JP2005046696A - Nozzle for making composite structure - Google Patents

Nozzle for making composite structure Download PDF

Info

Publication number
JP2005046696A
JP2005046696A JP2003204851A JP2003204851A JP2005046696A JP 2005046696 A JP2005046696 A JP 2005046696A JP 2003204851 A JP2003204851 A JP 2003204851A JP 2003204851 A JP2003204851 A JP 2003204851A JP 2005046696 A JP2005046696 A JP 2005046696A
Authority
JP
Japan
Prior art keywords
nozzle
composite structure
aerosol
coating
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003204851A
Other languages
Japanese (ja)
Inventor
Junji Hiraoka
純治 平岡
Tatsuro Yokoyama
達郎 横山
Naoya Terada
直哉 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2003204851A priority Critical patent/JP2005046696A/en
Publication of JP2005046696A publication Critical patent/JP2005046696A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nozzle for making a composite structure, in which the shape of an aerosol passage space and/or a jet is less liable to be changed by corpuscles even if the nozzle is used consecutively. <P>SOLUTION: The nozzle 10 is formed by joining together two plate-like members 11, 12, and a heating means 13 is attached on the outer surface of each member 11, 12. A slot 16, whose one end forms a lead-in opening 14 and the other end forms a lead-out opening 15, is formed on the surface of the member 11, while no slot is formed on the member 12. The surface of the slot 16 of the member 11, the surface of the member 12, which forms the aerosol passage space jointly with the slot 16, and the front end face 19 of the nozzle 10, on which the lead-out opening 15 is formed, are coated with a coating. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の技術分野】
本発明は、微粒子を含むエアロゾルを基板に吹き付け、構造物を基板上に形成させることによって基板と構造物からなる複合構造物を作製するときに使用する複合物作製用ノズルに関する。
【0002】
【従来の技術】
ノズルから微粒子を基板に吹き付けて構造物を基板上に形成させる際に、ノズルと基板との間に、所定の開口パターンを有するマスクを設け、このマスクの開口を通して吹き付けることで、所定形状の構造物を得る方法が提案されている。(特許文献1)
【0003】
また、エアロゾルデポジション法に使用するノズルとして、断面矩形状のエアロゾル通過空間を形成し、速度の遅い流束成分の微粒子を基板まで到達させないようにした提案がなされている。(特許文献2)
【0004】
【特許文献】
特許文献1:特開平10−202171号公報
特許文献2:特開2002−320879号公報
【0005】
【発明が解決しようとする課題】
エアロゾルデポジション法によって形成される構造物の形状はノズルの先端に形成された噴出口の形状に依存する部分が大きい。しかしながら、ノズルから噴出される微粒子の速度は150m/s〜450m/sと高速で、しかも微粒子の硬度は高い。
一方、ノズルをステンレス等の金属製とした場合には、上記した高速の微粒子によってエアロゾル通過空間を形成するノズル内面または噴出口周辺が摩耗したり、逆に微粒子が付着して流路形状や噴出口形状が変化し、これが原因で目的とする形状の構造物を作製できなくなる。
【0006】
本発明は、連続して使用しても微粒子によってエアロゾル通過空間や噴出口の形状が変化しにくい複合構造物作製用ノズルを提供することを目的とする。
【0007】
【課題を解決しようとする手段】
上記課題を解決するため、本発明は、脆性材料の微粒子をガス中に分散させたエアロゾルを基材に衝突させ、この衝突の衝撃によって前記微粒子を破砕・変形させて接合させ、前記基材表面に前記微粒子の構成材料からなる構造物を形成する複合構造物作製装置に用いられるノズルにおいて、このノズルのエアロゾル通過空間を形成する内面または噴出口が形成された先端面に、酸化物系セラミックス、窒化物系セラミックス、炭化物系セラミックス、金属またはフッ素系樹脂からなるコーティングを施した。
また、本発明は上記のノズルを備えた複合構造物作製装置も包含する。
【0008】
エアロゾル通過空間や噴出口の形状変化は、摩耗による場合と粉体の付着による場合がある。またコーティングの材質によってそれぞれ発揮する特徴が異なり、粉体の付着防止に有効なコーティングと摩耗防止に有効なコーティングが存在する知見を得た。
そこで、コーティングを施すエリアを粉体が付着しやすいエリアと摩耗しやすいエリアに分け、それぞれのエリア毎に異なるコーティングを施すことが好ましい。
【0009】
また、エアロゾルディポジション法はエアロゾルを加熱した状態で行うと、ノズル内面の粉体付着防止および構造物形成速度の向上効果があるため、ノズルの外面に加熱手段を取り付けておくことが有効である。本発明者らの知見ではノズルを70℃〜120℃程度に加熱することがもっとも効果的であることをつかんでいる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を、図面により詳細に説明する。図1は、本発明に係るノズルを組み込んだ複合構造物作製装置の装置図であり、複合構造物作製装置はエアロゾルデポジションを行う構造物形成室1と、この構造物形成室1にエアロゾルを供給するエアロゾル発生装置2からなり、構造物形成室1およびエアロゾル発生装置2はポンプ3,4によって高真空に維持され、また構造物形成室1内にはコンピュータにより上下(Z)、前後左右(XY)に制動できる基板ホルダ5と、この基板ホルダ5に取付けられる基材6が配置されている。
【0011】
また構造物形成室1内には本発明にかかるノズル10が配置され、このノズル10へのエアロゾルの濃度を測定するセンサ7からの信号を外部のフィードバック制御回路8へ送って処理し、エアロゾル発生装置2や搬送用の窒素ガスを充填したガスボンベ9のそれぞれの制御部へ配線を介して信号が送られ、エアロゾル濃度を制御するとともに基材に衝突するエアロゾルの量を任意量供給するように制御を行う。
【0012】
図2は、前記ノズル10の全体図、図3はノズルを構成する一方の板状部材の斜視図であり、ノズル10は金属或いはセラミックからなる2枚の板状部材11、12を貼り合わせてなり、それぞれの板状部材11、12の外側面にはノズルを加熱することが可能な加熱機構13を取り付けてある。加熱手段としてはシーズヒータ、ラバーヒータ、赤外線ヒータなどが利用可能である。
【0013】
前記一方の板状部材11の表面には一端が導入開口14で他端が導出開口15となる溝16が形成され、他方の板状部材12には溝を形成していない。尚、両方の板状部材に溝を形成してもよい。また、板状部材11の一端には差込み穴17が形成され、この差込み穴17にエアロゾル発生装置からの配管に繋がるジョイント18が挿着される。
【0014】
