JPH02248320A - Production of high purity bismuth oxide - Google Patents

Production of high purity bismuth oxide

Info

Publication number
JPH02248320A
JPH02248320A JP6748289A JP6748289A JPH02248320A JP H02248320 A JPH02248320 A JP H02248320A JP 6748289 A JP6748289 A JP 6748289A JP 6748289 A JP6748289 A JP 6748289A JP H02248320 A JPH02248320 A JP H02248320A
Authority
JP
Japan
Prior art keywords
nitric acid
bismuth
bismuth oxide
bismuth nitrate
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6748289A
Other languages
Japanese (ja)
Inventor
Masaya Yukinobu
雅也 行延
Toshiaki Ito
寿章 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6748289A priority Critical patent/JPH02248320A/en
Publication of JPH02248320A publication Critical patent/JPH02248320A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To prevent the generation of harmful nitrogen oxide by dissolving Bi2O3 in nitric acid, carrying out purification, adding (NH4)2CO3 or NH4HCO3 to the resulting purified Bi(NO3)3 soln., washing and calcining a formed precipitate. CONSTITUTION:Bi2O3 is added and dissolved in an excess amt. of nitric acid having 50-75wt.% concn. under heating to 40-80 deg.C to prepare a Bi(NO3)3 soln. This soln. is cooled to deposit Bi(NO3)3 crystals and these crystals are separated and dissolved in nitric acid. The resulting purified Bi(NO3)3 soln. is adjusted to pH>=5 by adding (NH4)2CO3 or NH4HCO3 and a formed precipitate is washed, put in an alumina or TiO2 boat and calcined at 300-800 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光通信や光計測で反射光を遮断するのに用いら
れる光アイソレーターのガーネット結晶やシンチレータ
−等に用いられるBiaGeJ。やB1゜Ge0n* 
 (以下BGO結晶と示す。)や電界電圧センサや磁界
センサ等に用いられるBi+*5iOs、。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to BiaGeJ used in garnet crystals and scintillators of optical isolators used to block reflected light in optical communication and optical measurement. YaB1゜Ge0n*
(hereinafter referred to as BGO crystal), Bi+*5iOs, which is used in electric field voltage sensors, magnetic field sensors, etc.

(以下BSO結晶と示す。)に必要とされる高純度酸化
ビスマスの製造方法に関する。
The present invention relates to a method for producing high-purity bismuth oxide required for (hereinafter referred to as BSO crystal).

[従来の技術] 従来よりBGO結晶やBSO結晶に用いられる高純度酸
化ビスマスは高純度金属ビスマスを硝酸に溶解し、得た
溶液をアンモニア水で中和してオキシ硝酸ビスマスを得
、これをか焼することにより製造されている。
[Prior art] High-purity bismuth oxide conventionally used for BGO crystals and BSO crystals is obtained by dissolving high-purity metal bismuth in nitric acid, neutralizing the resulting solution with aqueous ammonia to obtain bismuth oxynitrate, and using this as a method. It is manufactured by baking.

しかし、上記従来法では原料とする金属ビスマスの純度
により得られる酸化ビスマスの純度が決ってしまうとい
う欠点があり、原料として高価な高純度ビスマスを使用
せざるを得ないという問題点があり、また、■式や0式
で示されるように金属ビスマスを硝酸で溶解する際に発
生するNOや802や0式で示されるようにオキシ硝酸
ビスマスをか焼する際に発生するN2O5は有害物質で
あり、装置の腐食や作業環境の悪化や公害の発生を防止
するためにこれら有害物を除害する設備が不可欠とぎれ
るという問題点がある。
However, the conventional method described above has the disadvantage that the purity of bismuth oxide obtained is determined by the purity of bismuth metal used as a raw material, and there is a problem that expensive high-purity bismuth must be used as a raw material. NO, which is generated when bismuth metal is dissolved in nitric acid as shown in formulas ■ and 0, and N2O5, which is generated when bismuth oxynitrate is calcined as shown in formulas 802 and 0, are harmful substances. However, in order to prevent corrosion of equipment, deterioration of the working environment, and generation of pollution, there is a problem that equipment for eliminating these harmful substances must be discontinued.

