JPH10200015A - Ceramic board and manufacture thereof - Google Patents

Ceramic board and manufacture thereof

Info

Publication number
JPH10200015A
JPH10200015A JP9003224A JP322497A JPH10200015A JP H10200015 A JPH10200015 A JP H10200015A JP 9003224 A JP9003224 A JP 9003224A JP 322497 A JP322497 A JP 322497A JP H10200015 A JPH10200015 A JP H10200015A
Authority
JP
Japan
Prior art keywords
electrode
green sheet
diameter
external connection
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9003224A
Other languages
Japanese (ja)
Inventor
Yoichi Moriya
要一 守屋
Yoshiaki Yamade
善章 山出
Ichiro Uchiyama
一郎 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9003224A priority Critical patent/JPH10200015A/en
Publication of JPH10200015A publication Critical patent/JPH10200015A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the reduction of the connection reliability due to the positional deviation on a ceramic board having recesses on the surface and external connecting electrodes located in the bottoms of the recesses. SOLUTION: Recesses having a diameter d meet the relation d<D<p; D is diameter of external connecting electrode and p is center-to-center distance between adjacent recesses. To form the recesses by laminating green sheets having through-holes, it suffices to meet the relation d'<D'<p'; d' is diameter of the through-hole of the green sheet, D' is diameter of the printed external connecting electrode and p' is center-to-center distance between adjacent recesses.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックス基板
およびその製造方法に関する。より詳しくは、本発明
は、表面に凹部を有し、その凹部底面に外部接続用電極
が位置している構造のセラミックス基板とその製造方法
に関する。
The present invention relates to a ceramic substrate and a method for manufacturing the same. More specifically, the present invention relates to a ceramic substrate having a structure having a concave portion on the surface and an external connection electrode located on the bottom surface of the concave portion, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】セラミックス多層基板は、多層化が進ん
だ現在では、主にグリーンシート多層積層法により製造
されている。この方法では、セラミックス材料を有機樹
脂バインダー、有機溶剤、可塑剤などと混合して得たス
ラリーからドクターブレード法によりグリーンシートを
形成し、グリーンシートにビアホール (スルーホール)
の穴あけ、導体ペーストによるビアホールの充填と内層
配線または表面の外部接続用電極のスクリーン印刷とい
った加工を施した後、複数のグリーンシートを積層して
熱圧着させ、得られた積層体を焼成する。
2. Description of the Related Art At present, multilayer ceramic substrates are mainly manufactured by a green sheet multilayer laminating method. In this method, a green sheet is formed by a doctor blade method from a slurry obtained by mixing a ceramic material with an organic resin binder, an organic solvent, a plasticizer, and the like, and a via hole (through hole) is formed in the green sheet.
After performing processing such as drilling holes, filling via holes with a conductive paste, and screen-printing the internal wiring or the external connection electrodes on the surface, a plurality of green sheets are laminated and thermocompression-bonded, and the obtained laminate is fired.

【0003】近年、面実装により実装密度を高める目的
で、セラミックス多層基板のプリント配線板への接続に
はBGA(Ball Grid Allay) 接続法が、LSI、チップ
コンデンサ等の電子部品のセラミックス多層基板への搭
載にはフリップチップ接続法が主流となりつつある。こ
の場合、基板の両面がいずれもハンダを用いて接続され
ることになる。
In recent years, for the purpose of increasing the mounting density by surface mounting, a BGA (Ball Grid Allay) connection method has been used for connecting a ceramic multilayer substrate to a printed wiring board, and the ceramic multilayer substrate for electronic components such as LSIs and chip capacitors has been used. The flip-chip connection method is becoming the mainstream for mounting. In this case, both surfaces of the substrate are connected using solder.

【0004】これらハンダを用いた接続法は、セラミッ
クス多層基板とプリント配線基板または電子部品との熱
膨張率の差から生ずる歪みにより、接続部のハンダが破
壊し、特にセラミックス多層基板側の外部接続用電極の
界面近傍で破壊しやすいという問題があった。この問題
に対して、特開平8−55928 号公報および特開平8−55
930 号公報には、表面に凹部を有し、凹部底面に外部接
続用電極が位置する構造の絶縁基板が提案されている。
[0004] In the connection method using these solders, the solder at the connection portion is destroyed by the distortion caused by the difference in the coefficient of thermal expansion between the ceramic multilayer substrate and the printed wiring board or the electronic component, and especially the external connection on the ceramic multilayer substrate side. There is a problem that the electrode is easily broken near the interface of the electrode. To solve this problem, Japanese Patent Application Laid-Open Nos. 8-55928 and 8-55
Japanese Patent Publication No. 930 proposes an insulating substrate having a structure having a concave portion on the surface and an external connection electrode located on the bottom surface of the concave portion.

【0005】また、BGA接続法およびフリップチップ
接続法では、ハンダ溶融時に、隣接した接続部のハンダ
どうしが接合し、短絡の原因になるという問題もあっ
た。この問題に対しても、実開平5−72177 号公報に、
表面に凹部を有し、凹部底面に外部接続用電極が位置す
る構造の配線基板が提案されている。
[0005] In addition, the BGA connection method and the flip chip connection method have a problem in that when solder is melted, the solders of adjacent connection portions are joined to each other, causing a short circuit. Regarding this problem, Japanese Utility Model Laid-Open No. 5-72177 discloses that
There has been proposed a wiring board having a structure having a concave portion on the surface and an external connection electrode located on the bottom surface of the concave portion.

