JPH10200086A - Solid state pickup device and its manufacture - Google Patents

Solid state pickup device and its manufacture

Info

Publication number
JPH10200086A
JPH10200086A JP9002116A JP211697A JPH10200086A JP H10200086 A JPH10200086 A JP H10200086A JP 9002116 A JP9002116 A JP 9002116A JP 211697 A JP211697 A JP 211697A JP H10200086 A JPH10200086 A JP H10200086A
Authority
JP
Japan
Prior art keywords
type region
charge
region
type
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9002116A
Other languages
Japanese (ja)
Other versions
JP3176300B2 (en
Inventor
Kenji Sato
健二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP00211697A priority Critical patent/JP3176300B2/en
Publication of JPH10200086A publication Critical patent/JPH10200086A/en
Application granted granted Critical
Publication of JP3176300B2 publication Critical patent/JP3176300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration in a charge read-out efficiency, afterimage characteristic and light shielding property in a solid state pickup device. SOLUTION: This device has a charge read-out electrode 110 formed on a P well formed on the surface of a silicon substrate 101 through a gate insulating film 106. The edge of the charge read-out electrode 110 is tapered only by an isotropic plasma dry etching process and a patterning process. By implanting ions into a region just under the charge read-out electrode 110 through the tapered part of the electrode 110, the region has a concentration gradient.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体撮像装置及び
その製造方法に関する。
The present invention relates to a solid-state imaging device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】固体撮像装置は、入射光等の情報入力を
電荷の形で蓄積し、その電荷を多数の転送電極によって
順次転送し、これを電気信号として取り出すことがで
き、ビデオカメラ、FAX等に広く使用されている。
2. Description of the Related Art A solid-state image pickup device accumulates information input such as incident light in the form of electric charges, sequentially transfers the electric charges by a large number of transfer electrodes, and extracts the electric signals as electric signals. Widely used for etc.

【0003】図5は従来の固体撮像装置の一例であるラ
インセンサーの平面図,図6は図5のX−X線断面図で
ある。この従来例は、シリコン基板の表面部のP型領域
(Pウェル202)の表面部に選択的に形成された第1
のN型領域205を含むフォトダイオードと、第1のN
型領域205と所定間隔をおいてPウェル202の表面
部に選択的に形成された第2のN型領域でなる電荷転送
用の埋め込みチャネル203及びこれと前述のシリコン
基板の表面に設けられたゲート酸化膜206を介して交
差する第1の転送電極208−1を含むCCDレジスタ
と、第1の電荷転送電極208−1と結合し前述の所定
間隔部から第1のN型領域205にかけてゲート酸化膜
206を選択的に被覆する電荷読出電極210と、層間
絶縁膜211を介して第1のN型領域205上に開孔を
有し電荷読出電極210の縁端部から第1のN型領域2
05の一部の上部を被覆する遮光膜212とを有してい
る。
FIG. 5 is a plan view of a line sensor as an example of a conventional solid-state imaging device, and FIG. 6 is a sectional view taken along line XX of FIG. In this conventional example, a first region selectively formed on the surface of a P-type region (P well 202) on the surface of a silicon substrate is formed.
Including a first N-type region 205 and a first N-type region 205.
A buried channel 203 for charge transfer, which is a second N-type region selectively formed on the surface of the P-well 202 at a predetermined distance from the mold region 205, and provided on the surface of the silicon substrate and the buried channel 203; A CCD register including a first transfer electrode 208-1 intersecting via a gate oxide film 206; and a gate connected to the first charge transfer electrode 208-1 and extending from the above-described predetermined interval to the first N-type region 205. A charge readout electrode 210 for selectively covering oxide film 206 and an opening on first n-type region 205 with interlayer insulating film 211 interposed therebetween, the first n-type from the edge of charge readout electrode 210 Area 2
And a light-shielding film 212 covering a part of the upper part of the light-transmitting part 05.

【0004】次に、この従来例の製造方法について説明
する。まず、図8(a)に示すように、N型シリコン基
板201の表面部にPウェル202を形成した後、電荷
転送部(以下CCD部)のN型領域(埋め込みチャネル
203)、P+ 型チャネルストッパ204,ゲート酸化
膜206、1層目ポリシリコン膜である第1の電荷転送
電極208−1を形成し、この第1の電荷転送電極20
8−1で被覆されていない埋め込みチャネル203にボ
ロンを注入して障壁層を形成し、2層目のポリシリコン
膜である第2の電荷転送電極208−2及び電荷読出電
極210を形成する。
Next, a description will be given of a manufacturing method of this conventional example. First, as shown in FIG. 8A, after a P well 202 is formed on the surface of an N-type silicon substrate 201, an N-type region (buried channel 203) of a charge transfer portion (hereinafter referred to as a CCD portion) and a P + -type A channel stopper 204, a gate oxide film 206, and a first charge transfer electrode 208-1, which is a first-layer polysilicon film, are formed.
A barrier layer is formed by implanting boron into the buried channel 203 which is not covered with 8-1, and a second charge transfer electrode 208-2 and a charge readout electrode 210, which are the second polysilicon film, are formed.