281  ÷1lHNO3雪 2Bi(NO3)3 +
 280 + 4H20■210 + 02−2NO2
■ 2BiONO3富B12O3+ N2O5■[発明が解
決しようとする課題] 本発明の目的は上記問題点のない高純度酸化ビスマスの
製造方法の提供にある。
281 ÷1lHNO3 Snow 2Bi(NO3)3 +
280 + 4H20■210 + 02-2NO2
■ 2BiONO3-rich B12O3+ N2O5 ■ [Problems to be Solved by the Invention] An object of the present invention is to provide a method for producing high-purity bismuth oxide free from the above-mentioned problems.

[課題を解決するための手段] 本発明者らは上記課題を解決するために種々検討した結
果、酸化ビスマスを硝酸に溶解する際には反応は0式で
進行し、NOや802の発生は見られない事、酸化ビス
マスを溶解する硝酸の濃度を調整すると硝酸ビスマスの
溶解度の温度異存性が大きくなる事を見出し本発明に至
った。
[Means for Solving the Problems] As a result of various studies to solve the above problems, the present inventors found that when bismuth oxide is dissolved in nitric acid, the reaction proceeds according to equation 0, and NO and 802 are generated. The present inventors have discovered that the temperature difference in solubility of bismuth nitrate increases when the concentration of nitric acid that dissolves bismuth oxide is adjusted.

Bi2O3+ 6HNO3婁2Bi0103)3431
120    ■すなわち、上記課題を解決するための
本発明の手段は酸化ビスマスを50〜75重量%の硝酸
を用いて40〜80’Cに加温しつつ溶解し、硝酸ビス
マス溶液とした後、該溶液を冷却し、硝酸ビスマスの結
晶を析出させ、分離して得た硝酸ビスマスの結晶を硝酸
に溶解して精製硝酸ビスマス溶液を得、該精製硝酸ビス
マス溶液に炭酸アンモニウムや炭酸水素アンモニウムを
加えてpHを5以上として沈殿を得、該沈殿を洗浄後3
00〜800℃でか焼することを特徴とする高純度酸化
ビスマスの製造方法である。
Bi2O3+ 6HNO3 2Bi0103) 3431
120 (1) That is, the means of the present invention for solving the above problem is to dissolve bismuth oxide using 50 to 75% by weight nitric acid while heating to 40 to 80'C to form a bismuth nitrate solution, and then The solution is cooled to precipitate bismuth nitrate crystals, and the separated bismuth nitrate crystals are dissolved in nitric acid to obtain a purified bismuth nitrate solution, and ammonium carbonate or ammonium hydrogen carbonate is added to the purified bismuth nitrate solution. The pH was adjusted to 5 or more to obtain a precipitate, and after washing the precipitate,
This is a method for producing high-purity bismuth oxide, characterized by calcination at 00 to 800°C.

[作用] 本発明において使用する硝酸の濃度は低くすぎても、高
すぎても酸化ビスマスの溶解量は少なく、かつ溶解度の
温度依存性も小さくなり、冷却により得られる精製硝酸
ビスマス結晶の量が少なく実用的ではない。また、硝酸
濃度をあまりに高(すると取扱が不便である。よって、
用いる硝酸の濃度は50〜75重量%とする事が必要で
あり、好ましくは55〜65重量%とすることが望まし
い。
[Function] Even if the concentration of nitric acid used in the present invention is too low or too high, the amount of bismuth oxide dissolved is small, and the temperature dependence of solubility is also small, so that the amount of purified bismuth nitrate crystals obtained by cooling is reduced. It's not very practical. Also, if the nitric acid concentration is too high (which makes handling inconvenient,
The concentration of nitric acid used must be 50 to 75% by weight, preferably 55 to 65% by weight.