【0006】このような基板表面にハンダが入り込む凹
部を形成し、溶融ハンダの流出を防ぐようにしたハンダ
ダム構造は、上記以外に、実開昭48−112955号公報、特
開昭50−77862 号公報および特開昭61−203648号公報に
も開示されている。ただし、これらの公報に開示されて
いるハンダダム (凹部) は、基板を構成する絶縁層とは
全く異なる高分子樹脂材料により形成されている。
[0006] In addition to the above, a solder dam structure in which a concave portion into which solder enters into the substrate surface to prevent the outflow of molten solder is disclosed in Japanese Unexamined Utility Model Publication No. 48-112955 and Japanese Patent Laid-Open No. 50-77862. It is also disclosed in the official gazette and JP-A-61-203648. However, the solder dams (concave portions) disclosed in these publications are formed of a polymer resin material completely different from the insulating layer constituting the substrate.

【0007】[0007]

【発明が解決しようとする課題】ハンダを用いたBGA
接続法やフリップチップ接続法に対して、表面に凹部を
形成し、凹部底面に外部接続用電極を位置させたセラミ
ックス基板の構造は、上記の従来技術からもわかるよう
に、接続部のハンダ破壊や短絡を防止するのに非常に有
効である。
SUMMARY OF THE INVENTION BGA using solder
In contrast to the connection method and flip-chip connection method, the structure of the ceramic substrate, in which a concave portion is formed on the surface and an external connection electrode is located on the bottom surface of the concave portion, as can be seen from the above-described conventional technology, the solder breakage of the connection portion And is very effective in preventing short circuits.

【0008】この種の構造を持つ従来の絶縁基板では、
外部接続用電極の直径をD、凹部の直径をdとすると、
d=Dとなっている。即ち、電極径と凹部径とが等し
い。特開平8−55928 号、特開平8−55930 号、および
実開平5−72177 号の各公報の明細書にはd=Dである
との説明はないが、各公報の図面からはd=Dであるこ
とが明らかである。
In a conventional insulating substrate having such a structure,
When the diameter of the external connection electrode is D and the diameter of the concave portion is d,
d = D. That is, the electrode diameter is equal to the concave diameter. Although the specifications of JP-A-8-55928, JP-A-8-55930, and JP-A-5-72177 do not describe that d = D, the drawings of the respective publications show that d = D. It is clear that

【0009】このようなd=Dである凹部を表面に有す
るセラミックス基板を、前述したグリーンシート多層積
層法で製造する場合、外部接続用電極を印刷したグリー
ンシートの電極印刷面の上に、印刷電極径と同径の貫通
穴を有する別のグリーンシート (以下では、第2のグリ
ーンシートともいう) を積層して圧着させ、焼成すれば
よい。第2のグリーンシートの貫通穴は、焼成後に一体
化したセラミックス基板の表面の凹部となる。こうし
て、理想的には、図1(b) に示すように、基板表面の径
dの凹部の底面に、同径Dの外部接続用電極の接続面の
全体が露出したセラミックス基板が得られる。
When a ceramic substrate having such a concave portion with d = D on the surface is manufactured by the above-described green sheet multilayer laminating method, the ceramic substrate is printed on the electrode printing surface of the green sheet on which the external connection electrode is printed. Another green sheet having a through hole having the same diameter as the electrode diameter (hereinafter, also referred to as a second green sheet) may be laminated, pressed, and fired. The through hole of the second green sheet becomes a concave portion on the surface of the ceramic substrate integrated after firing. Thus, ideally, as shown in FIG. 1B, a ceramic substrate is obtained in which the entire connection surface of the external connection electrode having the same diameter D is exposed on the bottom surface of the concave portion having the diameter d on the substrate surface.

【0010】しかし、印刷用スクリーンに形成した電極
パターンの位置精度と、上に積層する第2のグリーンシ
ートに形成した貫通穴の位置精度とを考慮すると、上記
の積層時に、前者のグリーンシートの表面に印刷した外
部接続用電極の中心と、後者の第2のグリーンシートに
形成した貫通穴との中心とを一致させることは極めて困
難である。そのため、焼成後に得られたセラミックス基
板では、図1(a) に示すように、凹部と外部接続用電極
の中心がずれてしまい、電極の接続面の全体が凹部底面
に露出しなくなる。換言すると、凹部底面の一部に絶縁
性のセラミックス基板が露出する。その結果、凹部底面
に露出した電極にハンダボールを溶着させて外部と接続
する場合に、上記の位置ずれが大きいと接続不良を生ず
る可能性があり、外部接続の信頼性の点で問題があるこ
とが判明した。
However, in consideration of the positional accuracy of the electrode pattern formed on the printing screen and the positional accuracy of the through-hole formed in the second green sheet laminated thereon, the former green sheet can be formed during the above lamination. It is extremely difficult to match the center of the external connection electrode printed on the surface with the center of the latter through hole formed in the second green sheet. Therefore, in the ceramic substrate obtained after firing, as shown in FIG. 1A, the center of the recess and the electrode for external connection are shifted, and the entire connection surface of the electrode is not exposed to the bottom of the recess. In other words, the insulating ceramic substrate is exposed on a part of the bottom surface of the concave portion. As a result, when the solder ball is welded to the electrode exposed on the bottom surface of the concave portion and the solder ball is connected to the outside, if the displacement is large, a connection failure may occur, and there is a problem in reliability of the external connection. It has been found.

【0011】本発明の課題は、表面に凹部を有し、凹部
の底面に外部接続用電極が位置する構造のセラミックス
基板において、位置精度に起因する不可避的な位置ずれ
があっても、外部接続用電極の接続不良が確実に避けら
れ、従って接続信頼性の高いセラミックス基板とその製
造方法とを提供することである。
An object of the present invention is to provide a ceramic substrate having a structure in which a concave portion is provided on the surface and an external connection electrode is located on the bottom surface of the concave portion, even if there is an unavoidable displacement due to positional accuracy. It is an object of the present invention to provide a ceramic substrate and a method for manufacturing the same, which can reliably prevent poor connection of the electrodes for use and thus have high connection reliability.

