operation system 14 Gas supply system 15 Ultrafine particle material 16 Modeling object 17 Ultrafine material flow

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】超微粒子材料をノズルを通して基板上に噴
射し堆積させて微細形状の造形物を形成する場合に、前
記ノズルと基板との間に所定の開口パターンを構成する
開口を有するマスクを配置し、前記マスクと前記基板上
の造形物の成長表面または前記基板の表面との距離を一
定に保った状態で前記ノズルを前記マスクに対して相対
変位させつつ前記超微粒子材料を前記マスクの開口を通
して前記基板に噴射させることを特徴とする微細造形方
法。
1. A mask having an opening forming a predetermined opening pattern between the nozzle and the substrate, when the ultrafine particle material is sprayed and deposited on the substrate through a nozzle to form a fine shaped object. The ultrafine particle material is placed on the mask while displacing the nozzle relative to the mask while maintaining a constant distance between the mask and the growth surface of the molded object on the substrate or the surface of the substrate. A microfabrication method, characterized by spraying the substrate through the opening.
【請求項2】前記マスクを変位させつつ前記超微粒子材
料を前記マスクの開口を通して前記基板に噴射すること
を特徴とする請求項1記載の微細造形方法
2. The microfabrication method according to claim 1, wherein the ultrafine particle material is jetted onto the substrate through an opening of the mask while displacing the mask.
【請求項3】前記マスクと前記基板を変位させつつ前記
超微粒子材料を前記マスクの開口を通して前記基板に噴
射することを特徴とする請求項1記載の微細造形方法
3. The microfabrication method according to claim 1, wherein said ultrafine particle material is sprayed onto said substrate through an opening of said mask while displacing said mask and said substrate.
【請求項4】前記ノズルと前記マスクを変位させつつ前
記超微粒子材料を前記マスクの開口を通して前記基板に
噴射することを特徴とする請求項1記載の微細造形方法
4. The microfabrication method according to claim 1, wherein said ultrafine particle material is jetted onto said substrate through an opening of said mask while displacing said nozzle and said mask.
【請求項5】前記ノズルと前記基板を変位させつつ前記
超微粒子材料を前記マスクの開口を通して前記基板に噴
射することを特徴とする請求項1記載の微細造形方法
5. The microfabrication method according to claim 1, wherein the ultrafine particle material is jetted onto the substrate through an opening of the mask while displacing the nozzle and the substrate.
【請求項6】前記マスクは複数の前記開口パターンを有
することを特徴とする請求項1記載の微細造形方法
6. The method according to claim 1, wherein said mask has a plurality of said opening patterns.
【請求項7】前記マスクと前記基板との距離は700μ
m以上であることを特徴とする請求項1記載の微細造形
方法
7. The distance between said mask and said substrate is 700 μm.
2. The microfabrication method according to claim 1, wherein the length is at least m.
【請求項8】基板と前記基板と対向して位置するマスク
と前記マスクの開口パターンを構成する開口を通して超
微粒子材料を前記基板上に噴射するノズルとを配設した
チャンバーを備え、かつ前記基板を駆動する基板駆動装
置と前記マスクを駆動するマスク駆動装置と前記ノズル
を駆動するノズルる駆動装置とを有することを特徴とす
る微細造形装置
8. A substrate, comprising: a chamber provided with a substrate, a mask positioned opposite to the substrate, and a nozzle for jetting ultrafine particle material onto the substrate through an opening forming an opening pattern of the mask; And a mask driving device for driving the mask and a nozzle driving device for driving the nozzles.
【請求項9】前記チャンバー内において前記マスクの前
記開口を形成するレーザ加工装置を備えることを特徴と
する請求項7記載の微細造形装置
9. The microfabrication apparatus according to claim 7, further comprising a laser processing apparatus for forming said opening of said mask in said chamber.
JP9027162A 1997-01-27 1997-01-27 Fine molding method and apparatus Expired - Lifetime JP3015869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9027162A JP3015869B2 (en) 1997-01-27 1997-01-27 Fine molding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9027162A JP3015869B2 (en) 1997-01-27 1997-01-27 Fine molding method and apparatus

Publications (2)

