JPH10194737A - Production of amorphous germanium dioxide - Google Patents

Production of amorphous germanium dioxide

Info

Publication number
JPH10194737A
JPH10194737A JP1459097A JP1459097A JPH10194737A JP H10194737 A JPH10194737 A JP H10194737A JP 1459097 A JP1459097 A JP 1459097A JP 1459097 A JP1459097 A JP 1459097A JP H10194737 A JPH10194737 A JP H10194737A
Authority
JP
Japan
Prior art keywords
germanium
germanium dioxide
ammonia
drying
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1459097A
Other languages
Japanese (ja)
Inventor
Hiroshi Ueno
博志 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP1459097A priority Critical patent/JPH10194737A/en
Publication of JPH10194737A publication Critical patent/JPH10194737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To readily produce highly pure amorphous germanium dioxide by reacting germanium tetrachloride with ammonia to provide germanium oxide, drying and pulverizing the obtained germanium oxide, and performing a heating treatment of the dried and pulverized product to prevent an impurity from being mixed with the product. SOLUTION: Germanium oxide is produced by reacting germanium tetrachloride with ammonia. The germanium oxide is dried and pulverized, and the dried and pulverized germanium oxide is subjected to a heat treatment of 4-48hr, preferably 5-15hr at 338-600 deg.C. When reacting germanium tetrachloride with ammonia, the use of the method for charging the germanium tetrachloride into an ammonia water is convenient for operability. In the case, the concentration of the ammonia water is preferably 1-10%. The germanium oxide is preferably pulverized to <=500μm after drying. The drying is preferably performed by an air drying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリエチレンテレ
フタート(PET)の製造用触媒として用いられる無定
形二酸化ゲルマニウムの製造方法に関する。
The present invention relates to a method for producing amorphous germanium dioxide used as a catalyst for producing polyethylene terephthalate (PET).

【0002】[0002]

【従来の技術】一般に、無定形二酸化ゲルマニウムはP
ETを製造する際の触媒として用いられる。この際、エ
チレングリコールに溶解して使用される。従来、無定形
二酸化ゲルマニウムはエチレングリコールに溶解しない
結晶性二酸化ゲルマニウムを溶融し、溶融体を急冷する
ことで得ている。あるいは、結晶性二酸化ゲルマニウム
をアルカリ溶液に溶解後、酸を加えてpHを5〜9と
し、加水分解して沈殿物を得て、その沈殿物を水洗い
し、45°C程度で真空乾燥して得ている。
2. Description of the Related Art In general, amorphous germanium dioxide is P
Used as a catalyst when producing ET. At this time, it is used after being dissolved in ethylene glycol. Conventionally, amorphous germanium dioxide is obtained by melting crystalline germanium dioxide that does not dissolve in ethylene glycol and rapidly cooling the melt. Alternatively, after dissolving crystalline germanium dioxide in an alkaline solution, an acid is added to adjust the pH to 5 to 9, and hydrolysis is performed to obtain a precipitate. The precipitate is washed with water and vacuum dried at about 45 ° C. It has gained.

【0003】[0003]

【発明が解決しようとする課題】しかし、前者の方法で
は、結晶性二酸化ゲルマニウムを溶解するのに1100
°C以上への加熱が必要とされ、溶融体中へのるつぼ材
料よりの不純物の混入を防止するために白金などの高価
な材料を使用しなければならなかった。
However, in the former method, 1100 is required to dissolve crystalline germanium dioxide.
Heating to above ° C was required, and expensive materials such as platinum had to be used to prevent contamination of the melt with impurities from the crucible material.

【0004】加えて、急冷により得られる無定形二酸化
ゲルマニウムは極めて硬く、粉砕が困難であり、粉砕時
に粉砕装置からの不純物の混入の恐れが高く、純度の良
いものが得られ難いという問題点がある。
In addition, amorphous germanium dioxide obtained by quenching is extremely hard and difficult to pulverize, and there is a high possibility that impurities are mixed in from the pulverizer at the time of pulverization. is there.