【0012】[0012]

【課題を解決するための手段】本発明によれば、図1
(c) に示すように、外部接続用電極の直径Dを、凹部の
直径dより大きく、かつ凹部のピッチ (隣接する凹部の
中心間の距離) pより小さくすることにより、上記課題
が解決される。それには、グリーンシートに印刷した電
極の直径D' を、この上に積層する第2のグリーンシー
トの貫通穴の直径d' より大きく、かつ貫通穴のピッチ
(隣接する貫通穴の中心間の距離) p' より小さくすれ
ばよい。
According to the present invention, FIG.
As shown in (c), the above problem is solved by making the diameter D of the external connection electrode larger than the diameter d of the concave part and smaller than the pitch (distance between centers of adjacent concave parts) p of the concave parts. You. To do so, the diameter D 'of the electrode printed on the green sheet is larger than the diameter d' of the through hole of the second green sheet laminated thereon, and the pitch of the through holes is larger.
(Distance between centers of adjacent through-holes) It may be smaller than p ′.

【0013】D>dおよびD' >d' とすることによっ
て、外部接続用電極の印刷用スクリーンに形成されたパ
ターンの位置精度や第2のグリーンシートに形成された
貫通穴の位置精度のために積層時に電極と貫通穴の中心
がずれても、焼成後に形成された凹部底面には、その全
面に電極を必ず露出させることが可能となり、従って、
外部接続の信頼性が確保される。
By setting D> d and D ′> d ′, the positional accuracy of the pattern formed on the printing screen of the external connection electrode and the positional accuracy of the through hole formed in the second green sheet can be improved. Even if the center of the electrode and the through hole is displaced at the time of lamination, it is possible to expose the electrode to the entire bottom surface of the concave portion formed after firing, and therefore,
External connection reliability is ensured.

【0014】ここに、本発明は、内部に導体配線が組み
込まれ、表面に外部接続用の電極が形成されたセラミッ
クス基板であって、前記基板の表面が、前記外部接続用
電極に対応する位置に凹部を有し、この凹部の底面に該
電極が露出し、この電極の直径Dは、凹部の直径をd、
隣接する凹部の中心間の距離をpとして、d<D<pを
満足することを特徴とする、セラミックス基板である。
According to the present invention, there is provided a ceramic substrate having a conductor wiring incorporated therein and an electrode for external connection formed on a surface, wherein the surface of the substrate is positioned at a position corresponding to the electrode for external connection. The electrode is exposed on the bottom surface of the concave portion, and the diameter D of the electrode is such that the diameter of the concave portion is d,
A ceramic substrate characterized by satisfying d <D <p, where p is a distance between centers of adjacent concave portions.

【0015】別の側面からは、本発明は、グリーンシー
ト多層積層法によるセラミックス基板の製造方法であっ
て、導体ペーストにより内部配線と表面の外部接続用電
極とが印刷された、1層または2層以上からなる第1の
セラミックス・グリーンシートを用意し、前記グリーン
シートの表面の電極印刷位置に対応する位置に貫通穴を
設けた第2のセラミックス・グリーンシートを用意し、
ここで、第1のグリーンシートの表面に印刷された電極
の直径D' は、第2のグリーンシートの貫通穴の直径を
d' 、隣接する貫通穴の中心間の距離をp' として、
d' <D' <p' を満足し、第1のグリーンシートの電
極印刷面の上に1または2以上の第2のグリーンシート
を熱圧着させて積層体を形成し、この積層体を焼成す
る、ことを特徴とする、セラミックス基板の製造方法で
ある。
From another aspect, the present invention relates to a method for manufacturing a ceramic substrate by a green sheet multi-layer laminating method, wherein one layer or two layers on which an internal wiring and a surface external connection electrode are printed with a conductive paste. Preparing a first ceramic green sheet comprising at least a layer, preparing a second ceramic green sheet having a through hole at a position corresponding to an electrode printing position on the surface of the green sheet;
Here, the diameter D ′ of the electrode printed on the surface of the first green sheet is represented by d ′ where the diameter of the through hole of the second green sheet is p ′ and the distance between the centers of adjacent through holes is p ′.
When d '<D'<p'is satisfied, one or more second green sheets are thermocompression-bonded on the electrode printing surface of the first green sheet to form a laminate, and the laminate is fired. A method for manufacturing a ceramic substrate.

【0016】[0016]

【発明の実施の形態】本発明のセラミックス基板は、基
板の内部配線の一部が水平方向 (平面方向)に伸びてい
る (即ち、いわゆる内層配線を持つ) 多層基板であって
も、或いは基板内部の配線が垂直方向 (一般にビアホー
ルにより形成される) だけである単層基板であってもよ
い。本発明において「内部配線」とは、基板内部の配線
全体を意味し、水平方向と垂直方向の両方の配線を包含
する。
BEST MODE FOR CARRYING OUT THE INVENTION The ceramic substrate of the present invention may be a multilayer substrate in which part of the internal wiring of the substrate extends in the horizontal direction (plane direction) (that is, has a so-called internal wiring). It may be a single-layer substrate in which the internal wiring is only in the vertical direction (generally formed by via holes). In the present invention, “internal wiring” means the entire wiring inside the substrate, and includes both horizontal and vertical wirings.