前記溝16は導入開口14から導出開口15に至る範囲において、下流側に向かって(Z方向に沿って)、短辺方向(X方向)の寸法が徐々に小さくなり、長辺方向(Y方向)の寸法が徐々に長くなるようにし、且つ、導入開口14に近い部分のエアロゾル通過空間の断面積を、これよりも下流側のエアロゾル通過空間の断面積よりも大きく設定している。
【0015】
また、板状部材11の溝16の表面およびこの溝16とともにエアロゾル通過空間を画成する板状部材12の表面、更には導出開口15が形成されたノズル10の前端面19にはコーティングが施されている。
コーティングの材質としては、TiC、TiN、TiO、Al、DLC(ダイヤモンド)、Si、SiC、PTFE(フッ素系樹脂)、酸化物、窒化物、炭化物、ハードクロムなどが好適であり、コーティング方法としては、エアロゾルデポジション、スパッタリング、電子ビーム蒸着、熱CVD、プラズマCVD、プラズマ溶射、溶射、メッキ、パウダーコーティング、ディップコーティング、スプレー吹付けコーティングなどの手段が好適である。
【0016】
図4乃至図8はノズル形状の別タイプを示し、図4に示すタイプでは、溝16の上流側部分16aについては短辺方向(X方向)及び長辺方向(Y方向)の寸法を変化させずに略等しくし、下流側部分16bについては、下流側に向かって(Z方向に沿って)、短辺方向(X方向)の寸法が徐々に小さくなり、長辺方向(Y方向)の寸法が徐々に大きくなるようにし、しかも、下流側部分16bではエアロゾル通過空間の断面積が下流側に向かって徐々に狭くなるようにしている。
【0017】
そして、上流側部分16aと下流側部分16bでは、施すコーティングの種類を異ならせている。即ち、上流側部分16aでは微粒子の付着を防止するためフッ素系樹脂などの付着防止に有効なコーティングを施し、下流側部分16bでは摩耗を防止するため、TiC等の高硬度のコーティングを施している。
【0018】
コーティング面の表面粗さが悪いと十分な粉体付着防止効果が得られない。場合によっては粉体が付着し易くなることもある。よってコーティング後表面平滑化処理を行なうことで表面を仕上げることがより望ましい。コーティング材料が酸化物、炭化物や窒化物の場合はラップ加工などで表面を鏡面に仕上げることが望ましい。また、フッ素系の樹脂の場合はなるべく平滑な表面になるようにコーティング面をあらかじめ平滑に仕上げ、均一に表面粗さの良いコーティング方法を施すことが望ましい。
【0019】
2種類以上のコーティングをするにあたり、コーティングの境目に段差やつなぎ目、隙間などができるとノズル内の粉体の流れに乱れが生じ、粉体付着や乱流を発生させる原因となりかねないため、コーティング面のつなぎ目には隙間や段差が生じないようにすることが好ましい。仮に段差や盛り上がりが生じてしまった場合は、ラップ加工などの後加工にて除去し、面一に仕上げることがより望ましい。
【0020】
図5に示すタイプでは、溝16の上流側部分16aについては、下流側に向かって、短辺方向の寸法が徐々に小さくなり長辺方向の寸法が徐々に大きくなるようにし、しかも、上流側部分16aではエアロゾル通過空間の断面積が下流側に向かって徐々に狭くなるようにし、下流側部分16bについては短辺方向及び長辺方向の寸法を変化させずに略等しくしている。
施すコーティングの種類を上流側部分16aと下流側部分16bで異ならせているのは前記実施例と同様である。
【0021】
図6に示すタイプでは、溝16の上流側部分16a及び下流側部分16bについては短辺方向及び長辺方向の寸法を変化させずに略等しくし、中間部分16cについては、下流側に向かって短辺方向の寸法が徐々に小さくなり長辺方向の寸法が徐々に大きくなるようにし、しかもエアロゾル通過空間の断面積が下流側に向かって徐々に狭くなるようにしている。
この実施例でも、上流側部分16a、下流側部分16b及び中間部分16cでコーティングの種類を異ならせている。
【0022】
図7に示すタイプでは、導出開口15の面積が他のノズルの3倍であるため、同濃度のエアロゾルを供給するとエアロゾル濃度は他のノズルと比べて1/3の濃度となり、単位面積あたりの成膜速度が低下する。そこで、導入開口14にエアロゾル濃度が3倍のエアロゾルを導入する。
この実施例にあっても、上流側部分16aと下流側部分16bでコーティングの種類を異ならせている。
【0023】
図8に示すタイプでは、1つの矩形導出開口15に対し、矩形の導入開口14を3つ設けている。この実施例にあっても、上流側部分16aと下流側部分16bでコーティングの種類を異ならせている。
【0024】
【発明の効果】
以上に説明したように、本発明によれば、エアロゾルデポジション法に用いるノズルの摩耗しやすい箇所や微粒子が付着しやすい箇所にコーティングを施したので、連続して使用しても微粒子によってエアロゾル通過空間や噴出口の形状が変化しにくい複合構造物作製用ノズルが得られる。
【図面の簡単な説明】
【図1】本発明に係るノズルを用いた複合構造物作製装置の全体構成図
【図2】本発明のノズル(タイプ1)の全体構成を示した図。
【図3】本発明のノズル(タイプ1)を構成する一方の板状部材の斜視図、
【図4】本発明のノズル(タイプ2)を構成する一方の板状部材の斜視図。
【図5】本発明のノズル(タイプ3)を構成する一方の板状部材の斜視図。
【図6】本発明のノズル(タイプ4)を構成する一方の板状部材の斜視図。
【図7】本発明のノズル(タイプ5)を構成する一方の板状部材の斜視図。
【図8】本発明のノズル(タイプ6)を構成する一方の板状部材の斜視図。
【符号の説明】
1…構造物形成室、2…エアロゾル発生装置、3,4…ポンプ、5…基板ホルダ、6…基材、7…センサ,8…フィードバック制御回路、9…ガスボンベ、10…ノズル、11,12…板状部材、13…加熱手段、14…導入開口,15…導出開口,16…溝、16a…溝の上流側部分、16b…溝の下流側部分、16c…溝の中間部分、17…差込み穴、18…ジョイント、19…ノズルの前端面。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite preparation nozzle used when a composite structure including a substrate and a structure is manufactured by spraying aerosol containing fine particles onto the substrate to form the structure on the substrate.
[0002]
[Prior art]
When a fine particle is sprayed from a nozzle onto a substrate to form a structure on the substrate, a mask having a predetermined opening pattern is provided between the nozzle and the substrate, and the structure having a predetermined shape is sprayed through the opening of the mask. A method for obtaining an object has been proposed. (Patent Document 1)
[0003]
In addition, as a nozzle used in the aerosol deposition method, an aerosol passage space having a rectangular cross section is formed, and a fine particle having a slow flux component is prevented from reaching the substrate. (Patent Document 2)
[0004]
[Patent Literature]
Patent Document 1: Japanese Patent Application Laid-Open No. 10-202171 Patent Document 2: Japanese Patent Application Laid-Open No. 2002-320879
[Problems to be solved by the invention]
The shape of the structure formed by the aerosol deposition method largely depends on the shape of the jet formed at the tip of the nozzle. However, the velocity of the fine particles ejected from the nozzle is as high as 150 m / s to 450 m / s, and the hardness of the fine particles is high.