【0005】また、後者の方法に従った場合には、得ら
れる無定形二酸化ゲルマニウムに多量の塩化物が残留す
るという問題点がある。
When the latter method is followed, there is a problem that a large amount of chloride remains in the obtained amorphous germanium dioxide.

【0006】したがって、本発明の目的は、製品中の不
純物の混入を防止し、容易に高純度の無定形二酸化ゲル
マニウムを得る方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for easily obtaining high-purity amorphous germanium dioxide while preventing impurities from being mixed in a product.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、四塩化ゲルマニウムとアンモニアとを反
応させ、ゲルマン酸化物を得て、得たゲルマン酸化物を
乾燥し、その後粉砕し、338〜600°で4〜48時
間、好ましくは、5〜15時間加熱処理するものであ
る。
In order to achieve the above object, the present invention provides a method for reacting germanium tetrachloride with ammonia to obtain germane oxide, drying the obtained germane oxide, and then pulverizing it. And heat treatment at 338 to 600 ° for 4 to 48 hours, preferably 5 to 15 hours.

【0008】[0008]

【発明の実施の形態】本発明の方法では、四塩化ゲルマ
ニウムとアンモニアとを作用させ、加水分解によりゲル
マン酸化物を得るが、この際、ゲルマン酸化物中に残留
する塩を揮発可能な塩化アンモニウムとする。そして、
加熱処理することにより、塩化アンモニウムを揮発さ
せ、高純度の無定形二酸化ゲルマニウムを得る。
DETAILED DESCRIPTION OF THE INVENTION In the method of the present invention, germanium tetrachloride is reacted with ammonia to obtain germane oxide by hydrolysis. At this time, salts remaining in the germane oxide are converted to ammonium chloride which can be volatilized. And And
By performing the heat treatment, ammonium chloride is volatilized to obtain high-purity amorphous germanium dioxide.

【0009】本発明において使用する四塩化ゲルマニウ
ムは所望の純度、例えば、6N以上のものを用いること
が好ましい。四塩化ゲルマニウムをアンモニアと反応さ
せるに際して、アンモニア水中に四塩化ゲルマニウムを
入れる方法を採用することが取扱上簡便である。この
際、アンモニア水の濃度は1〜10%とすることが好ま
しい。あまり低濃度にすると、生産性が悪化し、あまり
高濃度にすると、ゲルマン酸化物中に残留する塩が加熱
処理により十分に除去できず、高純度品が得られなくな
るからである。
The germanium tetrachloride used in the present invention preferably has a desired purity, for example, 6N or more. When reacting germanium tetrachloride with ammonia, it is convenient in handling to adopt a method of putting germanium tetrachloride in aqueous ammonia. At this time, the concentration of the aqueous ammonia is preferably set to 1 to 10%. If the concentration is too low, the productivity is deteriorated. If the concentration is too high, the salt remaining in the germane oxide cannot be sufficiently removed by the heat treatment, and a high-purity product cannot be obtained.

【0010】加水分解の終点はほぼ中性であればよい。
これを外れると、生産性が悪化するからである。
The end point of the hydrolysis may be substantially neutral.
If the ratio deviates from this, the productivity is deteriorated.

【0011】このようにして得られたゲルマン酸化物は
望ましくは洗浄し、自然乾燥する。水分を多量に含んだ
状態で急激に乾燥すると、結晶化を起こし、無定形二酸
化ゲルマニウムが再現性良く得られないからである。
The germane oxide thus obtained is desirably washed and air-dried. If it is rapidly dried in a state containing a large amount of water, crystallization occurs, and amorphous germanium dioxide cannot be obtained with good reproducibility.

【0012】乾燥物をそのまま加熱処理すると、アンモ
ニウムが十分揮発せず、得られる無定形二酸化ゲルマニ
ウムの純度が高くならない。高純度の無定形二酸化ゲル
マニウムを得るためには、ゲルマン酸化物を全量500
ミクロン以下に解砕、あるいは粉砕することが好まし
い。
If the dried product is subjected to heat treatment as it is, ammonium does not volatilize sufficiently, and the purity of the obtained amorphous germanium dioxide does not increase. In order to obtain high-purity amorphous germanium dioxide, a total amount of germanium oxide is 500
It is preferable to crush or crush to a micron or less.