【0005】次いで、図8(b)に示すように、暗電流
対策として、N型領域205の表面部に、加速電圧50
keV程度の低エネルギーでP型不純物を、レジスト膜
215をマスクとして、イオン注入して注入領域207
aを形成した後、レジスト膜215を除去し、900℃
程度のアニール処理を行い図8(c)に示すP型領域2
07を形成する。ここで、P型領域207は、アニール
処理時の熱拡散により、電荷転送電極208−1下部に
も形成される。最後に図8(d)に示すように、層間絶
縁膜211、アルミニウム膜でなる遮光膜212などを
形成する。
Next, as shown in FIG. 8B, as a countermeasure against dark current, an acceleration voltage of 50 is applied to the surface of the N-type region 205.
A P-type impurity is ion-implanted at a low energy of about keV using the resist film 215 as a mask, and an ion implantation region 207 is formed.
After forming a, the resist film 215 is removed,
The annealing process is performed to the extent that the P-type region 2 shown in FIG.
07 is formed. Here, the P-type region 207 is also formed below the charge transfer electrode 208-1 by thermal diffusion during the annealing process. Finally, as shown in FIG. 8D, an interlayer insulating film 211, a light shielding film 212 made of an aluminum film, and the like are formed.

【0006】[0006]

【発明が解決しようとする課題】第1の問題点は、従来
の固体撮像装置では電荷読み出し電極210直下のフォ
トダイオード表面部のP型領域207の不純物が濃いの
で電荷読み出し電極210直下にポテンシャル井戸Wが
でき、一部の電荷Q2=Q−Q1だけが読み出されるこ
とになる。この事が原因となって従来の固体撮像装置
は、読出効率及び残像特性が低下する欠点がある。
The first problem is that, in the conventional solid-state imaging device, since the impurity in the P-type region 207 on the surface of the photodiode immediately below the charge readout electrode 210 is dense, the potential well just below the charge readout electrode 210 is high. W is formed, and only some of the charges Q2 = Q-Q1 are read. Due to this, the conventional solid-state imaging device has a drawback that the readout efficiency and the afterimage characteristics are reduced.

【0007】第2の問題点は、電荷読出電極の縁端部側
面が、半導体基板に対し、垂直形状を有しているため、
段差が大きく遮光膜212のアルミニウム膜のステップ
カバレッジが悪化することにより、図6に示すように局
部的に膜厚が薄くなり、甚だしいときは段切れが発生
し、遮光性が悪くなる欠点がある。
The second problem is that the edge side surface of the charge readout electrode has a shape perpendicular to the semiconductor substrate.
The step coverage is large and the step coverage of the aluminum film of the light-shielding film 212 is deteriorated, so that the film thickness is locally reduced as shown in FIG. .