【0017】外部接続用電極は、ほとんどのセラミック
ス基板では両面に形成されるが、片面だけに形成されて
いてもよい。セラミックス基板の両面に外部接続用電極
が形成される場合、両面とも本発明に従う必要はない。
ハンダで外部と接続しようとする側の面の外部接続用電
極だけを、本発明に従って凹部内に位置させればよい。
また、1つの面の外部接続用電極の全部を、本発明に従
って凹部内に位置させることが好ましいが、これも必ず
しも必須ではなく、一部の外部接続用電極は、凹部内に
位置させないか、或いは凹部内に位置させたとしても本
発明の条件から外れてもよい。
The external connection electrodes are formed on both surfaces of most ceramic substrates, but may be formed on only one surface. When the external connection electrodes are formed on both sides of the ceramic substrate, it is not necessary to follow the present invention on both sides.
According to the present invention, only the external connection electrode on the surface to be connected to the outside with the solder may be located in the recess.
In addition, it is preferable that all of the external connection electrodes on one surface are positioned in the concave portion according to the present invention, but this is not necessarily essential, and some of the external connection electrodes are not positioned in the concave portion, Alternatively, even if it is located in the concave portion, the condition of the present invention may be deviated.

【0018】以下、図2を参照しながら、セラミックス
多層基板の両面に、凹部内に位置させた外部接続用電極
を持つ構造の本発明のセラミックス基板とその製造方法
について説明するが、上の説明から明らかなように、本
発明はこの態様に限られるものではない。
Hereinafter, the ceramic substrate of the present invention having a structure having external connection electrodes positioned in the concave portions on both surfaces of the ceramic multilayer substrate and a method of manufacturing the same will be described with reference to FIG. As is clear from the above, the present invention is not limited to this embodiment.

【0019】本発明のセラミックス基板は、周知のグリ
ーンシート多層積層法に従って製造することができる。
まず、セラミックス原料粉末をバインダーの有機樹脂、
有機溶剤、さらには可塑剤などの他の添加剤と混合して
スラリー化し、得られたスラリーをドクターブレード法
によりシート成形し、乾燥することによってグリーンシ
ートを得る。
The ceramic substrate of the present invention can be manufactured according to the well-known green sheet multilayer lamination method.
First, the ceramic raw material powder is used as the binder organic resin,
A green sheet is obtained by mixing with an organic solvent and further other additives such as a plasticizer to form a slurry, forming the resulting slurry into a sheet by a doctor blade method, and drying the sheet.

【0020】セラミックス原料粉末の種類、配合割合
は、基板に要求される特性に応じて選択すればよい。本
発明の「セラミックス」には、1000℃以下というような
低温焼成が可能なガラスセラミックスも含まれる。この
場合のセラミックス原料粉末は、セラミックス粉末のほ
かにガラス粉末を含有し、ガラス粉末の配合量の方が多
くなる場合もある。また、場合によっては、セラミック
ス原料粉末が結晶化ガラス粉末だけからなることもあ
る。
The type and mixing ratio of the ceramic raw material powder may be selected according to the characteristics required for the substrate. The “ceramics” of the present invention also includes glass ceramics that can be fired at a low temperature of 1000 ° C. or lower. In this case, the ceramic raw material powder contains glass powder in addition to the ceramic powder, and the blending amount of the glass powder may be larger. In some cases, the ceramic raw material powder may consist only of crystallized glass powder.

【0021】同じ寸法に裁断した複数のグリーンシート
に、それぞれ所定のビアホールの穴あけ、ならびに金属
粉末を主体とする導体ペーストをスクリーン印刷して、
ビアホールの充填と内層配線の印刷 (これらが内部配線
に相当する) または外部接続用電極の印刷 (最外層のグ
リーンシートに対して) を行う [図2(a)]。これらの導
体ペーストが印刷されたグリーンシートを、本発明では
第1のグリーンシートという。
On a plurality of green sheets cut to the same size, predetermined via holes are formed, and a conductor paste mainly composed of metal powder is screen-printed.
Filling of via holes and printing of internal wiring (these correspond to internal wiring) or printing of electrodes for external connection (for the outermost green sheet) [Fig. 2 (a)]. The green sheet on which these conductor pastes are printed is referred to as a first green sheet in the present invention.

【0022】なお、これら複数の (2層以上の) 第1の
グリーンシートが全部同じものである必要はなく、例え
ば、内部と表層では異なるセラミックス材料のグリーン
シートを使用してもよい。但し、一緒に焼成するので、
焼結温度が近いものでなければならない。
The plurality of (two or more) first green sheets need not all be the same. For example, green sheets made of different ceramic materials may be used for the inside and the surface. However, since they are fired together,
The sintering temperature must be close.

【0023】別に、凹部を形成するために第1のグリー
ンシートの両面に積層する2枚の第2のグリーンシート
を用意する。第2のグリーンシートのそれぞれに、それ
を積層する側の面の第1のグリーンシート表面に印刷さ
れている外部接続用電極に対応する位置に貫通穴を穴あ
けする [図2(a)]。各面について、第2のグリーンシー
トが1層だけでは十分な深さの凹部を形成できない時に
は、第2のグリーンシートを2層以上使用してもよい。
Separately, two second green sheets to be laminated on both sides of the first green sheet to form a concave portion are prepared. In each of the second green sheets, a through hole is formed at a position corresponding to the external connection electrode printed on the surface of the first green sheet on the surface on which the second green sheets are laminated [FIG. 2 (a)]. When a single layer of the second green sheet cannot form a recess having a sufficient depth for each surface, two or more layers of the second green sheet may be used.

【0024】第2のグリーンシートは、第1のグリーン
シートと同じ組成のものであっても、或いは異なる組成
のものであってもよい。例えば、基板表面の強度を高め
るため、第1のグリーンシートに使用したものより高強
度のセラミックス材料から第2のグリーンシートを構成
することもできる。但し、第1のグリーンシートと同時
に焼成するので、第1のグリーンシートと収縮率が大き
くは異ならないものが好ましい。収縮率を一致させるに
は、第1のグリーンシートと同じ組成のものを第2のグ
リーンシートに使用することが簡便である。
The second green sheet may have the same composition as the first green sheet, or may have a different composition. For example, in order to increase the strength of the substrate surface, the second green sheet may be made of a ceramic material having a higher strength than that used for the first green sheet. However, since it is fired at the same time as the first green sheet, it is preferable that the shrinkage ratio does not greatly differ from that of the first green sheet. In order to match the shrinkage ratios, it is convenient to use the same composition as the first green sheet for the second green sheet.

【0025】第1のグリーンシートをその両面の外面に
外部接続用電極が位置するように積層し、両面の外面の
上にそれぞれ対応する貫通穴を設けた第2のグリーンシ
ートを重ねて、常法により熱圧着させて積層体を形成す
る [図2(b)]。
The first green sheet is laminated so that the external connection electrodes are located on the outer surfaces on both sides thereof, and the second green sheets provided with the corresponding through holes on the outer surfaces on both sides are overlapped. The laminate is formed by thermocompression bonding according to a method [FIG. 2 (b)].

【0026】その後、積層体を焼成して、グリーンシー
ト中の有機成分を除去し、セラミックス材料を焼結させ
て全体を一体化する。焼成条件は、グリーンシートを構
成するセラミックス材料に応じて選択すればよい。焼成
中の反りや平面方向の収縮を抑制するため、焼成を加圧
下に実施することもできる。
Thereafter, the laminate is fired to remove organic components in the green sheet, and the ceramic material is sintered to integrate the whole. The firing conditions may be selected according to the ceramic material constituting the green sheet. In order to suppress warpage and shrinkage in the planar direction during firing, firing may be performed under pressure.

【0027】こうして、内部に導体配線 (導体ペースト
によるビアホールの充填と内層配線の印刷により形成さ
れた) を有し、表面に外部接続用電極を備え、外部接続
用電極に対応する位置に表面凹部が形成されていて、こ
の凹部の底面に該電極が露出している、本電発明にかか
るセラミックス基板が得られる [図2(c)]。図示の基板
の上面の外部接続用電極にフリップチップ接続法により
電子部品が接続され、下面の外部接続用電極はBGA法
によりプリント配線板に接続される。
In this manner, the conductor wiring (formed by filling the via hole with the conductor paste and printing the inner layer wiring) is provided inside, the external connection electrode is provided on the surface, and the surface recess is provided at a position corresponding to the external connection electrode. Is formed, and the ceramic substrate according to the present invention is obtained in which the electrodes are exposed on the bottom surfaces of the concave portions [FIG. 2 (c)]. Electronic components are connected to the external connection electrodes on the upper surface of the substrate shown by a flip-chip connection method, and the external connection electrodes on the lower surface are connected to a printed wiring board by the BGA method.

【0028】本発明にあっては、セラミックス基板の各
面において、外部接続用電極の直径Dは、凹部の直径を
d、凹部ピッチ (隣接する凹部の中心間の距離) をpと
して、d<D<pを満足する。凹部のピッチが一定では
ない場合には、両隣りの凹部間で上記関係を満たしてい
ればよい。
In the present invention, on each surface of the ceramic substrate, the diameter D of the external connection electrode is expressed as d <d, where d is the diameter of the recess and p is the pitch of the recess (the distance between the centers of adjacent recesses). Satisfies D <p. If the pitch of the concave portions is not constant, it is sufficient that the above relationship is satisfied between the concave portions on both sides.

【0029】凹部直径dを決めたら、前述した外部接続
用電極の印刷用スクリーンに形成されたパターンの位置
精度や第2のグリーンシートに形成された貫通穴の位置
精度を考慮して、外部接続用電極の位置ずれが最大にな
っても、凹部底面の全面に外部接続用電極が露出するよ
うに、この電極の直径Dを決める。具体的には、電極径
Dは、凹部径dに、前記の精度から予想される電極の位
置ずれの最大値の2倍を加えた数値とすればよい。それ
により、どの方向に位置ずれが起こっても、凹部の底面
は常に全面が外部接続用電極で覆われ、底面に絶縁性の
セラミックス材料が現れることはない。また、隣接する
外部接続用電極間の短絡を避けるために、外部接続用電
極の直径Dは凹部ピッチpより小さくなければならな
い。
After the diameter d of the concave portion is determined, the external connection is performed in consideration of the positional accuracy of the pattern formed on the printing screen of the electrode for external connection and the positional accuracy of the through hole formed in the second green sheet. The diameter D of the electrode for external connection is determined so that the electrode for external connection is exposed on the entire bottom surface of the concave portion even when the displacement of the electrode for connection becomes maximum. Specifically, the electrode diameter D may be a numerical value obtained by adding twice the maximum value of the electrode misalignment expected from the accuracy to the concave diameter d. Thus, no matter what direction the displacement occurs, the entire bottom surface of the concave portion is always covered with the external connection electrode, and the insulating ceramic material does not appear on the bottom surface. Further, in order to avoid a short circuit between adjacent external connection electrodes, the diameter D of the external connection electrodes must be smaller than the concave pitch p.

【0030】最終的な位置ずれの量は穴あけ用パンチン
グ機の穴あけ精度、スクリーン印刷機の位置合わせ精
度、スクリーンの位置精度、積層機の積層精度などに左
右されるが、具体的な目安を示すと、いずれの面でも、
Dはdより少なくとも20μm大きく、かつpより少なく
とも20μm小さい寸法とすることが好ましい。
The final amount of displacement depends on the accuracy of punching of a punching machine for punching, the accuracy of positioning of a screen printing machine, the accuracy of positioning of a screen, the accuracy of lamination of a laminating machine, and the like. And in any respect,
Preferably, D is at least 20 μm larger than d and at least 20 μm smaller than p.

【0031】焼成後のセラミックス基板においてd<D
<pの関係を満たすため、焼成前の第1のグリーンシー
トに印刷する外部接続用電極の直径D' が、第2のグリ
ーンシートの貫通穴の直径d' と貫通穴のピッチ (隣接
する貫通穴の中心間の距離)p' に対して、d' <D'
<p' を満たすようにする。外部接続用電極の印刷に用
いる導体ペーストと第2のグリーンシートは、焼成前に
熱圧着してから焼成されるため、焼成中は一体となって
収縮するので、収縮率は同じと考えてよい。従って、焼
成前にd' <D' <p' を満たしていれば、d<D<p
の関係を満たしたセラミックス基板が得られる。なお、
実際のd' とD' の値は、焼成中の収縮率を考慮して、
焼成後に前述したdおよびDの値になるように決めれば
よい。
In the fired ceramic substrate, d <D
In order to satisfy the relationship of <p, the diameter D ′ of the external connection electrode printed on the first green sheet before firing is the diameter d ′ of the through hole of the second green sheet and the pitch of the through hole (adjacent through hole). For the distance between the centers of the holes) p ', d'<D'
<P '. Since the conductive paste and the second green sheet used for printing the external connection electrodes are thermocompressed before firing and then fired, they shrink together during firing, so the shrinkage may be considered to be the same. . Therefore, if d ′ <D ′ <p ′ is satisfied before firing, d <D <p
Is obtained. In addition,
The actual values of d 'and D' are calculated by taking into account the shrinkage during firing.
The values of d and D may be determined after firing.

【0032】[0032]

【実施例】【Example】

(実施例1)いずれも粒径 0.1〜10μmのガラス粉末と
セラミックス (アルミナ) 粉末を重量比で60:40の割合
で配合した原料粉末に、バインダーの有機樹脂 (アクリ
ル樹脂) 、有機溶剤、分散剤および可塑剤を添加し、混
合してスラリー化した後、ドクターブレード法により一
定厚みのグリーンシートを作製した。
(Embodiment 1) Organic resin (acrylic resin), organic solvent, and dispersion were mixed in raw material powder in which glass powder and ceramic (alumina) powder each having a particle size of 0.1 to 10 μm were mixed at a weight ratio of 60:40. After adding an agent and a plasticizer, mixing and slurrying, a green sheet having a constant thickness was produced by a doctor blade method.

【0033】所定寸法に切断した複数のグリーンシート
に対して、所定のビアホールを穴あけした後、Agペース
トを使用して、内層配線、ビアホール充填、およびフリ
ップチップ接続用電極とBGA接続用電極をスクリーン
印刷した。使用したスクリーン印刷機はニューロング社
製LS-25TVA、穴開け用パンチング機はUHT社製MP-715
0 であった。
After a predetermined via hole is formed in a plurality of green sheets cut to a predetermined size, the inner layer wiring, the filling of the via hole, and the flip chip connection electrode and the BGA connection electrode are screened using Ag paste. Printed. The screen printing machine used was LS-25TVA manufactured by Neurong, and the punching machine used for punching was MP-715 manufactured by UHT.
It was 0.

【0034】別に用意した上記と同じグリーンシート2
枚に、一方はフリップチップ接続用電極の印刷位置に対
応する位置に、他方はBGA接続用電極の印刷位置に対
応する位置に、対応する電極より小径の貫通穴を上記パ
ンチング機で穴あけした。
Green sheet 2 prepared separately as above
In each of the sheets, a through hole having a diameter smaller than that of the corresponding electrode was punched by the above-mentioned punching machine at one position corresponding to the printing position of the flip chip connection electrode, and at the other position corresponding to the printing position of the BGA connection electrode.

【0035】フリップチップ接続用の電極印刷径D'f
フリップチップ接続面に積層するグリーンシートの貫通
穴の直径d'f およびピッチp'f 、ならびにBGA接続用
の電極印刷径D'b 、BGA接続面に積層するグリーンシ
ートの貫通穴の直径d'b およびピッチp'b の具体的な寸
法は次の通りであった。 D'f =180 μm、d'f =150 μm、p'f =300 μm D'b =1.2 mm、d'b =1.08mm、p'b =1.56mm。
The electrode printing diameter D ' f for flip-chip connection,
The diameter d 'f and pitch p' f of the through holes of the green sheets to be laminated to the flip chip bonding surface, and the electrode printing diameter D for BGA connection 'b, the diameter d of the through holes of the green sheets to be laminated to the BGA connection surface' specific dimensions b and the pitch p 'b were as follows. D ' f = 180 µm, d' f = 150 µm, p ' f = 300 µm D' b = 1.2 mm, d ' b = 1.08 mm, p' b = 1.56 mm.

【0036】これらのグリーンシートを所定の順序に積
層し、熱圧着(100℃、70 kgf/cm2)させて一体化した
後、積層体をセッターに乗せ、加圧せずに電気炉にて大
気条件下 900℃で1時間焼成して、両面とも表面に凹部
を有し、この凹部底面に外部接続用電極が位置している
構造のセラミックス多層基板を得た。このセラミックス
多層基板のフリップチップ接続側およびBGA接続側の
電極径Df およびDb 、凹部径df およびdb 、ならび
に凹部ピッチpf およびpb は次の通りであった。 Df =150 μm、df =125 μm、pf = 250μm Db =1.0 mm、db =0.9 mm、pb =1.3 mm。
These green sheets are laminated in a predetermined order, and integrated by thermocompression bonding (100 ° C., 70 kgf / cm 2 ). The laminated body is placed on a setter and is pressed in an electric furnace without pressure. The resultant was fired at 900 ° C. for 1 hour under atmospheric conditions to obtain a ceramic multilayer substrate having a structure in which both surfaces have a concave portion on the surface and an electrode for external connection is located on the bottom surface of the concave portion. Electrode diameter of flip-chip bonding side and BGA connection side of the ceramic multilayer substrate D f and D b, recess diameter d f and d b and the recess pitch p f and p b, were as follows. D f = 150 μm, d f = 125 μm, p f = 250μm D b = 1.0 mm, d b = 0.9 mm, p b = 1.3 mm.

【0037】このセラミックス基板の両面の凹部底面に
おける断面をSEM観察したところ、両面とも凹部底面
は外部接続用電極で完全に覆われており、絶縁性のセラ
ミックスは凹部底面には現れていなかった。
When the cross sections of the bottom surfaces of the concave portions on both sides of the ceramic substrate were observed by SEM, the bottom surfaces of the concave portions on both surfaces were completely covered with the external connection electrodes, and the insulating ceramic did not appear on the bottom surfaces of the concave portions.

【0038】(比較例1)フリップチップ接続用電極とB
GA接続用電極の印刷径を、直径がそれぞれ対応する貫
通穴の直径と同一径になるように変更した以外は、実施
例1と同様にしてセラミックス多層基板を作製した。こ
の場合の焼成前の各寸法は次の通りであった。 D'f =d'f =150 μm、p'f =300 μm D'b =d'b =1.08mm、p'b =1.56mm。
Comparative Example 1 Flip Chip Connection Electrode and B
A ceramic multilayer substrate was produced in the same manner as in Example 1, except that the printing diameter of the GA connection electrode was changed so that the diameter became the same as the diameter of the corresponding through hole. The dimensions before firing in this case were as follows. D 'f = d' f = 150 μm, p 'f = 300 μm D' b = d 'b = 1.08mm, p' b = 1.56mm.

【0039】また、焼成後に得られたセラミックス基板
の対応する各寸法は次の通りであった。 Df =df =125 μm、pf =250 μm Db =db =0.9 mm、pb =1.3 mm。
The corresponding dimensions of the ceramic substrate obtained after firing were as follows. D f = d f = 125 μm, p f = 250 μm D b = d b = 0.9 mm, p b = 1.3 mm.

【0040】このセラミックス基板の両面の凹部底面に
おける断面をSEM観察したところ、フリップチップ接
続側の表面の凹部底面は最大幅が10μm程度のセラミッ
クス絶縁体の露出部分が、BGA接続側の表面の凹部底
面も最大幅が10μm程度のセラミックス絶縁体の露出部
分がそれぞれ確認され、外部接続用電極で完全には覆わ
れていなかった。
When the cross section of the bottom surface of the concave portion on both sides of this ceramic substrate was observed by SEM, the exposed bottom surface of the ceramic insulator having a maximum width of about 10 μm was replaced with the concave portion on the surface of the BGA connection side. Exposed portions of the ceramic insulator having a maximum width of about 10 μm were also observed on the bottom surface, and were not completely covered with the external connection electrodes.

【0041】これからわかるように、外部接続用電極の
印刷径と表面凹部を形成するためのグリーンシートの貫
通穴の径を同一にすると、印刷精度や穴あけ精度により
必然的に生ずる位置ずれのために、焼成後に形成された
表面凹部の底面の全面に外部接続用電極を露出させるこ
とは非常に困難であり、ほとんどの場合には凹部の底面
の一部に絶縁性のセラミックス基板材料が露出する。そ
の結果、外部接続の信頼性が損なわれることになる。
As can be seen from the above, if the printing diameter of the external connection electrode and the diameter of the through hole of the green sheet for forming the surface concave portion are made the same, the positional deviation necessarily occurs due to the printing accuracy and the drilling accuracy. It is very difficult to expose the external connection electrode to the entire bottom surface of the surface recess formed after firing, and in most cases, the insulating ceramic substrate material is exposed to a part of the bottom surface of the recess. As a result, the reliability of the external connection is impaired.

【0042】[0042]

【発明の効果】本発明によれば、グリーンシート多層積
層法により貫通穴を形成したグリーンシートを表面に積
層することにより形成した表面凹部の底面に外部接続用
電極が露出する構造のセラミックス基板を製造する際
に、導体ペーストの印刷精度や穴あけの精度により電極
の印刷位置と貫通穴の位置の各中心がずれても、表面凹
部の底面全面が外部接続用電極で確実に覆われるように
することができる。
According to the present invention, there is provided a ceramic substrate having a structure in which an external connection electrode is exposed on the bottom surface of a concave portion formed by laminating a green sheet having a through hole formed on a surface by a green sheet multilayer laminating method. When manufacturing, even if the center of the printing position of the electrode and the center of the position of the through hole are shifted due to the printing accuracy and drilling accuracy of the conductor paste, the entire bottom surface of the surface recess is surely covered with the external connection electrode. be able to.

【0043】その結果、この構造のセラミックス基板に
ついて下記の効果が得られる。 (1) 外部との接続信頼性が向上する。 (2) 製造誤差の許容範囲が拡大する。 (3) 外部との接続が容易になる。
As a result, the following effects can be obtained for the ceramic substrate having this structure. (1) External connection reliability is improved. (2) The tolerance of the manufacturing error is expanded. (3) Connection to the outside becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術および本発明における表面凹部の底面
に位置した外部接続用電極を示す説明図である。
FIG. 1 is an explanatory view showing an external connection electrode located on the bottom surface of a surface concave portion according to the related art and the present invention.

【図2】本発明のセラミックス基板の製造過程を示す説
明図である。
FIG. 2 is an explanatory view showing a process of manufacturing the ceramic substrate of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内部に導体配線が組み込まれ、表面に外
部接続用の電極が形成されたセラミックス基板であっ
て、 前記基板の表面が、前記外部接続用電極に対応する位置
に凹部を有し、この凹部の底面に該電極が露出し、この
電極の直径Dは、凹部の直径をd、隣接する凹部の中心
間の距離をpとして、d<D<pを満足することを特徴
とする、セラミックス基板。
1. A ceramic substrate having a conductor wiring incorporated therein and an electrode for external connection formed on a surface thereof, wherein the surface of the substrate has a recess at a position corresponding to the electrode for external connection. The electrode is exposed on the bottom surface of the concave portion, and the diameter D of the electrode satisfies d <D <p, where d is the diameter of the concave portion, and p is the distance between the centers of adjacent concave portions. , Ceramic substrates.
【請求項2】 グリーンシート多層積層法によるセラミ
ックス基板の製造方法であって、 導体ペーストにより内部配線と表面の外部接続用電極と
が印刷された、1層または2層以上からなる第1のセラ
ミックス・グリーンシートを用意し、 前記グリーンシートの表面の電極印刷位置に対応する位
置に貫通穴を設けた第2のセラミックス・グリーンシー
トを用意し、 ここで、第1のグリーンシートの表面に印刷された電極
の直径D' は、第2のグリーンシートの貫通穴の直径を
d' 、隣接する貫通穴の中心間の距離をp' として、
d' <D' <p' を満足し、 第1のグリーンシートの電極印刷面の上に1または2以
上の第2のグリーンシートを熱圧着させて積層体を形成
し、 この積層体を焼成する、ことを特徴とする、セラミック
ス基板の製造方法。
2. A method of manufacturing a ceramic substrate by a green sheet multi-layer lamination method, comprising: one or more first ceramics on which an internal wiring and an external connection electrode on a surface are printed with a conductive paste.・ Preparing a green sheet, preparing a second ceramic green sheet having a through hole at a position corresponding to an electrode printing position on the surface of the green sheet, wherein a second ceramic green sheet is printed on the surface of the first green sheet. The diameter D ′ of the electrode is defined as d ′, the diameter of the through hole of the second green sheet, and p ′, the distance between the centers of adjacent through holes.
d '<D'<p'is satisfied, and one or more second green sheets are thermocompression-bonded on the electrode printing surface of the first green sheet to form a laminate, and the laminate is fired. A method of manufacturing a ceramic substrate.
JP9003224A 1997-01-10 1997-01-10 Ceramic board and manufacture thereof Pending JPH10200015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9003224A JPH10200015A (en) 1997-01-10 1997-01-10 Ceramic board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9003224A JPH10200015A (en) 1997-01-10 1997-01-10 Ceramic board and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10200015A true JPH10200015A (en) 1998-07-31

Family

ID=11551483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9003224A Pending JPH10200015A (en) 1997-01-10 1997-01-10 Ceramic board and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10200015A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861757B2 (en) 2001-09-03 2005-03-01 Nec Corporation Interconnecting substrate for carrying semiconductor device, method of producing thereof and package of semiconductor device
JP2008294247A (en) * 2007-05-25 2008-12-04 Koa Corp Low-temperature baked ceramic multilayer substrate, and manufacturing method thereof
JP2009295624A (en) * 2008-06-02 2009-12-17 Fujitsu Media Device Kk Electronic component and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861757B2 (en) 2001-09-03 2005-03-01 Nec Corporation Interconnecting substrate for carrying semiconductor device, method of producing thereof and package of semiconductor device
JP2008294247A (en) * 2007-05-25 2008-12-04 Koa Corp Low-temperature baked ceramic multilayer substrate, and manufacturing method thereof
JP2009295624A (en) * 2008-06-02 2009-12-17 Fujitsu Media Device Kk Electronic component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4748161B2 (en) Multilayer wiring board and manufacturing method thereof
JP4310467B2 (en) Composite multilayer substrate and manufacturing method thereof
US6132543A (en) Method of manufacturing a packaging substrate
EP1921904B1 (en) Ceramic electronic component and method for manufacturing the same
JP3918101B2 (en) Internal conductor connection structure and multilayer board
US20080223606A1 (en) Ceramic Substrate and Method for Manufacturing the Same
JP4111222B2 (en) Surface mount parts
JP2000068414A (en) Manufacture of lead-less package
EP2129201B1 (en) Multilayer wiring substrate
JP4752612B2 (en) Manufacturing method of circuit board with protruding electrode
JP4581903B2 (en) Manufacturing method of ceramic electronic component
JP2680443B2 (en) Ceramic wiring board and method of manufacturing the same
JP2006128229A (en) Composite multilayer substrate
JPH10200015A (en) Ceramic board and manufacture thereof
JP2873645B2 (en) Manufacturing method of ceramic multilayer wiring board
JP4686907B2 (en) Manufacturing method of ceramic substrate
JPH05243330A (en) Connecting structure for multilayer interconnection substrate with flip chip ic
JP3493291B2 (en) Multilayer circuit board
JP3258231B2 (en) Ceramic circuit board and method of manufacturing the same
JP4329253B2 (en) Manufacturing method of ceramic multilayer substrate for flip chip
JPH08298362A (en) Circuit board for surface mount
JP2006032442A (en) Multi-layer substrate and manufacturing method therefor
JP2002141646A (en) Circuit board
JP3872402B2 (en) Wiring board
JP2011029534A (en) Multilayer wiring board

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010717