【0013】ゲルマン酸化物の加熱処理温度は338〜
600°Cとすることが必要である。338°C未満の
場合には塩化アンモニウムの揮発が不十分となり、60
0°Cを越えると、結晶形の二酸化ゲルマニウムが生成
するからである。
The heat treatment temperature of the germane oxide is 338 to
It is necessary to be 600 ° C. If the temperature is lower than 338 ° C., volatilization of ammonium chloride becomes insufficient, and
If the temperature exceeds 0 ° C., crystalline germanium dioxide is produced.

【0014】また、加熱時間が短いと、塩化アンモニウ
ムの揮発が不十分となり、長すぎると、経済性を損なう
ばかりでなく、温度にもよるが結晶化が進む恐れが高く
なる。このため、熱処理温度は少なくとも4時間以上4
8時間以下、好ましくは、5時間以上15時間以下とす
ることが望ましい。
On the other hand, if the heating time is short, the volatilization of ammonium chloride becomes insufficient. If the heating time is too long, not only the economic efficiency is impaired, but also depending on the temperature, there is a high possibility that crystallization proceeds. Therefore, the heat treatment temperature should be at least 4 hours or more.
It is desirably 8 hours or less, preferably 5 hours to 15 hours.

【0015】なお、使用する装置の材質は四塩化ゲルマ
ニウムやアンモニア、生成する塩化アンモニウムによる
腐食に耐えるものであれば支障はない。例えば、石英や
テフロンなどがある。
There is no problem as long as the material of the apparatus to be used is one that can withstand corrosion by germanium tetrachloride, ammonia, or generated ammonium chloride. For example, there are quartz and Teflon.

【0016】[0016]

【実施例】次に、本発明の実施例を説明する。Next, embodiments of the present invention will be described.

【0017】(実施例1)石英容器中に50°Cの純水
を50リットル入れた。これにアンモニア水を入れ、4
5°Cの5%のアンモニア水を得た。次に、純度6Nの
四塩化ゲルマニウムを5%のアンモニア水中に添加し、
溶液のpHを7とした。
(Example 1) 50 liters of pure water at 50 ° C was put in a quartz container. Add ammonia water to this and add 4
5% ammonia water at 5 ° C. was obtained. Next, germanium tetrachloride having a purity of 6N was added to 5% aqueous ammonia,
The pH of the solution was set to 7.

【0018】得られたスラリーを濾過し、ゲルマン酸化
物を分離回収した。このゲルマン酸化物を純水で洗い、
テフロン製のバットに拡げ室温25°C、湿度35%の
クリーンルーム内で5日間自然乾燥させた。乾燥物をS
US316製の粉砕機で全量500ミクロン以下になる
ように粉砕し、ゲルマン酸化物粉を作成した。
The obtained slurry was filtered to separate and collect germane oxide. Wash this germane oxide with pure water,
It was spread on a Teflon vat and naturally dried for 5 days in a clean room at room temperature of 25 ° C. and humidity of 35%. Dry matter S
The powder was pulverized with a US316 pulverizer so that the total amount became 500 μm or less, thereby producing a germane oxide powder.

【0019】次に、ゲルマン酸化物粉を石英容器に移
し、管状炉を用いて338°Cで5時間熱処理した。得
られた二酸化ゲルマニウムを分析したところ無定形であ
り、不純物金属元素合計100ppm以下の高純度品で
あることがわかった。なお、塩素イオン濃度は6600
ppmであった。
Next, the germane oxide powder was transferred to a quartz container and heat-treated at 338 ° C. for 5 hours using a tube furnace. When the obtained germanium dioxide was analyzed, it was found to be amorphous and a high-purity product having a total impurity metal element content of 100 ppm or less. The chlorine ion concentration was 6600.
ppm.

【0020】また、沸騰したエチレングリコールに対す
る特性評価を実施したところ、飽和溶解度2wt%、溶
解速度2分という高い溶解性を得ることができた。
Further, when the properties of the boiling ethylene glycol were evaluated, high solubility such as a saturated solubility of 2% by weight and a dissolution rate of 2 minutes could be obtained.