【0008】本発明の第1の目的は読み出し効率の改善
された固定撮像装置及びその製造方法を提供することに
ある。更に本発明の第2の目的は遮光性の改善された固
体撮像装置及びその製造方法を提供することにある。
A first object of the present invention is to provide a fixed imaging device with improved readout efficiency and a method of manufacturing the same. A second object of the present invention is to provide a solid-state imaging device with improved light-shielding properties and a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明の固体撮像装置
は、半導体基板の表面部のP型領域の表面部に選択的に
形成された第1のN型領域、及び第1のN型領域の表面
部に選択的に形成されたP型領域を含むフォトダイオー
ドと、前記第1のN型領域と所定間隔をおいて前記P型
領域の表面部に選択的に形成された第2のN型領域でな
る電荷転送用の埋め込みチャネル及びこれと前記半導体
基板の表面に設けられたゲート絶縁膜を介して交差する
電荷転送電極を含むレジスタと、前記電荷転送電極と結
合し前記所定間隔部から前記第1のN型領域にかけて前
記ゲート絶縁膜を選択的に被覆する電荷読出電極と、層
間絶縁膜を介して前記第1のN型領域上に開孔を有し前
記電荷読出電極の縁端部から前記第1のN型領域の一部
の上部を被覆する遮光膜とを有する固体撮像装置におい
て、前記フォトダイオードに電荷を蓄積する期間に、前
記第1のN型領域の表面の任意の点からその深さ方向に
おける電子に対するポテンシャルが極小となるポテンシ
ャル極小面における前記第1のN型領域表面のP型不純
物濃度が前記電荷読出電極下方で前記第2のN型領域寄
りに減少する勾配を有するというものである。このよう
にすることによって、読み出し効率を低下させるポテン
シャル井戸を浅くすることが可能となる。ここで、電荷
読出電極を構成する導電膜の厚さが前記第1のN型領域
上の端部から離れるにつれて厚くなっているようにする
ことができる。そうすると、遮光部が形成される領域で
の段差が少なくなる。
According to the present invention, there is provided a solid-state imaging device comprising: a first N-type region selectively formed on a surface portion of a P-type region on a surface portion of a semiconductor substrate; A photodiode including a P-type region selectively formed on the surface of the P-type region; and a second N-type selectively formed on the surface of the P-type region at a predetermined distance from the first N-type region. A buried channel for charge transfer comprising a mold region and a register including a charge transfer electrode intersecting therewith via a gate insulating film provided on the surface of the semiconductor substrate; and A charge readout electrode that selectively covers the gate insulating film over the first N-type region, and an edge of the charge readout electrode having an opening on the first N-type region via an interlayer insulating film Shielding part of the first N-type region from above. In the solid-state imaging device having a film, during a period in which electric charges are accumulated in the photodiode, a potential minimum surface at which a potential with respect to electrons in a depth direction from an arbitrary point on the surface of the first N-type region is minimized. The P-type impurity concentration on the surface of the first N-type region has a gradient that decreases below the charge readout electrode toward the second N-type region. By doing so, it becomes possible to make the potential well that reduces the readout efficiency shallow. Here, the thickness of the conductive film constituting the charge readout electrode may be increased as the distance from the end on the first N-type region increases. Then, a step in a region where the light shielding portion is formed is reduced.

【0010】本発明の固体撮像装置の製造方法は、表面
部にP型領域を有する半導体基板の表面部に選択的にN
型不純物を導入して第2のN型領域となる埋込チャネル
を形成し、続いて、P型領域を有する半導体基板の表面
部に選択的にN型不純物を導入して第1のN型領域とな
るフォトダイオードを形成し、表面にゲート絶縁膜を形
成し、導電膜を堆積し異方性エッチングを行って端部へ
向けて厚さが減少するテーパ状周辺領域を有する電荷読
出し電極を形成する工程と、第1のN型領域の表面のP
型領域を選択的に形成する際に、前記テーパー状周辺領
域を利用してイオン注入することにより、第2のN型領
域寄りに厚さが減少する勾配を有するP型領域を形成す
る工程とを有するというものである。ここで、フォトダ
イオードのN型領域を形成した後に層間絶縁膜を堆積し
電荷読み出し電極の絶縁部からN型領域の一部の上部を
被覆する遮光膜を形成する工程とを追加することができ
る。
According to the method of manufacturing a solid-state imaging device of the present invention, the surface of a semiconductor substrate having a P-type region on the surface is selectively N-type.
Forming a buried channel to be a second N-type region by introducing a N-type impurity, and then selectively introducing an N-type impurity to a surface portion of a semiconductor substrate having a P-type region to form a first N-type impurity; Forming a photodiode serving as a region, forming a gate insulating film on the surface, depositing a conductive film, performing anisotropic etching, and forming a charge readout electrode having a tapered peripheral region whose thickness decreases toward an end; Forming and forming P on the surface of the first N-type region.
Forming a P-type region having a gradient whose thickness decreases toward the second N-type region by ion-implanting using the tapered peripheral region when selectively forming the mold region; It is to have. Here, a step of depositing an interlayer insulating film after forming the N-type region of the photodiode and forming a light-shielding film covering a part of the N-type region from the insulating portion of the charge readout electrode can be added. .

【0011】[0011]