酸化ビスマスを硝酸に溶解すると溶解熱により液温が上
昇するが、通常溶解度を確保する」こほこの発熱のみで
は不十分であり、ヒーター等で加温する必要がある。し
かし、温度を高くしすぎると硝酸の蒸留が起きる等、取
扱上の危険性がますばかりか、装置材質とて安価なポリ
プロピレン等を用いることができなくなるので40〜8
G’Cに加温する事が必要であり、好ましくは60〜6
5゜Cに加温することが望ましい。また、加える硝酸の
量は少ないと未溶解の酸化ビスマスをろ過等により固液
分離せざるをえず、繁雑で、危険であるばかりか、固液
分離操作中に精製硝酸ビスマスが析出してくる恐れがあ
り、また加える硝酸の量が過剰であると溶液中の硝酸ビ
スマスの濃度を低下させ、経済性を損うことになるので
酸化ビスマスを完全に溶解することのできる量とするこ
とが望ましい。なお、酸化ビスマスを完全に溶解するた
めの量は溶解時の液温と硝酸濃度により異なるので事前
に採用する液温度と硝酸濃度とを決定し、必要硝酸量を
求めてお(ことが望ましい。この必要硝酸量は、例えば
、61重量%硝酸を用いた場合、65℃では前記0式で
計算される量の約1.1倍であり、so’cでは約1.
9倍、4G”Cでは約2゜8倍である。なお、効率良く
溶解させるためには溶解速度を速くしすることが好まし
く、通常、計算量の1〜2割増しの硝酸量を過剰に加え
ることが望ましい。
When bismuth oxide is dissolved in nitric acid, the temperature of the solution rises due to the heat of dissolution, but the heat generated here and there is usually not enough to ensure solubility, and it is necessary to heat it with a heater or the like. However, if the temperature is too high, it not only increases handling risks such as distillation of nitric acid, but also makes it impossible to use inexpensive equipment materials such as polypropylene.
It is necessary to heat to G'C, preferably 60 to 6
It is desirable to heat it to 5°C. Furthermore, if the amount of nitric acid added is small, undissolved bismuth oxide must be separated into solid and liquid by filtration, which is not only complicated and dangerous, but also causes purified bismuth nitrate to precipitate during the solid-liquid separation process. If the amount of nitric acid added is excessive, it will reduce the concentration of bismuth nitrate in the solution and impair economic efficiency, so it is desirable to use an amount that can completely dissolve bismuth oxide. . Note that the amount required to completely dissolve bismuth oxide varies depending on the liquid temperature and nitric acid concentration at the time of dissolution, so it is preferable to determine the liquid temperature and nitric acid concentration to be adopted in advance and calculate the required amount of nitric acid. For example, when using 61% by weight nitric acid, the required amount of nitric acid is about 1.1 times the amount calculated using the above formula 0 at 65°C, and about 1.
9 times, and about 2.8 times for 4G"C. In order to dissolve efficiently, it is preferable to increase the dissolution rate, and usually an excess amount of nitric acid is added, which is 1 to 20% more than the calculated amount. This is desirable.

40〜80℃に加温した硝酸ビスマス溶液を冷却すると
鉄、鉛、銀、ケイ素、ナトリウム、カルシウム、マグネ
シウム等の不純物は液中に残留し、溶解度を越えるビス
マス分が精製硝酸ビスマス結晶として析出する。この際
、どの程度まで液温を低下させるかは要求される精製硝
酸ビスマスの純度と経済性との兼合による。このように
して発生した精製硝酸ビスマス回収後の溶液は、得られ
る精製硝酸ビスマスの純度に影響を与えない限りにおい
て繰返して使用することが可能である。なお、得られた
精製硝酸ビスマスの純度が不十分である場合には精製硝
酸ビスマスを硝酸で加温し再溶解し冷却することにより
精製することができることは言うまでもない。
When a bismuth nitrate solution heated to 40 to 80°C is cooled, impurities such as iron, lead, silver, silicon, sodium, calcium, and magnesium remain in the solution, and the bismuth content that exceeds the solubility precipitates as purified bismuth nitrate crystals. . At this time, the degree to which the liquid temperature is lowered depends on the balance between the required purity of purified bismuth nitrate and economical efficiency. The solution thus generated after recovering the purified bismuth nitrate can be used repeatedly as long as it does not affect the purity of the obtained purified bismuth nitrate. It goes without saying that if the purity of the purified bismuth nitrate obtained is insufficient, it can be purified by heating the purified bismuth nitrate with nitric acid, redissolving it, and cooling it.