【0021】(実施例2)実施例1で得られたゲルマン
酸化物粉を石英容器に移し、管状炉を用いて338°C
で12時間熱処理した。得られた二酸化ゲルマニウムを
分析したところ無定形であり、実施例1と同様に不純物
金属元素合計100ppm以下の高純度品であることが
わかった。なお、塩素イオン濃度は1000ppmまで
低下していた。
(Example 2) The germane oxide powder obtained in Example 1 was transferred to a quartz vessel, and was placed at 338 ° C using a tubular furnace.
For 12 hours. When the obtained germanium dioxide was analyzed, it was found to be amorphous and a high-purity product having a total of 100 ppm or less of impurity metal elements as in Example 1. In addition, the chlorine ion concentration had fallen to 1000 ppm.

【0022】また、沸騰したエチレングリーコルに対す
る特性評価を実施したところ、飽和溶解度2wt%、溶
解速度2分という高い溶解性を得ることができた。
When the properties of the boiling ethylene glycol were evaluated, high solubility such as a saturated solubility of 2 wt% and a dissolution rate of 2 minutes could be obtained.

【0023】(実施例3)実施例1で得られたゲルマン
酸化物粉を石英容器に移し、管状炉を用いて600°C
で12時間熱処理した。得られた二酸化ゲルマニウムを
分析したところ無定形であり、実施例1と同様に不純物
金属元素合計100ppm以下の高純度品であることが
わかった。なお、塩素イオン濃度は200ppmまで低
下していた。また、沸騰したエチレングリコールに対す
る特性評価を実施したところ、飽和溶解度2wt%、溶
解速度2分という高い溶解度を得ることができた。
(Example 3) The germane oxide powder obtained in Example 1 was transferred to a quartz container, and was heated to 600 ° C using a tubular furnace.
For 12 hours. When the obtained germanium dioxide was analyzed, it was found to be amorphous and a high-purity product having a total of 100 ppm or less of impurity metal elements as in Example 1. Note that the chloride ion concentration had dropped to 200 ppm. In addition, when the properties of the boiling ethylene glycol were evaluated, a high solubility of 2 wt% of saturated solubility and a dissolution rate of 2 minutes was obtained.

【0024】(実施例4)実施例1で得られたゲルマン
酸化物粉を石英容器に移し、管状炉を用いて420°C
で7時間熱処理した。得られた二酸化ゲルマニウムを分
析したところ無定形であり、実施例1と同様に不純物金
属元素合計100ppm以下の高純度品であることがわ
かった。なお、塩素イオン濃度は500ppmまで低下
していた。また、沸騰したエチレングリコールに対する
特性評価を実施したところ、飽和溶解度2wt%、溶解
速度2分という高い溶解度を得ることができた。
(Example 4) The germane oxide powder obtained in Example 1 was transferred to a quartz container, and was heated to 420 ° C using a tubular furnace.
For 7 hours. When the obtained germanium dioxide was analyzed, it was found to be amorphous and a high-purity product having a total of 100 ppm or less of impurity metal elements as in Example 1. Note that the chloride ion concentration had dropped to 500 ppm. In addition, when the properties of the boiling ethylene glycol were evaluated, a high solubility of 2 wt% of saturated solubility and a dissolution rate of 2 minutes was obtained.

【0025】(実施例5)実施例1で得られたゲルマン
酸化物粉を石英容器に移し、管状炉を用いて510°C
で5時間熱処理した。得られた二酸化ゲルマニウムを分
析したところ無定形であり、実施例1と同様に不純物金
属元素合計100ppm以下の高純度品であることがわ
かった。なお、塩素イオン濃度は600ppmまで低下
していた。また、沸騰したエチレングリコールに対する
特性評価を実施したところ、飽和溶解度2wt%、溶解
速度2分という高い溶解度を得ることができた。
(Example 5) The germane oxide powder obtained in Example 1 was transferred to a quartz vessel, and was heated to 510 ° C using a tubular furnace.
For 5 hours. When the obtained germanium dioxide was analyzed, it was found to be amorphous and a high-purity product having a total of 100 ppm or less of impurity metal elements as in Example 1. Note that the chloride ion concentration had dropped to 600 ppm. In addition, when the properties of the boiling ethylene glycol were evaluated, a high solubility of 2 wt% of saturated solubility and a dissolution rate of 2 minutes was obtained.