【発明の実施の形態】図1は本発明の固体撮像装置の一
実施の形態を示す平面図,図2は図1のX−X線断面図
である。この実施の形態はN型シリコン基板101の表
面部のP型領域(Pウェル102)の表面部に選択的に
形成された第1のN型領域105及び第1のN型領域の
表面部に形成されたP型領域107を含むフォトダイオ
ードを有する。また第1のN型領域105と所定間隔を
おいてPウェル102の表面部に選択的に形成された第
2のN型領域からなる電荷転送用の埋め込みチャネル1
03及びこれとシリコン基板の表面に設けられたゲート
酸化膜106を介して交差する第1の電荷転送電極10
8−1を含むレジスタを有する。さらに第1の電荷転送
電極108−1と結合し前述の所定間隔部(読み出し領
域102a)から第1のN型領域105にかけてゲート
酸化膜106を選択的に被覆する電荷読み出し電極11
0と、層間絶縁膜111を介して第1のN型領域105
上に開孔を有し電荷読み出し電極110の縁端部から第
1のN型領域105の一部の上部を被覆する遮光膜11
2を有する。そしてフォトダイオードに電荷を蓄積する
期間に、第1のN型領域105の表面の任意の点からそ
の深さ方向における電子に対するポテンシャルが極小と
なるポテンシャル極小面における前記第1のN型領域表
面のP型領域107を形成するP型不純物濃度が、電荷
読み出し電極110の下方で第2のN型領域である埋め
込みチャネル103寄りに減少する勾配を有することを
特徴とする。
FIG. 1 is a plan view showing an embodiment of a solid-state imaging device according to the present invention, and FIG. 2 is a sectional view taken along line XX of FIG. In this embodiment, the first N-type region 105 selectively formed on the surface of the P-type region (P-well 102) on the surface of the N-type silicon substrate 101 and the surface of the first N-type region are formed. It has a photodiode including the P-type region 107 formed. Also, a buried channel 1 for charge transfer comprising a second N-type region selectively formed on the surface of the P-well 102 at a predetermined distance from the first N-type region 105.
03 and the first charge transfer electrode 10 intersecting therewith via a gate oxide film 106 provided on the surface of the silicon substrate.
8-1. Further, the charge readout electrode 11 which is coupled to the first charge transfer electrode 108-1 and selectively covers the gate oxide film 106 from the above-mentioned predetermined interval (readout region 102a) to the first N-type region 105
0 and the first N-type region 105 via the interlayer insulating film 111.
A light-shielding film 11 having an opening above and covering a part of the first N-type region 105 from the edge of the charge readout electrode 110
2 Then, during a period in which electric charges are accumulated in the photodiode, the potential of the first N-type region 105 on the surface of the first N-type region 105 at a potential minimum surface where the potential for electrons in the depth direction is minimized from any point on the surface of the first N-type region 105 A feature is that the P-type impurity concentration forming the P-type region 107 has a gradient that decreases below the charge readout electrode 110 toward the buried channel 103 that is the second N-type region.

【0012】次に、本発明の固体撮像装置の製造方法の
一実施の形態について説明する。まず、図4(a)に示
すように、N型シリコン基板101の表面部にPウェル
102を形成し、Pウェル102の表面部に埋め込みチ
ャネル103(第2のN型領域)を形成し、P+ 型チャ
ネルストッパ104を形成し、フォトダイオードの第1
のN型領域105を形成し、厚さ80nmのゲート酸化
膜106を形成する。次に厚さ約500nmの2層目の
ポリシリコン膜を堆積し、レジスト膜113をマスクと
してパターニングすることにより埋め込みチャネル10
3と交差する第1の電荷転送電極108−1を形成す
る。次に、第1の電荷転送電極108−1で被覆されて
いない埋め込みチャネルに障壁層を形成するためのボロ
ンイオンを注入し、第1の電荷転送電極108−1をマ
スクにゲート酸化膜106を除去し、熱酸化を行い、ゲ
ート酸化膜109を形成する。次に、厚さ約500nm
の2層目のポリシリコン膜を堆積し、レジスト膜113
をマスクとしてパターニングすることにより、第2の電
荷読出電極(図1の108−2)及び電荷読出電極11
0を形成する。このパターニングは、SF6 などのガス
を用いた等方性プラズマエッチングによる。そしてこれ
らの電極の縁端部に約45°のテーパをつける。
Next, an embodiment of a method of manufacturing a solid-state imaging device according to the present invention will be described. First, as shown in FIG. 4A, a P-well 102 is formed on the surface of an N-type silicon substrate 101, and a buried channel 103 (second N-type region) is formed on the surface of the P-well 102. A P + type channel stopper 104 is formed, and the first
Is formed, and a gate oxide film 106 having a thickness of 80 nm is formed. Next, a second polysilicon film having a thickness of about 500 nm is deposited, and is patterned using the resist film 113 as a mask, thereby forming the buried channel 10.
A first charge transfer electrode 108-1 intersecting with No. 3 is formed. Next, boron ions for forming a barrier layer are implanted into a buried channel that is not covered with the first charge transfer electrode 108-1, and the gate oxide film 106 is formed using the first charge transfer electrode 108-1 as a mask. After removal, thermal oxidation is performed to form a gate oxide film 109. Next, a thickness of about 500 nm
A second polysilicon film is deposited, and a resist film 113 is formed.
The second charge readout electrode (108-2 in FIG. 1) and the charge readout electrode 11 are patterned by using
0 is formed. This patterning, by isotropic plasma etching using a gas such as SF 6. The edges of these electrodes are tapered at about 45 °.

