JPH10199528A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH10199528A
JPH10199528A JP9003115A JP311597A JPH10199528A JP H10199528 A JPH10199528 A JP H10199528A JP 9003115 A JP9003115 A JP 9003115A JP 311597 A JP311597 A JP 311597A JP H10199528 A JPH10199528 A JP H10199528A
Authority
JP
Japan
Prior art keywords
particles
limn2
limn
battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9003115A
Other languages
Japanese (ja)
Inventor
Hiromichi Ota
裕道 太田
Ikurou Nakane
育朗 中根
Kazuo Terashi
和生 寺司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9003115A priority Critical patent/JPH10199528A/en
Publication of JPH10199528A publication Critical patent/JPH10199528A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable charging/discharging characteristics of a secondary battery to be improved by forming positive active material particles in a complex body consisting of LiMn2 O4 and Li2 Mn2 O4 and restricting elution of Mn out of Mn oxide of positive active material during charging and crystal structure destruction of spinel type LiMn2 O4 during discharging. SOLUTION: A mixture of molar ratio 95:5 between LiMn2 O4 powder and LiOH powder is subjected to heat treatment at 600 deg.C for 6 hours in vacuum so as to form a complex whose surface is covered by Li2 Mn2 O4 . In this complex powder 90 pts.wt. carbon black of conductive material 5 pts.wt., and 5 pts.wt. of solid component of binding agent of polyvinylidene fluoride dissolved in N-methyl-2-pyrrolidone are mixed together to form positive black mixture. Hereby, the surface of positive active material LiMn2 O4 particles surfaces are covered by Li2 Mn2 O4 particles and during a charging period elution of Mn included in LiMn2 O4 can be restricted. In addition, the crystal structure of LiMn2 O4 particles can be stabilized also against storage/release of Li ions at repetitive charging/discharging, so that cycle characteristic may be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マンガン酸化物を
正極活物質とする非水電解液二次電池に関するものであ
り、特にサイクル特性の向上、高容量化を目的とするも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using manganese oxide as a positive electrode active material, and more particularly to an improvement in cycle characteristics and an increase in capacity.

【0002】[0002]

【従来の技術】従来、非水電解液二次電池の正極活物質
として、二硫化チタン、五酸化バナジウム及びマンガン
酸化物等が提案されている。特に、高電圧を取り出すこ
とができる、資源的に豊富である、安価である等の理由
から、LiMn24で表されるマンガン酸化物が特に注
目されてきている。
2. Description of the Related Art Conventionally, titanium disulfide, vanadium pentoxide, manganese oxide and the like have been proposed as a positive electrode active material of a nonaqueous electrolyte secondary battery. In particular, a manganese oxide represented by LiMn 2 O 4 has attracted particular attention because of its ability to extract a high voltage, being rich in resources, and being inexpensive.

【0003】このLiMn24粒子は、スピネル型構造
を有し、リチウムイオンをその結晶内にドープ,脱ドー
プすることが可能であり、優れた充放電特性が得られる
ことが知られている。
It is known that the LiMn 2 O 4 particles have a spinel structure, and that lithium ions can be doped and de-doped in the crystal, and that excellent charge / discharge characteristics can be obtained. .

【0004】しかしながら、従来、LiMn24粒子等
のマンガン酸化物を用いた非水電解液二次電池は、正極
が高電位になる充電時にマンガンが溶出してしまうため
に、充放電サイクル初期における放電容量が著しく低下
するという問題点があった。
However, conventionally, in a non-aqueous electrolyte secondary battery using a manganese oxide such as LiMn 2 O 4 particles, manganese is eluted at the time of charging when the positive electrode has a high potential. In this case, there is a problem that the discharge capacity is significantly reduced.

【0005】そこで、上記問題点を解決するために、特
開平6−111819号公報では、LiMn24とLi
2MnO3の複合体粉末を用いることを提案している。
In order to solve the above problem, Japanese Patent Application Laid-Open No. HEI 6-111819 discloses LiMn 2 O 4 and LiMn.
It has been proposed to use a composite powder of 2 MnO 3 .