【0026】(比較例1)実施例1で得られたゲルマン
酸化物粉を石英容器に移し、管状炉を用いて300°C
で5時間熱処理した。得られた二酸化ゲルマニウムを分
析したところ無定形であり、実施例1と同様に不純物金
属元素合計100ppm以下であるが、塩素イオン濃度
は18300ppmと高く、高純度品とは言えなかっ
た。
(Comparative Example 1) The germane oxide powder obtained in Example 1 was transferred to a quartz vessel and heated at 300 ° C using a tube furnace.
For 5 hours. The obtained germanium dioxide was analyzed, and was found to be amorphous. The total amount of impurity metal elements was 100 ppm or less as in Example 1. However, the chlorine ion concentration was as high as 18300 ppm, and it could not be said to be a high-purity product.

【0027】(比較例2)実施例1で得られたゲルマン
酸化物粉を石英容器に移し、管状炉を用いて650°C
で5時間熱処理した。得られた二酸化ゲルマニウムを分
析したところ明瞭に結晶形二酸化ゲルマニウムとなって
いることがわかった。
(Comparative Example 2) The germane oxide powder obtained in Example 1 was transferred to a quartz container, and was heated at 650 ° C using a tubular furnace.
For 5 hours. Analysis of the resulting germanium dioxide revealed that it was clearly crystalline germanium dioxide.

【0028】(比較例3)実施例1で得られたゲルマン
酸化物粉を自然乾燥せずに400°Cで5時間熱処理し
た。得られた二酸化ゲルマニウムを分析したところ明瞭
に結晶形二酸化ゲルマニウムとなっていることがわかっ
た。
Comparative Example 3 The germane oxide powder obtained in Example 1 was heat-treated at 400 ° C. for 5 hours without natural drying. Analysis of the resulting germanium dioxide revealed that it was clearly crystalline germanium dioxide.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
ゲルマン酸化物中の不純物を揮発させ易い塩化アンモニ
ウムとし、二酸化ゲルマニウムが結晶化する温度より低
い温度で塩化アンモニウムを揮発させることができるた
め、容易に高純度の二酸化ゲルマニウムを得ることがで
きる。
As described above, according to the present invention,
Ammonium chloride, which readily volatilizes impurities in the germane oxide, can be volatilized at a temperature lower than the temperature at which germanium dioxide crystallizes, so that high-purity germanium dioxide can be easily obtained.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 四塩化ゲルマニウムとアンモニアとを反
応させ、ゲルマン酸化物を得て、得たゲルマン酸化物を
乾燥し、乾燥後粉砕し、338〜600°Cで4〜48
時間加熱処理することを特徴とする無定形二酸化ゲルマ
ニウムの製造方法。
1. Germanium tetrachloride is reacted with ammonia to obtain a germane oxide, and the obtained germane oxide is dried, crushed after drying, and dried at 338 to 600 ° C. for 4 to 48 ° C.
A method for producing amorphous germanium dioxide, comprising heating for a period of time.
【請求項2】 請求項1記載の製造方法において、5〜
15時間加熱処理することを特徴とする製造方法。
2. The method according to claim 1, wherein
A production method characterized by performing a heat treatment for 15 hours.
【請求項3】 請求項1記載の製造方法において、アン
モニアとして1〜10%のアンモニア水を用いることを
特徴とする製造方法。
3. The method according to claim 1, wherein 1 to 10% ammonia water is used as ammonia.
【請求項4】 請求項1記載の製造方法において、乾燥
後の粉砕として500ミクロン以下の粉砕を行うことを
特徴とする製造方法。
4. The method according to claim 1, wherein the pulverization after drying is performed to a size of 500 μm or less.
【請求項5】 請求項1記載の製造方法において、ゲル
マン酸化物の乾燥は自然乾燥で行うことを特徴とする無
定形二酸化ゲルマニウムの製造方法。
5. The method for producing amorphous germanium dioxide according to claim 1, wherein the drying of the germane oxide is performed by natural drying.
JP1459097A 1997-01-10 1997-01-10 Production of amorphous germanium dioxide Pending JPH10194737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1459097A JPH10194737A (en) 1997-01-10 1997-01-10 Production of amorphous germanium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1459097A JPH10194737A (en) 1997-01-10 1997-01-10 Production of amorphous germanium dioxide

Publications (1)

Publication Number Publication Date
JPH10194737A true JPH10194737A (en) 1998-07-28

Family

ID=11865397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1459097A Pending JPH10194737A (en) 1997-01-10 1997-01-10 Production of amorphous germanium dioxide

Country Status (1)

Country Link
JP (1) JPH10194737A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005722A (en) * 2001-07-10 2003-01-23 (주)나인디지트 Manufacturing method of metal Germanium without liquid and refining device thereof
CN114702060A (en) * 2022-05-13 2022-07-05 广东先导稀材股份有限公司 Preparation method of germanium dioxide capable of being rapidly dissolved in ethylene glycol
CN115536055A (en) * 2022-09-27 2022-12-30 昆明理工大学 Method for preparing germanium dioxide from zinc hydrometallurgy inorganic germanium slag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005722A (en) * 2001-07-10 2003-01-23 (주)나인디지트 Manufacturing method of metal Germanium without liquid and refining device thereof
CN114702060A (en) * 2022-05-13 2022-07-05 广东先导稀材股份有限公司 Preparation method of germanium dioxide capable of being rapidly dissolved in ethylene glycol
CN115536055A (en) * 2022-09-27 2022-12-30 昆明理工大学 Method for preparing germanium dioxide from zinc hydrometallurgy inorganic germanium slag
CN115536055B (en) * 2022-09-27 2023-08-18 昆明理工大学 Method for preparing germanium dioxide from zinc hydrometallurgy inorganic germanium slag

Similar Documents

Publication Publication Date Title
US4241037A (en) Process for purifying silicon
JP7021795B2 (en) Method for preparing indium oxide spherical powder with controllable grain shape
JP2004011010A (en) Method for recovering lithium and cobalt from lithium cobaltate
WO1989003364A1 (en) Method of reforming soluble salts to effect purification and increase crystal size thereof
JP5431780B2 (en) A processing method for obtaining a niobium raw material or a tantalum raw material, a method for separating and purifying niobium or tantalum, and a method for producing niobium oxide or tantalum oxide.
JPH10194737A (en) Production of amorphous germanium dioxide
CN106809871A (en) A kind of preparation method of indium oxide nano powder
JP3591756B2 (en) Production method of metal fluoride
US4746497A (en) Process for the production of high purity zirconia
US11667534B2 (en) Method for extracting soluble Si from an amorphous SiO2 bearing material
JP2823070B2 (en) Method for producing high-purity zirconium oxychloride crystal
JPH11228138A (en) Production of amorphous germanium dioxide
JP2004010914A (en) Method for recovering germanium from scrap
JP2773942B2 (en) Palladium dissolution method
US3397037A (en) Digestion of titanium-bearing ores
RU2774163C1 (en) Waste recovery method for cadmium tungstate production
SU1726370A1 (en) Method of tellurium dioxide preparation
US3424555A (en) Process for converting alkali metal titanates into their pure titanium dioxide pseudomorphs
JP4194703B2 (en) Decomposition of gallium phosphide scrap
Easteal et al. Recovery of titanium dioxide from naturally occurring ilmenite by high‐temperature borate fusion
JPH02248320A (en) Production of high purity bismuth oxide
JPH0360488A (en) Production of titanium potassium arsenate single crystal
JP2000153250A (en) Decomposition method of semiconductor scrap
JPH0283212A (en) Synthesis of lanthanide-alkaline earth metal-copper-oxygen type superconductor material
JPS63112422A (en) Synthesis of li2sno3