【0013】次に、レジスト膜115をマスクにして、
加速電圧50〜100keV程度でボロンイオンを注入
する。フォトダイオードの暗電流低減対策のためであ
る。レジスト膜115は、電荷読み出し電極110のテ
ーパ状縁端部のうち、第1のN型領域105上方部を露
出させる形状にしておく。そうすると、電荷読出電極1
10の縁端部直下のP型領域が浅くなっているP型領域
107を形成することができる。次に、レジスト膜11
5を除去し、900℃程度のアニール処理を行う。次
に、図4(c),図1,図2に示すように、厚さ約1.
2μmのBPSG膜でなる層間絶縁膜111を形成し、
アルミニウム膜を堆積し、パターニングすることにより
遮光膜112及び転送電極にクロックパルスφ1,φ2
を供給するための電極配線を形成する。次に、図示しな
いカバー膜を形成し、CCDレジスタ部を被覆する第2
の遮光膜を形成する。
Next, using the resist film 115 as a mask,
Boron ions are implanted at an acceleration voltage of about 50 to 100 keV. This is to reduce the dark current of the photodiode. The resist film 115 has a shape that exposes an upper part of the first N-type region 105 among the tapered edges of the charge readout electrode 110. Then, the charge readout electrode 1
It is possible to form the P-type region 107 in which the P-type region immediately below the edge of the P-type region 10 is shallow. Next, the resist film 11
5 is removed, and an annealing process at about 900 ° C. is performed. Next, as shown in FIG. 4C, FIG. 1 and FIG.
Forming an interlayer insulating film 111 made of a 2 μm BPSG film;
By depositing and patterning an aluminum film, clock pulses φ1 and φ2 are applied to the light shielding film 112 and the transfer electrode.
Is formed to supply the electrodes. Next, a cover film (not shown) is formed to cover the CCD register section.
Is formed.

【0014】電荷読み出し電極110の縁端部がテーパ
状になっているのでアルミニウム膜のステップカバレッ
ジが向上し、遮光膜112の均一性は良好で段切れは発
生しない。
Since the edge of the charge readout electrode 110 is tapered, the step coverage of the aluminum film is improved, the uniformity of the light-shielding film 112 is good, and no disconnection occurs.

【0015】図3は、本発明の固体撮像装置の一実施の
形態における転送領域(図2に2点鎖線で概略的に示し
たポテンシャル極小面)のポテンシャル図である。フォ
トダイオードに電荷を蓄積する期間(電荷読み出し電極
110に0ボルトが印加され、φ1が5ボルト,φ2が
0ボルトの期間)におけるポテンシャルψは図3(a)
に示すようになっている。第1のN型領域105におけ
るポテンシャル極小面は、第1のN型領域の表面に形成
したP型領域107が電荷読み出し領域102a側寄り
に浅くなっている。第1のN型領域の表面に形成したP
型領域107が電荷読出電極下部で傾斜しているため、
電荷読出電極直下の表面近傍におけるN型不純物濃度が
従来例に比較して低くなり、従来例のようなポテンシャ
ル井戸が浅くなる。
FIG. 3 is a potential diagram of a transfer region (a potential minimum surface schematically shown by a two-dot chain line in FIG. 2) in one embodiment of the solid-state imaging device of the present invention. The potential に お け る during the period of accumulating charges in the photodiode (when 0 volt is applied to the charge readout electrode 110, φ1 is 5 volts, and φ2 is 0 volt) is shown in FIG.
It is shown as follows. The minimum potential surface of the first N-type region 105 is such that the P-type region 107 formed on the surface of the first N-type region is shallower toward the charge readout region 102a. P formed on the surface of the first N-type region
Since the mold region 107 is inclined below the charge readout electrode,
The N-type impurity concentration near the surface immediately below the charge readout electrode is lower than in the conventional example, and the potential well as in the conventional example becomes shallower.

【0016】次に、電荷読み出し電極110に電圧5ボ
ルトを印加すると、第1のN型領域105に蓄積されて
いた電荷Qは、その一部Q1aを残して、埋め込みチャ
ネル103へ読み出される。前述したポテンシャル井戸
が浅いのでQ1aは従来例のQ1より小さい。読み出さ
れる電荷量Q2a=Q−Q1aは、Q2より大きくなる
(読み出し効率の改善)。これにより、従来、出力電圧
で約80mVあった残像を少なくとも半分に減少させる
ことができた。
Next, when a voltage of 5 volts is applied to the charge readout electrode 110, the charge Q stored in the first N-type region 105 is read out to the buried channel 103 except for a part Q1a. Since the potential well is shallow, Q1a is smaller than Q1 of the conventional example. The read charge amount Q2a = Q-Q1a is larger than Q2 (improvement in readout efficiency). As a result, the afterimage, which was conventionally about 80 mV in output voltage, could be reduced to at least half.