On the other hand, when the nozzle is made of metal such as stainless steel, the inner surface of the nozzle or the periphery of the jet outlet forming the aerosol passage space is worn by the high-speed fine particles described above, or conversely, the fine particles adhere to the flow path shape or jet. The shape of the outlet changes, and this makes it impossible to produce a structure with the desired shape.
[0006]
An object of the present invention is to provide a nozzle for producing a composite structure in which the aerosol passage space and the shape of a jet outlet are not easily changed by fine particles even when used continuously.
[0007]
[Means to solve the problem]
In order to solve the above-mentioned problems, the present invention collides an aerosol in which fine particles of a brittle material are dispersed in a gas with a base material, and crushes and deforms the fine particles by the impact of the collision to join the base material surface. In the nozzle used in the composite structure manufacturing apparatus for forming the structure made of the constituent material of the fine particles, the oxide ceramics on the inner surface or the tip surface where the nozzle outlet is formed, A coating made of nitride ceramics, carbide ceramics, metal or fluorine resin was applied.
Moreover, this invention also includes the composite structure preparation apparatus provided with said nozzle.
[0008]
Changes in the shape of the aerosol passage space and the jet outlet may be due to wear or due to powder adhesion. In addition, the characteristics exhibited by each coating material were different, and we found that there are coatings that are effective in preventing adhesion of powder and coatings that are effective in preventing wear.
Therefore, it is preferable to divide the area to be coated into an area where the powder is likely to adhere and an area where the powder is likely to be worn, and a different coating is applied to each area.
[0009]
In addition, when the aerosol deposition method is performed in a state where the aerosol is heated, it has an effect of preventing powder adhesion on the inner surface of the nozzle and improving the structure forming speed. Therefore, it is effective to attach a heating means to the outer surface of the nozzle. . The knowledge of the present inventors grasps that it is most effective to heat the nozzle to about 70 ° C. to 120 ° C.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an apparatus diagram of a composite structure manufacturing apparatus incorporating a nozzle according to the present invention. The composite structure manufacturing apparatus includes a structure forming chamber 1 for performing aerosol deposition, and aerosol in the structure forming chamber 1. The structure forming chamber 1 and the aerosol generating apparatus 2 are maintained at a high vacuum by the pumps 3 and 4, and the structure forming chamber 1 is vertically and vertically (Z), front and back, left and right ( A substrate holder 5 that can be braked to XY) and a base material 6 attached to the substrate holder 5 are arranged.
[0011]
Further, a nozzle 10 according to the present invention is disposed in the structure forming chamber 1, and a signal from a sensor 7 for measuring the concentration of the aerosol to the nozzle 10 is sent to an external feedback control circuit 8 to be processed to generate aerosol. Signals are sent to the control units of the apparatus 2 and the gas cylinders 9 filled with nitrogen gas for transport via wiring to control the aerosol concentration and control to supply an arbitrary amount of aerosol that collides with the substrate. I do.
[0012]
2 is an overall view of the nozzle 10, and FIG. 3 is a perspective view of one plate-like member constituting the nozzle. The nozzle 10 is formed by bonding two plate-like members 11 and 12 made of metal or ceramic. Thus, a heating mechanism 13 capable of heating the nozzle is attached to the outer surface of each of the plate-like members 11 and 12. As the heating means, a sheathed heater, a rubber heater, an infrared heater, or the like can be used.
[0013]
A groove 16 is formed on the surface of the one plate-like member 11, one end being an introduction opening 14 and the other end being a lead-out opening 15, and the other plate-like member 12 is not formed with a groove. A groove may be formed in both plate-like members. An insertion hole 17 is formed at one end of the plate-like member 11, and a joint 18 connected to the pipe from the aerosol generator is inserted into the insertion hole 17.
[0014]
In the range from the inlet opening 14 to the outlet opening 15, the groove 16 gradually decreases in the short side direction (X direction) toward the downstream side (along the Z direction), and the long side direction (Y direction). And the cross-sectional area of the aerosol passage space near the introduction opening 14 is set larger than the cross-sectional area of the aerosol passage space on the downstream side.
[0015]
Further, coating is applied to the surface of the groove 16 of the plate-like member 11, the surface of the plate-like member 12 that defines an aerosol passage space together with the groove 16, and the front end surface 19 of the nozzle 10 in which the outlet opening 15 is formed. Has been.
As the coating material, TiC, TiN, TiO 2 , Al 2 O 3 , DLC (diamond), Si 3 N 4 , SiC, PTFE (fluorine resin), oxide, nitride, carbide, hard chrome, etc. are suitable. As the coating method, means such as aerosol deposition, sputtering, electron beam evaporation, thermal CVD, plasma CVD, plasma spraying, thermal spraying, plating, powder coating, dip coating, spray spray coating and the like are suitable.
[0016]
4 to 8 show different types of nozzle shapes. In the type shown in FIG. 4, the dimensions of the upstream side portion 16a of the groove 16 are changed in the short side direction (X direction) and the long side direction (Y direction). About the downstream portion 16b, the dimension in the short side direction (X direction) gradually decreases toward the downstream side (along the Z direction), and the dimension in the long side direction (Y direction). In addition, the cross-sectional area of the aerosol passage space is gradually narrowed toward the downstream side in the downstream portion 16b.
[0017]
The upstream portion 16a and the downstream portion 16b have different coating types. That is, the upstream portion 16a is provided with a coating effective for preventing adhesion of a fluorine-based resin or the like in order to prevent the adhesion of fine particles, and the downstream portion 16b is provided with a coating having a high hardness such as TiC in order to prevent wear. .
[0018]
If the surface roughness of the coating surface is poor, a sufficient powder adhesion preventing effect cannot be obtained. In some cases, the powder may easily adhere. Therefore, it is more desirable to finish the surface by performing a surface smoothing treatment after coating. When the coating material is an oxide, carbide or nitride, it is desirable to finish the surface to a mirror surface by lapping or the like. In the case of a fluorine-based resin, it is desirable to finish the coating surface in advance so that the surface is as smooth as possible, and to apply a coating method having a uniform surface roughness.
[0019]
When two or more types of coating are applied, if there are steps, joints, or gaps between the coating boundaries, the powder flow in the nozzle may be disturbed, which may cause powder adhesion and turbulence. It is preferable that no gaps or steps are formed at the joints between the surfaces. If a step or bulge occurs, it is more desirable to remove it by post-processing such as lapping and finish it flush.
[0020]
In the type shown in FIG. 5, with respect to the upstream portion 16a of the groove 16, the dimension in the short side direction is gradually decreased and the dimension in the long side direction is gradually increased toward the downstream side. In the portion 16a, the cross-sectional area of the aerosol passage space is gradually narrowed toward the downstream side, and the downstream portion 16b is made substantially equal without changing the dimensions in the short side direction and the long side direction.
The kind of coating to be applied is different between the upstream portion 16a and the downstream portion 16b as in the above embodiment.
[0021]
In the type shown in FIG. 6, the upstream side portion 16a and the downstream side portion 16b of the groove 16 are substantially equal without changing the dimensions in the short side direction and the long side direction, and the intermediate portion 16c is directed toward the downstream side. The dimension in the short side direction is gradually reduced and the dimension in the long side direction is gradually increased, and the cross-sectional area of the aerosol passage space is gradually narrowed toward the downstream side.
Also in this embodiment, the types of coating are different in the upstream portion 16a, the downstream portion 16b, and the intermediate portion 16c.
[0022]
In the type shown in FIG. 7, since the area of the outlet opening 15 is three times that of the other nozzles, when the aerosol with the same concentration is supplied, the aerosol concentration becomes 1/3 of that of the other nozzles. The film formation rate decreases. Therefore, an aerosol having an aerosol concentration of 3 times is introduced into the introduction opening 14.
Even in this embodiment, the type of coating is different between the upstream portion 16a and the downstream portion 16b.
[0023]
In the type shown in FIG. 8, three rectangular introduction openings 14 are provided for one rectangular lead-out opening 15. Even in this embodiment, the type of coating is different between the upstream portion 16a and the downstream portion 16b.
[0024]
【The invention's effect】
As described above, according to the present invention, the nozzle used in the aerosol deposition method is coated on the portion where the nozzle is likely to be worn and the portion where the fine particles are likely to adhere. A nozzle for producing a composite structure is obtained in which the shape of the space and the spout is difficult to change.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a composite structure manufacturing apparatus using a nozzle according to the present invention. FIG. 2 is an overall configuration diagram of a nozzle (type 1) of the present invention.
FIG. 3 is a perspective view of one plate-like member constituting the nozzle (type 1) of the present invention,
FIG. 4 is a perspective view of one plate-like member constituting the nozzle (type 2) of the present invention.
FIG. 5 is a perspective view of one plate-like member constituting the nozzle (type 3) of the present invention.
FIG. 6 is a perspective view of one plate-like member constituting the nozzle (type 4) of the present invention.
FIG. 7 is a perspective view of one plate-like member constituting the nozzle (type 5) of the present invention.
FIG. 8 is a perspective view of one plate-like member constituting the nozzle (type 6) of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Structure formation chamber, 2 ... Aerosol generator, 3, 4 ... Pump, 5 ... Substrate holder, 6 ... Base material, 7 ... Sensor, 8 ... Feedback control circuit, 9 ... Gas cylinder, 10 ... Nozzle, 11, 12 DESCRIPTION OF SYMBOLS ... Plate-like member, 13 ... Heating means, 14 ... Introducing opening, 15 ... Deriving opening, 16 ... Groove, 16a ... Upstream part of groove, 16b ... Downstream part of groove, 16c ... Middle part of groove, 17 ... Insertion Hole, 18 ... joint, 19 ... front end face of nozzle.

Claims (4)

脆性材料の微粒子をガス中に分散させたエアロゾルを基材に衝突させ、この衝突の衝撃によって前記微粒子を破砕・変形させて接合させ、前記基材表面に前記微粒子の構成材料からなる構造物を形成する複合構造物作製装置に用いられるノズルにおいて、このノズルのエアロゾル通過空間を形成する内面または噴出口が形成された先端面には、酸化物系セラミックス、窒化物系セラミックス、炭化物系セラミックス、金属またはフッ素系樹脂のいずれかからなるコーティングが施されていることを特徴とする複合構造物作製用ノズル。An aerosol in which fine particles of a brittle material are dispersed in a gas is caused to collide with a base material, and the fine particles are crushed and deformed by the impact of the collision to be joined, and a structure made of the constituent material of the fine particles is formed on the surface of the base material. In the nozzle used in the composite structure manufacturing apparatus to be formed, an oxide ceramic, a nitride ceramic, a carbide ceramic, a metal is formed on the inner surface forming the aerosol passage space of the nozzle or the tip surface on which the ejection port is formed. A nozzle for producing a composite structure, characterized in that a coating made of either fluorine resin is applied. 請求項1に記載の複合構造物作製用ノズルにおいて、コーティングを施すエリアを粉体が付着しやすいエリアと摩耗しやすいエリアに分け、それぞれのエリア毎に異なるコーティングが施されていることを特徴とする複合構造物作製用ノズル。The nozzle for producing a composite structure according to claim 1, wherein an area to be coated is divided into an area where powder is likely to adhere and an area where the powder is easily worn, and a different coating is applied to each area. Nozzle for making composite structures. 請求項1または請求項2に記載の複合構造物作製用ノズルにおいて、このノズルの外面には加熱手段が取り付けられていることを特徴とする複合構造物作製用ノズル。3. The composite structure manufacturing nozzle according to claim 1, wherein a heating means is attached to an outer surface of the nozzle. 請求項1乃至請求項3に記載のノズルを備えたことを特徴とする複合構造物作製装置。A composite structure manufacturing apparatus comprising the nozzle according to claim 1.
JP2003204851A 2003-07-31 2003-07-31 Nozzle for making composite structure Pending JP2005046696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204851A JP2005046696A (en) 2003-07-31 2003-07-31 Nozzle for making composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204851A JP2005046696A (en) 2003-07-31 2003-07-31 Nozzle for making composite structure

Publications (1)

Publication Number Publication Date
JP2005046696A true JP2005046696A (en) 2005-02-24

Family

ID=34263722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204851A Pending JP2005046696A (en) 2003-07-31 2003-07-31 Nozzle for making composite structure

Country Status (1)

Country Link
JP (1) JP2005046696A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283099A (en) * 2005-03-31 2006-10-19 Tdk Corp Method for production of rare earth alloy fine powder
JP2008006341A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Method for forming insulating film
JP2008019464A (en) * 2006-07-11 2008-01-31 Sumitomo Electric Ind Ltd Diamond coating film and production method therefor
JP2015093265A (en) * 2013-11-14 2015-05-18 花王株式会社 Slit nozzle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283099A (en) * 2005-03-31 2006-10-19 Tdk Corp Method for production of rare earth alloy fine powder
JP2008006341A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Method for forming insulating film
JP4661703B2 (en) * 2006-06-27 2011-03-30 パナソニック電工株式会社 Insulating film formation method
JP2008019464A (en) * 2006-07-11 2008-01-31 Sumitomo Electric Ind Ltd Diamond coating film and production method therefor
JP2015093265A (en) * 2013-11-14 2015-05-18 花王株式会社 Slit nozzle

Similar Documents

Publication Publication Date Title
KR100767251B1 (en) Replaceable throat insert for a kinetic spray nozzle
RU2213805C2 (en) Method of application of coats made from powder materials and device for realization of this method
US20200376507A1 (en) Internally Cooled Aerodynamically Centralizing Nozzle (ICCN)
JP5736138B2 (en) Coating deposition apparatus and method
US7475831B2 (en) Modified high efficiency kinetic spray nozzle
EP0907760B1 (en) Thermal spraying method and apparatus
KR100776194B1 (en) Nozzle for cold spray and cold spray apparatus using the same
WO2001000331B1 (en) Kinetic spray coating method and apparatus
US20100019058A1 (en) Nozzle assembly for cold gas dynamic spray system
US5518178A (en) Thermal spray nozzle method for producing rough thermal spray coatings and coatings produced
JP2006052449A (en) Cold spray coating film formation method
JP2005046696A (en) Nozzle for making composite structure
JP4474105B2 (en) Water repellent member and method of manufacturing ink jet head
EP2545998B1 (en) A plasma spray gun and a method for coating a surface of an article
US20170121825A1 (en) Apparatus and method for cold spraying and coating processing
JP6960564B1 (en) Spray nozzle and thermal spraying device
JP4236414B2 (en) Nozzle for composite structure production
WO2023054464A1 (en) Film-forming device
JP2006241544A (en) Method and apparatus for forming film of fine particles
JP2016507003A (en) Process and system for depositing a coating system and components coated therewith
KR20190111263A (en) Surface treating method for controlling surface roughness of carbon material
WO2022254945A1 (en) Masking jig, film formation method, and film formation device
JP3994895B2 (en) Composite structure forming device
Chow et al. Properties of aluminum deposited by a HVOF process
JPS6318002A (en) Surface working method for fine particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090501

A131 Notification of reasons for refusal

Effective date: 20090519

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929