精製硝酸ビスマスを溶解するのに必要とされる硝酸の量
は液温と濃度により異なるが、例えば、20℃で10重
量%の硝酸を用いれば、精製硝酸ビスマス 1 kg当
り0.54 kgであり、20 II量%の硝酸を用い
れば0.74 kgであり、40 ff1fft%硝酸
を用いれば1.75 kgとなる。しかし、あまりに高
濃度の硝酸を用いると中和時に必要とする炭酸塩の量が
おおくなり経済性が失われ、あまりに低くすると加水分
解によりオキシ炭酸ビスマスが生じるので、6〜15重
量%の硝酸を使用することが好ましい。
The amount of nitric acid required to dissolve purified bismuth nitrate varies depending on the liquid temperature and concentration, but for example, if 10% by weight nitric acid is used at 20°C, the amount is 0.54 kg per 1 kg of purified bismuth nitrate. , 20 II mass% nitric acid is used, the amount is 0.74 kg, and when 40 ff1fft% nitric acid is used, the amount is 1.75 kg. However, if too high a concentration of nitric acid is used, the amount of carbonate required during neutralization will be large and economical efficiency will be lost.If the concentration is too low, bismuth oxycarbonate will be produced by hydrolysis, so nitric acid of 6 to 15% by weight is used. It is preferable to use

塩基性炭酸塩が生成する反応は0式、0式で示されるが
、沈殿生成を完全とならしめるため、および得られた塩
基性炭酸塩に遊離の酸が付着し、乾燥工程で乾燥装置を
腐食しないようにするために液のpHを5以上にするこ
とが必要であり、好ましくは7以上とすることが望まし
い。
The reaction that produces basic carbonate is shown in Equations 0 and 0, but in order to complete the precipitation, and to prevent free acid from adhering to the obtained basic carbonate, the drying equipment was removed during the drying process. In order to prevent corrosion, it is necessary to adjust the pH of the liquid to 5 or higher, preferably 7 or higher.

2Bi(NO3)3 + 3(Nl(4)2CO3−B
i202CO3+ 6NII4NO3+ 2CO2■2
BI(NO3)3 + 6NH4■CO3−B1202
CO3+ 6NH4NO3+ 5CO2■中和に使用す
ることのできる炭酸塩としては炭酸アンモニウムや炭酸
水素アンモニウムであり、固体状のまま使用しても水溶
液として使用しても良い。また、アンモニア水に炭酸ガ
スを吹込むことにより作成した溶液を使用しても差し支
・えはない。生成するオキシ炭酸ビスマスは水難溶性の
塩であり、常法に従って固液分離し、洗浄する。
2Bi(NO3)3 + 3(Nl(4)2CO3-B
i202CO3+ 6NII4NO3+ 2CO2■2
BI(NO3)3 + 6NH4■CO3-B1202
CO3+ 6NH4NO3+ 5CO2■ Carbonates that can be used for neutralization include ammonium carbonate and ammonium hydrogen carbonate, and they may be used in solid form or as an aqueous solution. There is also no harm in using a solution prepared by blowing carbon dioxide into aqueous ammonia. The bismuth oxycarbonate produced is a poorly water-soluble salt, and is separated into solid and liquid and washed according to a conventional method.

このようにして得たオキシ炭酸ビスマスは、必要であれ
ば乾燥した後にか焼するが、か焼温度があまりに低いと
分解せず、あまりに高いと生成する酸化ビスマス粒子が
互に融着し、塊状化すると共にか焼容器として用いるア
ルミナ等と反応し、汚染されるため300〜800℃と
することが必要である。なお、この温度範囲でか焼容器
として使用できる材質はアルミナ及びチタン等がある。
The bismuth oxycarbonate thus obtained is dried and then calcined if necessary; however, if the calcination temperature is too low, it will not decompose, and if the calcination temperature is too high, the resulting bismuth oxide particles will fuse together and form lumps. It is necessary to keep the temperature at 300 to 800° C. because it reacts with alumina used as a calcination vessel and becomes contaminated. Note that materials that can be used as a calcination container in this temperature range include alumina and titanium.

オキシ炭酸ビスマス中に微量の硝酸アンモニウムが含ま
れていたとしても上記か焼により揮発除去されることは
言うまでもない。
It goes without saying that even if a trace amount of ammonium nitrate is contained in bismuth oxycarbonate, it will be volatilized and removed by the above-mentioned calcination.

[実施例−1] 液温65℃で第1表に示した市販の酸化ビスマス256
gを試薬特級の濃硝酸(61重量%)4001に溶解し
た後、15 ”Cに冷却し、硝酸ビスマス(旧(N03
)3・51(20)の結晶を析出させ、遠心分離機を用
いて固液分離し、若干量の濃硝酸で洗浄し硝酸ビスマス
の結晶305gを得た。
[Example-1] Commercially available bismuth oxide 256 shown in Table 1 at a liquid temperature of 65°C
g in reagent grade concentrated nitric acid (61% by weight) 4001, cooled to 15"C, and dissolved in bismuth nitrate (formerly N03
)3.51(20) was precipitated, solid-liquid separated using a centrifuge, and washed with a small amount of concentrated nitric acid to obtain 305 g of bismuth nitrate crystals.

(1)次いで、得た硝酸ビスマス結晶35 gを試薬特
級の硝酸を水で希釈して得た20重量%硝酸50 it
に溶解し、試薬特級のアンモニア水と炭酸ガスとで作成
したNH3180g/l、 HCO3−190g/l、
 CO3−27g/lの溶液を用いてpHを7.7とし
た。生成した沈殿を吸引ろ過し洗浄した後乾燥し、17
.3 gのオキシ炭酸ビスマスを得た。これをアルミナ
ボートに入れ500℃で3時間か焼して高純度酸化ビス
マス(1) 15.6 gを得た。
(1) Next, 50 liters of 20% by weight nitric acid obtained by diluting 35 g of the obtained bismuth nitrate crystals with reagent grade nitric acid with water.
NH3-180g/l, HCO3-190g/l, prepared with reagent-grade ammonia water and carbon dioxide gas.
The pH was brought to 7.7 using a solution of 27 g/l CO3. The generated precipitate was suction-filtered, washed, and then dried.
.. 3 g of bismuth oxycarbonate was obtained. This was placed in an alumina boat and calcined at 500°C for 3 hours to obtain 15.6 g of high purity bismuth oxide (1).

得た高純度酸化ビスマス(1)に含まれるの不純度を第
1表に示した。
Table 1 shows the impurities contained in the obtained high purity bismuth oxide (1).

(2)次に前記硝酸ビスマス35 gを試薬特級硝酸を
純水で希釈して得た10重量%の硝酸601に溶解した
後、試薬特級の炭酸アンモニウム40gを純水120 
mlに溶解して得た炭酸アンモニウム溶液を加えてpH
を7.6に調整して沈殿を発生させた。この沈殿を固液
分離後洗浄し乾燥して17.5gのオキシ炭酸ビスマス
を得た。これをチタンボートに入れ450℃で3時間か
焼して高純度酸化ビスマス(2) 1511 gを得た
。得た高純度酸化ビスマス(2)に含まれるの不純度を
第1表に示した。
(2) Next, 35 g of bismuth nitrate was dissolved in 10% by weight nitric acid 601 obtained by diluting reagent grade nitric acid with pure water, and then 40 g of reagent grade ammonium carbonate was dissolved in 120 g of pure water.
Add ammonium carbonate solution obtained by dissolving in ml and adjust the pH.
was adjusted to 7.6 to generate precipitation. This precipitate was separated into solid and liquid, washed and dried to obtain 17.5 g of bismuth oxycarbonate. This was placed in a titanium boat and calcined at 450°C for 3 hours to obtain 1511 g of high purity bismuth oxide (2). Table 1 shows the impurities contained in the obtained high purity bismuth oxide (2).

(3)次に前記硝酸ビスマス35 gを試薬特級硝酸を
純水で希釈して得たto ii量%の硝酸60 mlに
溶解した後、試薬特級の炭酸水素アンモニウム50 g
を純水300 mlに溶解して得た炭酸水素アンモニウ
ム溶液を加えてpttを7,3に調整して沈殿を発生さ
せた。この沈殿を固液分離後洗浄し乾燥して17.9g
のオキシ炭酸ビスマスを得た。
(3) Next, 35 g of the above bismuth nitrate was dissolved in 60 ml of TOII% nitric acid obtained by diluting reagent grade nitric acid with pure water, and then 50 g of reagent grade ammonium bicarbonate was dissolved.
An ammonium hydrogen carbonate solution obtained by dissolving the above in 300 ml of pure water was added to adjust the PTT to 7.3 to generate a precipitate. After solid-liquid separation, this precipitate was washed and dried to give 17.9g
of bismuth oxycarbonate was obtained.

これをチタンボートに入れsoo”cで3時間か焼して
高純度酸化ビスマス(3) 16.1 gを得た。
This was placed in a titanium boat and calcined for 3 hours at soo'c to obtain 16.1 g of high purity bismuth oxide (3).

得た高純度酸化ビスマス(3)に含まれるの不純度を第
1表に示した。
Table 1 shows the impurities contained in the obtained high purity bismuth oxide (3).

第1表より本発明の方法によれば市販の酸化ビスマスよ
り容易に高純度酸化ビスマスが得られていることがわか
る。
From Table 1, it can be seen that according to the method of the present invention, higher purity bismuth oxide can be obtained more easily than commercially available bismuth oxide.

[発明の効果] 本発明の方法では原料として酸化ビスマスを使用し、中
和剤として炭酸ソーダ等を用いてオキシ炭酸ビスマスを
得、これをか焼するために有害な窒素酸化物の発生がな
いばかりか、本発明の方法自体に精製効果があるために
不純な原料でも使用できることとなる。
[Effect of the invention] In the method of the present invention, bismuth oxide is used as a raw material, and bismuth oxycarbonate is obtained using soda carbonate or the like as a neutralizing agent. Since this is calcined, no harmful nitrogen oxides are generated. Moreover, since the method of the present invention itself has a purification effect, even impure raw materials can be used.

Claims (1)

【特許請求の範囲】[Claims]  酸化ビスマスを50〜75重量%の硝酸を用いて40
〜80℃に加温しつつ溶解し、硝酸ビスマス溶液とした
後、該溶液を冷却し、硝酸ビスマスの結晶を析出させ、
分離して得た硝酸ビスマスの結晶を硝酸に溶解して精製
硝酸ビスマス溶液を得、該精製硝酸ビスマス溶液に炭酸
アンモニウムや炭酸水素アンモニウムを加えてpH5以
上として沈殿を得、該沈殿を洗浄後300〜800℃で
か焼することを特徴とする高純度酸化ビスマスの製造方
法。
40% bismuth oxide using 50-75% by weight nitric acid
After dissolving while heating to ~80°C to form a bismuth nitrate solution, the solution is cooled to precipitate bismuth nitrate crystals,
The bismuth nitrate crystals obtained by separation are dissolved in nitric acid to obtain a purified bismuth nitrate solution, ammonium carbonate or ammonium hydrogen carbonate is added to the purified bismuth nitrate solution to adjust the pH to 5 or higher to obtain a precipitate, and the precipitate is washed for 300 min. A method for producing high purity bismuth oxide, characterized by calcination at ~800°C.
JP6748289A 1989-03-22 1989-03-22 Production of high purity bismuth oxide Pending JPH02248320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6748289A JPH02248320A (en) 1989-03-22 1989-03-22 Production of high purity bismuth oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6748289A JPH02248320A (en) 1989-03-22 1989-03-22 Production of high purity bismuth oxide

Publications (1)

Publication Number Publication Date
JPH02248320A true JPH02248320A (en) 1990-10-04

Family

ID=13346239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6748289A Pending JPH02248320A (en) 1989-03-22 1989-03-22 Production of high purity bismuth oxide

Country Status (1)

Country Link
JP (1) JPH02248320A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175600A (en) * 2005-12-27 2007-07-12 Mitsubishi Rayon Co Ltd Method for manufacturing oxide catalyst
CN102275945A (en) * 2011-07-06 2011-12-14 陕西科技大学 Method for preparing scintillation bismuth silicon oxide powder
CN102275943A (en) * 2011-07-06 2011-12-14 陕西科技大学 Method of preparing bismuth silicate powder with molten-salt growth method
CN107268086A (en) * 2016-04-06 2017-10-20 中国科学院上海硅酸盐研究所 A kind of method for improving Bismuth silicate scintillation crystal near ultraviolet band transmitance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175600A (en) * 2005-12-27 2007-07-12 Mitsubishi Rayon Co Ltd Method for manufacturing oxide catalyst
CN102275945A (en) * 2011-07-06 2011-12-14 陕西科技大学 Method for preparing scintillation bismuth silicon oxide powder
CN102275943A (en) * 2011-07-06 2011-12-14 陕西科技大学 Method of preparing bismuth silicate powder with molten-salt growth method
CN107268086A (en) * 2016-04-06 2017-10-20 中国科学院上海硅酸盐研究所 A kind of method for improving Bismuth silicate scintillation crystal near ultraviolet band transmitance

Similar Documents

Publication Publication Date Title
CN103145187B (en) Production technology of harmless high-purity vanadium pentoxide
JPS63502890A (en) Production of ultra-pure silver nitrate
JPH02248320A (en) Production of high purity bismuth oxide
AU2017408055B2 (en) Method for removing fluoride from a zinc-containing solution or suspension, defluoridated zinc sulfate solution and use thereof, and method for producing zinc and hydrogen fluoride or hydrofluoric acid
EP0107870B1 (en) Production of magnesium nitrate solutions
JP4322122B2 (en) Method for purifying high-purity niobium compound and / or tantalum compound
US2567544A (en) Process for the manufacture of sodium aluminum fluoride
JP4351912B2 (en) Method for purifying niobium compound and / or tantalum compound
US2974011A (en) Process of purifying beryllium compounds
JP2543795B2 (en) Recovery method of silver sulfate
JPH03137003A (en) Production of high-purity metal fluoride
JP2000169141A (en) Production of ammonium hexafluoroaluminate
JP6565232B2 (en) Silver recovery method
JPH07224334A (en) Separating and recovering method of copper
JPS5826029A (en) Manufacture of gamma-alumina
CN115536049B (en) Method for preparing cryolite
JPS62270419A (en) Zirconia and zirconia mixture and preparation thereof
US3669619A (en) Production of diammonium hydrogen hexafluoroaluminate and aluminum fluoride
JPS6153123A (en) Production of iron oxide of low silica content
US3424555A (en) Process for converting alkali metal titanates into their pure titanium dioxide pseudomorphs
JP4322057B2 (en) Recovery of ammonium complex of metal fluoride and method of reuse
JPS61215217A (en) Purification of zirconium oxy-salt
SU126971A1 (en) The method of obtaining cadmium selenide
Booth et al. Reactions in Inert Fused Substances: Conversion of Barytes to Barium Carbonate
JPH03137008A (en) Production of tellurium dioxide