【0017】このように、電荷転送電極の形成を等方性
ドライエッチングを行うことにより縁端部にテーパをつ
け、そのテーパ状縁端部を利用したイオン注入を利用す
ることにより、読み出し効率及び遮光性を改善すること
ができた。
As described above, the edge of the charge transfer electrode is tapered by performing isotropic dry etching, and the ion implantation using the tapered edge is used to improve the readout efficiency and the readout efficiency. The light-shielding property could be improved.

【0018】なお、ラインセンサを例にあげて説明した
が、2次元センサについても本発明を適用しうることは
改めて詳細の説明をするまでもなく明らかであろう。
Although a line sensor has been described as an example, it will be apparent that the present invention can be applied to a two-dimensional sensor without further detailed explanation.

【0019】[0019]

【発明の効果】第1の効果は、本発明の固体撮像装置
は、等方性エッチングを利用してテーパ状縁端部を有す
る電荷読み出し電極を形成し、このテーパ状縁端部に対
応した不純物濃度分布のP型領域をフォトダイオードの
暗電流低減対策部として、イオン注入を利用して形成す
ることにより、電荷読出電極下方でフォトダイオードの
N型領域の表面の任意の点からその深さ方向における電
子に対するポテンシャルが極小となるポテンシャル極小
面におけるN型不純物濃度が電荷読出電極寄りに減少す
る勾配を有するようにすることができるので、フォトダ
イオードのN型領域内のポテンシャル井戸を浅くするこ
とができ、電荷読出効率を改善し残像を低減することが
できる。
The first effect is that, in the solid-state imaging device of the present invention, a charge readout electrode having a tapered edge is formed using isotropic etching, and the charge readout electrode corresponding to the tapered edge is formed. By forming the P-type region of the impurity concentration distribution as a countermeasure against dark current of the photodiode by using ion implantation, the depth of the P-type region from an arbitrary point on the surface of the N-type region of the photodiode below the charge readout electrode is reduced. The potential well in the N-type region of the photodiode can be made shallow because the N-type impurity concentration on the potential minimum surface where the potential for electrons in the direction becomes minimal can be reduced toward the charge readout electrode. Thus, the charge readout efficiency can be improved and the afterimage can be reduced.

【0020】第2の効果は、電荷読出電極の縁端部がテ
ーパ状となっているので層間絶縁膜を介して、この絶縁
膜を被覆する遮光膜をステップカバレッジよく形成でき
るので遮光性を改善し段切れを防止できる。
The second effect is that, since the edge of the charge readout electrode is tapered, a light-shielding film covering this insulating film can be formed with good step coverage via an interlayer insulating film, so that the light-shielding property is improved. Step breakage can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体撮像装置の一実施の形態を示す平
面図である。
FIG. 1 is a plan view illustrating an embodiment of a solid-state imaging device according to the present invention.

【図2】図1のX−X線断面図である。FIG. 2 is a sectional view taken along line XX of FIG.

【図3】本発明の固体撮像装置の一実施の形態における
電荷読出動作について説明するための電荷蓄積期間にお
けるポテンシャル図(図3(a))及び電荷転送読出時
のポテンシャル図(図3(b))である。
FIG. 3 is a potential diagram (FIG. 3A) during a charge accumulation period and a potential diagram at the time of charge transfer reading (FIG. 3B) for describing a charge reading operation in one embodiment of the solid-state imaging device of the present invention. )).

【図4】(a)〜(c)は、本発明の固体撮像装置の製
造工程を示す断面図である。
FIGS. 4A to 4C are cross-sectional views illustrating a manufacturing process of the solid-state imaging device of the present invention.

【図5】従来の固体撮像装置の一例を示す平面図であ
る。
FIG. 5 is a plan view illustrating an example of a conventional solid-state imaging device.

【図6】図5のX−X線断面図である。FIG. 6 is a sectional view taken along line XX of FIG. 5;

【図7】従来の固体撮像装置の一例における電荷読出動
作について説明するための電荷蓄積期間におけるポテン
シャル図(図7(a))及び電荷読出時のポテンシャル
図(図7(b))である。
7A and 7B are a potential diagram (FIG. 7A) during a charge accumulation period and a potential diagram at the time of charge reading (FIG. 7B) for describing a charge reading operation in an example of a conventional solid-state imaging device.

【図8】(a)〜(d)は従来の固体撮像装置の製造工
程を示す断面図である。
FIGS. 8A to 8D are cross-sectional views illustrating a manufacturing process of a conventional solid-state imaging device.