【0006】しかしながら、上記公報では、スピネル型
LiMn24粒子の表面をスピネル骨格を持たないLi
2MnO3層で被覆しているので、LiMn24粒子とL
2MnO3粒子の界面における界面格子不整が大きく、
正極が低電位となる放電時にLiの吸蔵に伴い前記界面
における結晶構造が崩壊し、充放電サイクル特性が低下
するという問題があった。
[0006] However, in the above publication, the surface of the spinel type LiMn 2 O 4 particles is made of LiMn 2 O 4 particles having no spinel skeleton.
Since it is covered with a 2 MnO 3 layer, LiMn 2 O 4 particles and L
The interface lattice irregularity at the interface of i 2 MnO 3 particles is large,
At the time of discharge at which the positive electrode has a low potential, there is a problem that the crystal structure at the interface collapses due to the occlusion of Li, and the charge / discharge cycle characteristics deteriorate.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決し、その目的は、充電時における正極活物質の
マンガン酸化物からマンガンの溶出、及び放電時におけ
るスピネル型LiMn24の結晶構造の崩壊を抑制する
ことにより、充放電特性に優れた非水電解液電池を提供
することにある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and an object of the present invention is to elute manganese from manganese oxide as a positive electrode active material during charging and spinel type LiMn 2 O 4 during discharging. It is an object of the present invention to provide a nonaqueous electrolyte battery having excellent charge / discharge characteristics by suppressing the collapse of the crystal structure of the nonaqueous electrolyte solution.

【0008】[0008]

【課題を解決するための手段】本発明は、正極と、負極
と、非水電解液とを備えた非水電解液二次電池におい
て、前記正極活物質粒子がLiMn24とLi2Mn2
4との複合体であることを特徴とするものである。
According to the present invention, there is provided a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode active material particles are LiMn 2 O 4 and Li 2 Mn. 2 O
And a complex with 4 .

【0009】ここでいう複合体とは、単にLiMn24
粒子、Li2Mn24粒子とを混合した混合物ではな
く、LiMn24粒子とLi2Mn24粒子とが互いに
化学的に結合している状態のものをいう。
[0009] The complex referred to here is simply LiMn 2 O 4
Particles, rather than the mixture obtained by mixing the Li 2 Mn 2 O 4 particles, refers to the state in which the LiMn 2 O 4 particles and Li 2 Mn 2 O 4 particles are chemically bonded to each other.

【0010】このような複合体を得るためには、例え
ば、LiMn24と、水酸化リチウムとの混合物を、真
空中又は窒素ガス、アルゴンガス等の非酸化性ガス雰囲
気下にて、600℃程度の温度で5時間以上焼成するこ
とによって得られる。
In order to obtain such a composite, for example, a mixture of LiMn 2 O 4 and lithium hydroxide is mixed in a vacuum or in a non-oxidizing gas atmosphere such as nitrogen gas, argon gas or the like for 600 minutes. It is obtained by baking at a temperature of about 5 ° C. for 5 hours or more.

【0011】このようにして得られた複合体の形態は、
少なくともLiMn24粒子の表面の一部分がLi2
24層で形成されている。
The form of the composite thus obtained is as follows:
At least a part of the surface of the LiMn 2 O 4 particles is Li 2 M
It is formed of an n 2 O 4 layer.

【0012】このようにLiMn24粒子の表面にLi
2Mn24層を形成すると、充電時の高電位に対して、
LiMn24のマンガンの一部が電解液中に溶出するこ
とを抑制することができる。この理由は、Li2Mn2
4がLiMn24に比べて高電位に対して比較的安定で
あるので、Li2Mn24層で被覆されたLiMn2 4
粒子も高電位に対して安定になると考えられる。
Thus, LiMnTwoOFourLi on the surface of the particles
TwoMnTwoOFourWhen a layer is formed, the high potential during charging
LiMnTwoOFourSome of the manganese in the
And can be suppressed. The reason is that LiTwoMnTwoO
FourIs LiMnTwoOFourRelatively stable to high potentials
Because there is LiTwoMnTwoOFourLiMn coated with layerTwoO Four
The particles are also believed to be stable to high potentials.

【0013】又、低電位となる放電時、リチウムの吸蔵
に伴うLiMn24の結晶構造の崩壊を防止することが
できる。
Further, at the time of discharging at a low potential, it is possible to prevent the crystal structure of LiMn 2 O 4 from collapsing due to occlusion of lithium.

【0014】この理由は、スピネル型LiMn24粒子
と複合化させるLi2Mn24粒子もスピネル構造を有
しているので、両者を複合化させてもその界面はスピネ
ル構造を有する粒子同士なので、リチウムイオンの移動
においても両者の結晶構造が崩れることがないためと考
えられる。
The reason is that the Li 2 Mn 2 O 4 particles to be composited with the spinel type LiMn 2 O 4 particles also have a spinel structure, so that even if both are compounded, the interface is a particle having a spinel structure. It is considered that, since they are both, the crystal structures of both do not collapse even when lithium ions move.

【0015】尚、前記Li2Mn24層はLiMn24
粒子の表面全体を被覆しているほうがより一層効果を得
ることができる。
The Li 2 Mn 2 O 4 layer is composed of LiMn 2 O 4
The effect can be further obtained by covering the entire surface of the particle.

【0016】さらにまた、前記Li2Mn24層の膜厚
が20nm以上100nm以下であることが好ましい。
Further, it is preferable that the thickness of the Li 2 Mn 2 O 4 layer is 20 nm or more and 100 nm or less.

【0017】この理由は、Li2Mn24層の膜厚が2
0nm未満であると、LiMn24とLi2Mn24
を複合体にする効果が得られず、又100nmを越える
と、マンガンの電解液への溶出を抑制する効果はある
が、正極容量に起因するLiMn24の量が減少するた
め電池としての放電容量が低下するという問題が生じる
からである。さらに、Li2Mn24の膜厚は特に40
nm以上70nm以下がより好ましい。
The reason is that the film thickness of the Li 2 Mn 2 O 4 layer is 2
If the thickness is less than 0 nm, the effect of forming a composite of LiMn 2 O 4 and Li 2 Mn 2 O 4 cannot be obtained. This is because the amount of LiMn 2 O 4 due to the positive electrode capacity decreases, which causes a problem that the discharge capacity of the battery decreases. Further, the film thickness of Li 2 Mn 2 O 4 is particularly 40
It is more preferably from 70 nm to 70 nm.

【0018】また、本発明の非水電解液二次電池の非水
電解液の溶媒としては、プロピレンカーボネート、エチ
レンカーボネート、ジメチルカーボネート、ジエチルカ
ーボネート、エチルメチルカーボネート、1,2−ジメ
トキシエタンなどの溶媒又はそれらの混合溶媒が挙げら
れる。また、溶質としては、LiPF6、LiBF4、L
iClO4、LiCF3SO3などが挙げられる。
The solvent for the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery of the present invention may be a solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and 1,2-dimethoxyethane. Or a mixed solvent thereof. As the solute, LiPF 6 , LiBF 4 , L
iClO 4 , LiCF 3 SO 3 and the like.

【0019】さらにまた、本発明の非水電解液二次電池
の負極としては、金属リチウム、リチウム合金、リチウ
ムイオンを吸蔵.放出可能な炭素材料が挙げられる。
Further, as the negative electrode of the non-aqueous electrolyte secondary battery of the present invention, lithium metal, a lithium alloy and lithium ions are stored. Releasable carbon materials are included.

【0020】[0020]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施例1〕 [正極の作製]スピネル構造を有するLiMn24粉末
と水酸化リチウム(LiOH)粉末とのモル比95:5
の混合物を真空中にて600℃で6時間加熱処理して、
LiMn24の表面がLi2Mn24で被覆された複合
体を合成した。
Example 1 [Preparation of Positive Electrode] Molar ratio of LiMn 2 O 4 powder having a spinel structure to lithium hydroxide (LiOH) powder 95: 5
Is heated in a vacuum at 600 ° C. for 6 hours,
A composite in which the surface of LiMn 2 O 4 was coated with Li 2 Mn 2 O 4 was synthesized.

【0021】尚、この複合体については、X線回折測定
を行い、得られた回折パターンをJCPDSカードと照
合した結果、LiMn24及びLi2Mn24からなる
ことを確認した。又、上記複合体を透過型電子顕微鏡に
より高分解能観察したところ、複合体粒子がLiMn2
4粒子であり、その粒子表面に50nmのLi2Mn2
4膜が形成されているのを確認した。
The composite was subjected to X-ray diffraction measurement, and the obtained diffraction pattern was compared with a JCPDS card. As a result, it was confirmed that the composite was composed of LiMn 2 O 4 and Li 2 Mn 2 O 4 . When the above composite was observed with a transmission electron microscope at a high resolution, the composite particles were found to be LiMn 2
O 4 particles, and 50 nm of Li 2 Mn 2
It was confirmed that an O 4 film was formed.

【0022】次いで、この複合体粉末90重量部と、導
電剤としてカーボンブラック5重量部と、結着剤として
N−メチル−2−ピロリドンに溶かしたポリフッ化ビニ
リデンを固形分として5重量部となるように混合して正
極合剤とした。
Next, 90 parts by weight of the composite powder, 5 parts by weight of carbon black as a conductive agent, and 5 parts by weight of polyvinylidene fluoride dissolved in N-methyl-2-pyrrolidone as a binder as a solid content. The mixture was mixed as described above to obtain a positive electrode mixture.

【0023】上記正極合剤をアルミニウム箔の芯体上に
両面塗布し、乾燥後、ローラープレス機により圧延し、
端部にアルミニウムのリードを超音波溶着した後、乾燥
処理して、正極を作製した。
The positive electrode mixture is coated on both sides of an aluminum foil core, dried, and then rolled by a roller press.
An aluminum lead was ultrasonically welded to the end, followed by drying treatment to produce a positive electrode.

【0024】[負極の作製]負極として、粒子径5〜2
5μmの天然黒鉛粉末95重量部と、N−メチル−2−
ピロリドンに溶かしたポリフッ化ビニリデンを固形分と
して5重量部となるように混合して負極合剤とした。
[Preparation of Negative Electrode]
95 parts by weight of 5 μm natural graphite powder and N-methyl-2-
Polyvinylidene fluoride dissolved in pyrrolidone was mixed to a solid content of 5 parts by weight to prepare a negative electrode mixture.

【0025】この負極合剤を銅箔上に両面塗布し、乾燥
後、ローラープレス機により圧延し、端部にニッケルの
リードを超音波溶着した後、乾燥処理して、負極を作製
した。
This negative electrode mixture was coated on both sides of a copper foil, dried, and then rolled by a roller press. A nickel lead was ultrasonically welded to an end portion, followed by drying treatment to prepare a negative electrode.

【0026】[電解液の調整]エチレンカーボネートと
ジメチルカーボネートとの体積混合比が1:1である混
合溶媒に1mol/dm3の濃度になるようにLiPF6
を溶解して非水電解液を調整した。
[Adjustment of electrolyte solution] LiPF 6 was added to a mixed solvent having a volume mixing ratio of ethylene carbonate and dimethyl carbonate of 1: 1 so as to have a concentration of 1 mol / dm 3.
Was dissolved to prepare a non-aqueous electrolyte.

【0027】[電池の作製]上記の正極と負極とを、厚
さ25μmの多孔性ポリプロピレン製セパレータを介し
て渦巻状に巻き取り、渦巻電極体を作製した。
[Preparation of Battery] The above positive electrode and negative electrode were spirally wound through a 25-μm-thick porous polypropylene separator to produce a spiral electrode body.

【0028】この渦巻電極体を、ニッケルメッキを施し
た鉄製の電池缶内に挿入した後、上記電解液を注液し
た。
After inserting this spiral electrode body into a nickel-plated iron battery can, the above-mentioned electrolytic solution was injected.

【0029】次いで、電池缶の開口部にガスケットを介
した封口体によって、密閉円筒型電池を作製した。この
密閉円筒型電池を本発明電池A1とする。
Next, a sealed cylindrical battery was manufactured by a sealing body with a gasket interposed at the opening of the battery can. This sealed cylindrical battery is referred to as Battery A1 of the present invention.

【0030】〔比較例1〕LiMn24粉末とLiOH
粉末とをモル比1:0.02で混合し、空気中にて37
5℃で20時間加熱処理して、LiMn24粉末の表面
にLi2MnO3層が形成された複合体を使用する以外
は、実施例1と同様にして電池を作製した。
Comparative Example 1 LiMn 2 O 4 powder and LiOH
Powder and a molar ratio of 1: 0.02, and mixed in air at 37.degree.
5 ° C. 20 hours of heat treatment is made in, except for using LiMn 2 O 4 on the surface of the powder Li 2 MnO 3 layer is formed complexes, the battery was fabricated in the same manner as in Example 1.

【0031】このようにして作製した電池を比較電池X
1とする。
The battery fabricated in this manner was used as a comparative battery X
Let it be 1.

【0032】〔比較例2〕LiMn24粉末の表面にL
2Mn24層が形成された複合体の代わりにスピネル
構造を有するLiMn24粉末のみを使用する以外は実
施例1と同様にして電池を作製した。
Comparative Example 2 The surface of LiMn 2 O 4 powder was L
A battery was produced in the same manner as in Example 1, except that only the LiMn 2 O 4 powder having a spinel structure was used instead of the composite having the i 2 Mn 2 O 4 layer formed thereon.

【0033】このようにして作製した電池を比較電池X
2とする。
The battery fabricated in this manner was used as a comparative battery X
Let it be 2.

【0034】〔比較例3〕LiMn24粉末の表面にL
2Mn24層が形成された複合体の代わりにスピネル
構造を有するLiMn24粉末とLi2Mn24粉末の
混合物(モル比=5:1)を使用する以外は、実施例1
と同様にして電池を作製した。
Comparative Example 3 The surface of LiMn 2 O 4 powder was L
Except for using a mixture of a LiMn 2 O 4 powder having a spinel structure and a Li 2 Mn 2 O 4 powder (molar ratio = 5: 1) instead of the composite having the i 2 Mn 2 O 4 layer formed thereon, Example 1
In the same manner as in the above, a battery was produced.

【0035】このようにして作製した電池を比較電池X
3とする。
The battery manufactured in this manner was used as a comparative battery X
3 is assumed.

【0036】(実験1)上記本発明電池A1、比較電池
X1〜X3を用い、各電池の放電特性を調べたのでその
結果を図1に示す。尚、実験条件は、充電電流0.2C
(240mA)で電池電圧が4.2Vに達するまで充電
した後、放電電流0.2C(240mA)で放電終止電
圧3.0Vまで放電したときの容量を測定するものであ
る。又、図1の縦軸は電池電圧を、横軸は正極活物質1
g当りの放電容量を示した。
(Experiment 1) The battery A1 of the present invention and the comparative batteries X1 to X3 were used to examine the discharge characteristics of each battery. The results are shown in FIG. The experimental conditions were as follows.
At 240 mA, the battery was charged until the battery voltage reached 4.2 V, and then the capacity was measured when the battery was discharged to a discharge end voltage of 3.0 V at a discharge current of 0.2 C (240 mA). 1, the vertical axis represents the battery voltage, and the horizontal axis represents the positive electrode active material 1.
The discharge capacity per g was shown.

【0037】図1から明らかなように、本発明電池A1
は比較電池X2〜X3と比べて、放電容量が向上してい
ることが判る。これは、本発明電池A1の正極活物質で
あるLiMn24粒子の表面がLi2Mn24粒子で被
覆されているので、充電時にLiMn24中のマンガン
が電解液へ溶出することを抑制できているからだと考え
られる。比較例3のように、LiMn24粒子とLi2
Mn24粒子とを単に混合しただけでは、LiMn24
粒子からマンガンの溶出を抑制することができず放電容
量が低下すると考えられる。
As is clear from FIG. 1, the battery A1 of the present invention
Indicates that the discharge capacity is improved as compared with the comparative batteries X2 to X3. This is because the surface of the LiMn 2 O 4 particles as the positive electrode active material of the battery A1 of the present invention is coated with the Li 2 Mn 2 O 4 particles, so that the manganese in the LiMn 2 O 4 elutes into the electrolyte during charging. It is thought that it is because it was able to suppress that. As in Comparative Example 3, LiMn 2 O 4 particles and Li 2
Simply mixing the Mn 2 O 4 particles with the Mn 2 O 4 particles results in LiMn 2 O 4
It is considered that elution of manganese from the particles cannot be suppressed and the discharge capacity decreases.

【0038】(実験2)上記本発明電池A1、比較電池
X1〜X3を用い、各電池のサイクル特性を調べたので
その結果を図2に示す。尚、実験条件は、充電電流0.
2C(240mA)で電池電圧が4.2Vに達するまで
充電した後、放電電流0.2C(240mA)で放電終
止電圧3.0Vまで放電するという一連の操作を繰り返
すものである。又、図2の縦軸は初期放電容量に対する
相対比率を、横軸はサイクル数を示す。
(Experiment 2) Using the battery A1 of the present invention and the comparative batteries X1 to X3, the cycle characteristics of each battery were examined. The results are shown in FIG. The experimental conditions were as follows.
After charging until the battery voltage reaches 4.2 V at 2 C (240 mA), a series of operations of discharging to a discharge end voltage of 3.0 V with a discharge current of 0.2 C (240 mA) is repeated. The vertical axis in FIG. 2 shows the relative ratio to the initial discharge capacity, and the horizontal axis shows the number of cycles.

【0039】図2から明らかなように、本発明電池A1
は、比較電池X1〜X3と比べて、サイクル特性が向上
していることが判る。これは、比較電池X1〜X3の正
極活物質であるLiMn24粒子が、充放電の繰り返し
によって結晶構造が崩壊され、サイクル特性が劣化した
からだと考えられる。
As is apparent from FIG. 2, the battery A1 of the present invention
Indicates that the cycle characteristics are improved as compared with the comparative batteries X1 to X3. It is considered that this is because the LiMn 2 O 4 particles, which are the positive electrode active materials of the comparative batteries X1 to X3, had their crystal structure collapsed by repeated charge and discharge, and their cycle characteristics deteriorated.

【0040】以上、実験1及び実験2の結果から、本発
明電池A1と比較電池X1とを比べると、放電特性は両
者とも同等であるが、サイクル特性に関しては、本発明
電池A1のほうが優れていることが判る。
As can be seen from the results of Experiments 1 and 2, when the battery A1 of the present invention is compared with the comparative battery X1, both of the discharge characteristics are equivalent, but the battery A1 of the present invention is superior in cycle characteristics. It turns out that there is.

【0041】これは、放電特性では、両者とも高電位に
おけるマンガンの溶出を抑制できているが、サイクル特
性では、比較電池X1はスピネル骨格を持たないLi2
MnO3層でLiMn24を被覆しているので、低電位
におけるLiの吸蔵によってLiMn24の結晶構造が
崩壊していき、サイクル特性が低下していったと考えら
れる。
This is because, in the discharge characteristics, both can suppress the elution of manganese at a high potential, but in the cycle characteristics, the comparative battery X1 has Li 2 having no spinel skeleton.
It is considered that since the LiMn 2 O 4 was covered with the MnO 3 layer, the crystal structure of LiMn 2 O 4 was broken by the occlusion of Li at a low potential, and the cycle characteristics were degraded.

【0042】これに対して、本発明電池A1のようにス
ピネル型LiMn24粒子の表面の少なくとも一部分を
スピネル構造を有するLi2Mn24層で被覆された複
合体とすることによって、充放電の繰り返しによるリチ
ウムイオンの吸蔵、放出に対しても、LiMn24粒子
の結晶構造をより一層安定に保持でき、サイクル特性を
向上させることができる。
On the other hand, by forming at least a part of the surface of the spinel type LiMn 2 O 4 particles with a Li 2 Mn 2 O 4 layer having a spinel structure as in the battery A1 of the present invention, The crystal structure of the LiMn 2 O 4 particles can be maintained more stably even with respect to insertion and extraction of lithium ions due to repeated charge and discharge, and cycle characteristics can be improved.

【0043】[0043]

【発明の効果】本発明の非水電解液二次電池は、正極活
物質粒子にLiMn24とLi2Mn24との複合体を
用いているので、充電時のマンガンの溶出を抑制するこ
とができ、且つ放電時のLiMn24粒子の結晶構造の
崩壊も抑制することができるので、放電特性及びサイク
ル特性に優れた本発明特有の効果を有する。
According to the non-aqueous electrolyte secondary battery of the present invention, since the composite of LiMn 2 O 4 and Li 2 Mn 2 O 4 is used for the positive electrode active material particles, the elution of manganese during charging is prevented. It is possible to suppress the collapse of the crystal structure of the LiMn 2 O 4 particles at the time of discharge and also to suppress the collapse of the crystal structure of the LiMn 2 O 4 particles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明A1と比較電池X1〜X3の放電特性
を示す図である。
FIG. 1 is a diagram showing the discharge characteristics of Invention A1 of the present application and Comparative Batteries X1 to X3.

【図2】本願発明A1と比較電池X1〜X3のサイクル
特性を示す図である。
FIG. 2 is a view showing cycle characteristics of the invention A1 of the present application and comparative batteries X1 to X3.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、非水電解液とを備えた
非水電解液二次電池において、前記正極活物質粒子がL
iMn24とLi2Mn24との複合体であることを特
徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode active material particles are L
A non-aqueous electrolyte secondary battery, which is a composite of iMn 2 O 4 and Li 2 Mn 2 O 4 .
【請求項2】 前記正極活物質粒子は、LiMn24
子の表面の少なくとも一部分にLi2Mn24層が形成
されていることを特徴とする請求項1記載の非水電解液
二次電池。
2. The non-aqueous electrolyte solution according to claim 1, wherein the positive electrode active material particles have a Li 2 Mn 2 O 4 layer formed on at least a part of the surface of the LiMn 2 O 4 particles. Next battery.
【請求項3】 前記Li2Mn24層がLiMn24
子の表面全体を被覆していることを特徴とする請求項2
記載の非水電解液二次電池。
3. The Li 2 Mn 2 O 4 layer covers the entire surface of the LiMn 2 O 4 particles.
The non-aqueous electrolyte secondary battery according to the above.
【請求項4】 前記Li2Mn24層の膜厚が20nm
以上100nm以下であることを特徴とする請求項3記
載の非水電解液二次電池。
4. The film thickness of the Li 2 Mn 2 O 4 layer is 20 nm.
The non-aqueous electrolyte secondary battery according to claim 3, wherein the thickness is at least 100 nm.
JP9003115A 1997-01-10 1997-01-10 Nonaqueous electrolyte secondary battery Pending JPH10199528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9003115A JPH10199528A (en) 1997-01-10 1997-01-10 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9003115A JPH10199528A (en) 1997-01-10 1997-01-10 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10199528A true JPH10199528A (en) 1998-07-31

Family

ID=11548364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9003115A Pending JPH10199528A (en) 1997-01-10 1997-01-10 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10199528A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
JP2007134220A (en) * 2005-11-11 2007-05-31 Takashi Ogiwara Blended lithium manganate substance, cathode of lithium secondary battery, and their manufacturing method
JP2007213866A (en) * 2006-02-07 2007-08-23 Nissan Motor Co Ltd Battery active material and secondary battery
JP2008288213A (en) * 2008-07-14 2008-11-27 Panasonic Corp Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
JP2007134220A (en) * 2005-11-11 2007-05-31 Takashi Ogiwara Blended lithium manganate substance, cathode of lithium secondary battery, and their manufacturing method
JP2007213866A (en) * 2006-02-07 2007-08-23 Nissan Motor Co Ltd Battery active material and secondary battery
JP2008288213A (en) * 2008-07-14 2008-11-27 Panasonic Corp Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3625680B2 (en) Lithium secondary battery
US8148016B2 (en) Cathode and lithium battery including the same
JP5034136B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN108604682B (en) Negative electrode active material for nonaqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5662132B2 (en) Lithium ion secondary battery
WO2015125444A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2008091341A (en) Cathode active material, and lithium battery using it
JP6524610B2 (en) Positive electrode active material for non-aqueous secondary battery and method for producing the same
JPH08213052A (en) Nonaqueous electrolyte secondary battery
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US6274273B1 (en) Positive active material for rechargeable lithium battery and method of preparing same
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JPH1092429A (en) Manufacture of non-aqueous solvent secondary battery and non-aqueous solvent secondary battery
JP3768046B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2000251887A (en) Nonaqueous electrolyte battery
JP3625679B2 (en) Lithium secondary battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JPH08195200A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with this active material
JP2002358965A (en) Positive electrode active substance and non-aqueous electrolyte secondary battery
JP2002170566A (en) Lithium secondary cell
JPH10199528A (en) Nonaqueous electrolyte secondary battery
KR102320977B1 (en) Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215