Publication Number Publication Date
JPH10202171A true JPH10202171A (en) 1998-08-04
JP3015869B2 JP3015869B2 (en) 2000-03-06

Family

ID=12213371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9027162A Expired - Lifetime JP3015869B2 (en) 1997-01-27 1997-01-27 Fine molding method and apparatus

Country Status (1)

Country Link
JP (1) JP3015869B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320879A (en) * 2001-04-27 2002-11-05 National Institute Of Advanced Industrial & Technology Nozzle for forming composite structure, composite structure forming device and composite structure forming method
JP2006023128A (en) * 2004-07-06 2006-01-26 Denso Corp Zirconia structure and its manufacturing method
JP2006032485A (en) * 2004-07-13 2006-02-02 Brother Ind Ltd Method of forming piezoelectric film
JP2009108369A (en) * 2007-10-30 2009-05-21 Fujifilm Corp Process and apparatus for producing ceramic material
US7553376B2 (en) 1999-10-12 2009-06-30 Toto Ltd. Apparatus for forming composite structures
US8114473B2 (en) 2007-04-27 2012-02-14 Toto Ltd. Composite structure and production method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553376B2 (en) 1999-10-12 2009-06-30 Toto Ltd. Apparatus for forming composite structures
US7736731B2 (en) 1999-10-12 2010-06-15 National Institute Of Advanced Industrial Science And Technology Composite structure and method for forming the same
US7993701B2 (en) 1999-10-12 2011-08-09 Toto Ltd. Composite structure forming method
JP2002320879A (en) * 2001-04-27 2002-11-05 National Institute Of Advanced Industrial & Technology Nozzle for forming composite structure, composite structure forming device and composite structure forming method
JP2006023128A (en) * 2004-07-06 2006-01-26 Denso Corp Zirconia structure and its manufacturing method
JP4548020B2 (en) * 2004-07-06 2010-09-22 株式会社デンソー Zirconia structure and manufacturing method thereof
JP2006032485A (en) * 2004-07-13 2006-02-02 Brother Ind Ltd Method of forming piezoelectric film
US7713588B2 (en) 2004-07-13 2010-05-11 Brother Kogyo Kabushiki Kaisha Method and device of forming a piezo-electric film
US8114473B2 (en) 2007-04-27 2012-02-14 Toto Ltd. Composite structure and production method thereof
JP2009108369A (en) * 2007-10-30 2009-05-21 Fujifilm Corp Process and apparatus for producing ceramic material

Also Published As

Publication number Publication date
JP3015869B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
US5940674A (en) Three-dimensional product manufacture using masks
US7700016B2 (en) Method and apparatus for fabricating three dimensional models
US6149072A (en) Droplet selection systems and methods for freeform fabrication of three-dimensional objects
JP5009356B2 (en) Finishing device for substrate surface by jet
EP0225080A1 (en) Atomisation of metals
JPH0881774A (en) Method for producing three-dimensional stereoscopic shape
JP2003507198A (en) Method of forming a pattern of recesses or holes in a plate
JP2019529189A (en) Device and method for manipulating particles
JP3015869B2 (en) Fine molding method and apparatus
CN104640680A (en) Transfer decorating machine and method for transferring an image
JP2004122341A (en) Filming method
JP2006198577A (en) Classification method of finely divided particle and film forming method
JP4044515B2 (en) Aerosol deposition system
JP2548292Y2 (en) Equipment for manufacturing uniform droplet groups
KR100964060B1 (en) Apparatus and method of depositing powder through transient supply of conveying gas
JP2003080130A (en) Coating apparatus and coating method
JP3082777B2 (en) Object surface processing method
JP2780037B2 (en) Liquid or melt application method
JP2005324135A (en) Apparatus and method for film formation
Akedo Study on rapid micro-structuring using Jet molding–Present status and structuring properties toward HARMST
JPH0655446A (en) Curved surface machining method for workpiece and its device
JP2008069399A (en) Film deposition method
JP3986224B2 (en) Ultrafine particle spray deposition mask
JP2005046696A (en) Nozzle for making composite structure
JPH09262545A (en) Method and apparatus for removing foreign matter

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term