【符号の説明】[Explanation of symbols]

101,201 N型シリコン基板 102a,202a,3 電荷読出領域 102,202 Pウェル 103,203 埋め込みチャネル 104,204 P+ 型チャネルストッパ 105,205 第1のN型領域 106,206 ゲート絶縁膜 107,207 P型領域 108−1,208−1 第1の電荷転送電極 108−2,208−2 第2の電荷転送電極 109,209 ゲート絶縁膜 110,210 電荷読み出し電極 111,211 層間絶縁膜 112,212 遮光膜 113 レジスト膜 114 レジスト膜 115,215 レジスト膜 116,216 ポテンシャル極小面101, 201 N-type silicon substrate 102a, 202a, 3 Charge readout region 102, 202 P well 103, 203 Buried channel 104, 204 P + type channel stopper 105, 205 First N-type region 106, 206 Gate insulating film 107, 207 P-type region 108-1, 208-1 First charge transfer electrode 108-2, 208-2 Second charge transfer electrode 109, 209 Gate insulating film 110, 210 Charge readout electrode 111, 211 Interlayer insulating film 112, 212 light shielding film 113 resist film 114 resist film 115,215 resist film 116,216 potential minimum surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面部のP型領域の表面部
に選択的に形成された第1のN型領域、および第1のN
型領域の表面部に選択的に形成されたP型領域を含むフ
ォトダイオードと、前記第1のN型領域と所定間隔をお
いて前記P型領域の表面部に選択的に形成された第2の
N型領域でなる電荷転送用の埋め込みチャネル及びこれ
と前記半導体基板の表面に設けられたゲート絶縁膜を介
して交差する電荷転送電極を含むレジスタと、前記電荷
転送電極と結合し前記所定間隔部から前記第1のN型領
域にかけて前記ゲート絶縁膜を選択的に被覆する電荷読
出電極と、層間絶縁膜を介して前記第1のN型領域上に
開孔を有し前記電荷読出電極の縁端部から前記第1のN
型領域の一部の上部を被覆する遮光膜とを有する固体撮
像装置において、前記フォトダイオードに電荷を蓄積す
る期間に、前記第1のN型領域の表面の任意の点からそ
の深さ方向における電子に対するポテンシャルが極小と
なるポテンシャル極小面における前記第1のN型領域表
面のP型不純物濃度が前記電荷読出電極下方で前記第2
のN型領域寄りに減少する勾配を有することを特徴とす
る固体撮像装置。
A first N-type region selectively formed on a surface portion of a P-type region on a surface portion of the semiconductor substrate;
A photodiode including a P-type region selectively formed on the surface of the P-type region; and a second photodiode selectively formed on the surface of the P-type region at a predetermined distance from the first N-type region. A buried channel for charge transfer comprising an N-type region and a register including a charge transfer electrode intersecting therewith via a gate insulating film provided on the surface of the semiconductor substrate; A charge readout electrode for selectively covering the gate insulating film from a portion to the first N-type region; and an opening on the first N-type region through an interlayer insulating film, the charge readout electrode having a hole. The first N from the edge
A solid-state imaging device having a light-shielding film that covers a part of the upper part of the type region, wherein a charge is accumulated in the photodiode in a depth direction from an arbitrary point on the surface of the first N-type region. The P-type impurity concentration on the surface of the first N-type region on the potential minimum surface where the potential for electrons is minimized is lower than the charge read-out electrode.
A solid-state imaging device having a gradient that decreases toward the N-type region.
【請求項2】 電荷読出電極を構成する導電膜の厚さが
前記第1のN型領域上の端部から離れるにつれて厚くな
っている請求項1記載の固体撮像装置。
2. The solid-state imaging device according to claim 1, wherein the thickness of the conductive film forming the charge readout electrode increases as the distance from the end on the first N-type region increases.
【請求項3】 表面部にP型領域を有する半導体基板の
表面部に選択的にN型不純物を導入して第2のN型領域
となる埋込チャネルを形成し、続いて、P型領域を有す
る半導体基板の表面部に選択的にN型不純物を導入して
第1のN型領域となるフォトダイオードを形成し、表面
にゲート絶縁膜を形成し、導電膜を堆積し異方性エッチ
ングを行って端部へ向けて厚さが減少するテーパー状周
辺領域を有する電荷読出電極を形成する工程と、第1の
N型領域の表面のP型領域を選択的に形成する際に、前
記テーパー状周辺領域を利用してイオン注入することに
より、第2のN型領域寄りに厚さが減少する勾配を有す
るP型領域を形成する工程とを有することを特徴とする
固体撮像装置の製造方法。
3. A buried channel serving as a second N-type region is formed by selectively introducing an N-type impurity into a surface portion of a semiconductor substrate having a P-type region on a surface portion. An N-type impurity is selectively introduced into a surface portion of a semiconductor substrate having a GaN layer, a photodiode serving as a first N-type region is formed, a gate insulating film is formed on the surface, a conductive film is deposited, and anisotropic etching is performed. Forming a charge readout electrode having a tapered peripheral region whose thickness decreases toward an end portion, and selectively forming a P-type region on the surface of the first N-type region. Forming a P-type region having a gradient that decreases in thickness near the second N-type region by ion-implanting using the tapered peripheral region. Method.
【請求項4】 フォトダイオードのN型領域を形成した
後に層間絶縁膜を堆積し電荷読出電極の縁端部からN型
領域に一部の上部を被覆する遮光膜を形成する工程とを
有する請求項3記載の固体撮像装置の製造方法。
4. A step of forming an N-type region of the photodiode, depositing an interlayer insulating film, and forming a light-shielding film covering a part of the N-type region from the edge of the charge readout electrode to the N-type region. Item 4. A method for manufacturing a solid-state imaging device according to Item 3.
JP00211697A 1997-01-09 1997-01-09 Solid-state imaging device and manufacturing method thereof Expired - Fee Related JP3176300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00211697A JP3176300B2 (en) 1997-01-09 1997-01-09 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00211697A JP3176300B2 (en) 1997-01-09 1997-01-09 Solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10200086A true JPH10200086A (en) 1998-07-31
JP3176300B2 JP3176300B2 (en) 2001-06-11

Family

ID=11520390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00211697A Expired - Fee Related JP3176300B2 (en) 1997-01-09 1997-01-09 Solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3176300B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024918A (en) * 2004-07-07 2006-01-26 Samsung Electronics Co Ltd Image sensor having photodiode self-aligned while being overlaid on transfer gate electrode, and manufacturing method therefor
EP1748489A3 (en) * 2005-07-29 2007-09-05 Fujitsu Limited Semiconductor imaging device and fabrication process thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024918A (en) * 2004-07-07 2006-01-26 Samsung Electronics Co Ltd Image sensor having photodiode self-aligned while being overlaid on transfer gate electrode, and manufacturing method therefor
JP4647404B2 (en) * 2004-07-07 2011-03-09 三星電子株式会社 Manufacturing method of image sensor having photodiode self-aligned while being superimposed on transfer gate electrode
EP1748489A3 (en) * 2005-07-29 2007-09-05 Fujitsu Limited Semiconductor imaging device and fabrication process thereof
US7846758B2 (en) 2005-07-29 2010-12-07 Fujitsu Semiconductor Limited Semiconductor imaging device and fabrication process thereof
US8008106B2 (en) 2005-07-29 2011-08-30 Fujitsu Semiconductor Limited Semiconductor imaging device and fabrication process thereof

Also Published As

Publication number Publication date
JP3176300B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
JPH1070263A (en) Solid state image sensor
JP3225939B2 (en) Solid-state imaging device and manufacturing method thereof
KR100218849B1 (en) Manufacturing method of solid-state image pickup device
JP2797993B2 (en) Solid-state imaging device and method of manufacturing the same
JPH07107928B2 (en) Solid-state imaging device
US6472699B1 (en) Photoelectric transducer and manufacturing method of the same
US6469329B1 (en) Solid state image sensing device and method of producing the same
JP3176300B2 (en) Solid-state imaging device and manufacturing method thereof
US6236074B1 (en) Solid state image sensor device and method of fabricating the same
JP2723854B2 (en) Solid-state imaging device and manufacturing method thereof
JP2912533B2 (en) Solid-state imaging device
JP2909158B2 (en) Charge coupled device
JP3247163B2 (en) Solid-state imaging device and manufacturing method thereof
JP2798289B2 (en) Charge transfer device and method of manufacturing the same
KR0140634B1 (en) The fabrication method of solid state image sensing device
JP2870853B2 (en) Solid-state imaging device and method of manufacturing the same
KR100290883B1 (en) Method for manufacturing of solide state image sensor
JPH05283669A (en) Solid state image pickup and manufacture thereof
JPH10107249A (en) Manufacture of solid image-pickup element
JP4332917B2 (en) Solid-state image sensor
JP2002190587A (en) Method of manufacturing solid-state image pickup device
KR100724144B1 (en) method for fabricating Charge Coupled Device
JPH04291965A (en) Solid-state image sensor and manufacture thereof
KR100263479B1 (en) Method of fabricating solid state image sensor
JP2000077645A (en) Solid state image pickup device and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010306

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees