JP4322057B2 - Recovery of ammonium complex of metal fluoride and method of reuse - Google Patents

Recovery of ammonium complex of metal fluoride and method of reuse Download PDF

Info

Publication number
JP4322057B2
JP4322057B2 JP2003179021A JP2003179021A JP4322057B2 JP 4322057 B2 JP4322057 B2 JP 4322057B2 JP 2003179021 A JP2003179021 A JP 2003179021A JP 2003179021 A JP2003179021 A JP 2003179021A JP 4322057 B2 JP4322057 B2 JP 4322057B2
Authority
JP
Japan
Prior art keywords
ppm
precipitate
metal fluoride
ammonium
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003179021A
Other languages
Japanese (ja)
Other versions
JP2005008505A (en
Inventor
裕久 菊山
雅秀 脇
和博 宮本
輝憲 山口
健治 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stella Chemifa Corp
Original Assignee
Stella Chemifa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003119414A external-priority patent/JP2004323286A/en
Application filed by Stella Chemifa Corp filed Critical Stella Chemifa Corp
Priority to JP2003179021A priority Critical patent/JP4322057B2/en
Publication of JP2005008505A publication Critical patent/JP2005008505A/en
Application granted granted Critical
Publication of JP4322057B2 publication Critical patent/JP4322057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明が属する技術分野】
本発明は金属フッ化物のアンモニウム錯体から金属フッ化物の無機錯体とアンモニウム塩とを回収し、更に必要に応じこれ等を有効に再利用する方法に関し、詳しくは、従来殆ど再利用出来ずに産業廃棄物として廃棄されていた金属フッ化物のアンモニウム錯体を金属フッ化物の無機錯体に変換して、再利用できる形態として回収し、同時に副生するアンモニウム塩をも含めてこれ等を再利用する方法に関する。
【0002】
【従来の技術】
金属フッ化物のアンモニウム錯体は、主にアルミニウム又はその合金の表面処理の際に生ずるものであって、これ等錯体はそのままの形では殆ど再利用することが出来ず、通常このまま産業廃棄物として処理されていた。
【0003】
この金属フッ化物のアンモニウム錯体が副生するアルミニウム又はその合金の処理例をあげれば以下の通りである。
【0004】
(イ)アルミニウム材を、Cu化合物及び/又はAg化合物を含有するフッ化水素アンモニウム(酸性フッ化アンモニウム)水溶液に浸漬する処理方法。この際、前記Cu化合物が塩基性炭酸銅で、Ag化合物が硝酸銀であることが好ましいとされている。
【0005】
(ロ)アルミニウムの表面に機能を付加する方法として、様々な表面処理が開発され、例えばその一つに特開2001−11648号公報に記載の化成処理がある。これはケイフッ化マグネシウム(MgSiF6・6H2O)とケイフッ化アンモニウム((NH42SiF6)とを含む処理液を加熱するものである。加熱した水溶液にアルミ部品を浸漬することによって、アルミ表面にNH4MgAlF6とMgAlF5・1.5H2Oとの混合物、又はNH4MgAlF6とMgAl28・2H2Oとの混合物からなる特定の化合物皮膜を形成している。ケイフッ化マグネシウムとケイフッ化アンモニウムとを含む処理液は、70℃以上に加熱されると、両成分が加水分解し、マグネシウムイオン、アンモニウムイオン、フッ素イオン、フッ酸、珪酸などが共存する状態になる。
【0006】
いずれにしても上記で示した各アルミニウム又はその合金の表面処理に於いては、金属フッ化物のアンモニウム錯体が生成する。
【0007】
【本発明が解決しようとする課題】
本発明が解決しようとする課題は、従来その再利用の方法がいまだ開発されていない上記金属フッ化物のアンモニウム錯体から、再利用可能な化合物にこれを変換して回収し、更に必要に応じこれ等を再利用する手段を提供することである。
【0008】
【課題を解決するための手段】
この手段は、産業廃棄物として生じた金属フッ化物のアンモニウム錯体と無機塩(R−X)とを反応させて、金属フッ化物の無機錯体とアンモニウム塩となして、この形態で回収すると共に、更に必要に応じこれ等を再利用することによって解決される。
記無機塩(R−X)のRはカチオンを、またXはアニオンを示す。
但し、前記金属フッ化物のアンモニウム錯体が、Al、Fe及びSiの少なくとも1種の金属Mを含むアンモニウムフッ化物(NH 4 ) MF の少なくとも一種であり(但しy=1、2或いは3の何れか一種、及びz=4、5、6或いは7の何れか一種を示す。)、
前記無機塩のカチオン(R)が、Na及びKの少なくとも一種である。
【0009】
【発明の作用】
本発明の金属フッ化物のアンモニウム錯体と無機塩との反応について、前者金属フッ化物のアンモニウム錯体の例として(NH43AlF6を、また後者の無機塩としてNa2SO4を代表例として化学式で示せば以下の通りである。
【0010】
2(NH43AlF6+3Na2SO4→2Na3AlF6+3(NH42SO4
【0011】
本発明に於いて使用する金属フッ化物のアンモニウム錯体としては、アルミニウム又はその合金の表面処理の工程に於いて副生するものが広く使用される。
【0013】
本発明に於いて使用する無機塩としては、R−Xで示される各種の塩が広く使用出来る。この際、Rはカチオンを、Xはアニオンを示し、Rとして具体的には、Na、Kである
【0014】
またXはアニオンを示し、具体的にはCl、SO4、F、CO3、HCO3、NO3、PO4等を例示出来、特に好ましいものとして、Cl及びSO4を例示出来る。
【0015】
本発明の上記反応の条件について以下に詳しく説明する。
(A)反応時の水の量
無機塩(R−X)を溶解させるに必要な量、もしくは無機塩(R−X)をイオン化させるに必要な量が好ましい。この点から水の量は多い方が好ましいが、100重量部の無機塩(R−X)に対して100〜100000重量部、特に好ましくは100〜10000重量部の水を用いると良い。しかし水の量があまりにも多くなった場合、回収された金属フッ化物の無機錯体との分離工程により生じた水の量が増加する為、回収されるアンモニウム塩の収量が低下する。
【0016】
洗浄に用いる水の量も、特に限定されるものではないが、同様の理由により、回収された金属フッ化物の無機錯体100重量部に対して100〜100000重量部、特に好ましくは100〜10000重量部の水を用いると良い。
【0017】
(B)反応時のpH
反応時のpHは通常5〜9である。強酸性あるいは強アルカリ性下では、金属フッ化物のアンモニウム錯体が分解し、アンモニアガスが発生する傾向がある。その為、反応は中性(pH6〜8)付近が特に好ましい。
【0018】
(C)混合順序
無機塩(R−X)を完全に溶解させた後、金属フッ化物のアンモニウム錯体と反応させても良い。また、完全に溶解させない状態で混合しても構わない。
【0019】
(D)添加方法
金属フッ化物のアンモニウム錯体は水に溶けにくいので、金属フッ化物のアンモニウム錯体は、固体のまま添加しても良いし、予め金属フッ化物のアンモニウム錯体の水分散液を調製して、これを添加しても良い。金属フッ化物のアンモニウム錯体は、無機塩(R−X)溶液に同時に添加しても良いし、どちらか一方を先に添加して、しばらくしてから他方を添加しても良い。
【0020】
(E)無機塩(R−X)の量
金属フッ化物のアンモニウム錯体におけるアンモニウム物を無機物にするのに必要な量の無機塩(R−X)を使用し、不溶残渣として効率良く金属フッ化物の無機錯体を回収するものである。この場合、金属フッ化物のアンモニウム錯体100重量部に対して無機塩(R−X)は、10〜1000重量部が好ましいが、純度の高い金属フッ化物の無機錯体を回収する為には、60〜200重量部が特に好ましい。
【0021】
(F)粒径
金属フッ化物の無機錯体の粒径は、特に限定されるものでは無い。しかし、濾過・脱水性から、粒径は大きいものが好ましい。さらに高分子凝集剤により、粒径を調製することは何ら問題無い。この際の高分子凝集剤としては従来から知られたものがいずれも使用出来、その代表例としてポリアクリルアミド系凝集剤、ポリメタアクリル酸エステル系凝集剤、ポリアクリル酸ソーダ系凝集剤、ポリアミン系凝集剤、アミノ縮合系凝集剤等の使用が可能である。その使用量は、水量に対して、5〜20ppm用いても良い。
【0022】
(G)温度
溶解、反応、及び洗浄時の水温は、室温で扱える15℃以上が良い。あまり低温で溶解させても効果に乏しく、金属フッ化物の無機錯体の回収率を低下させる。従って溶解、反応、及び洗浄時の温度は15〜100℃、好ましくは25〜90℃である。
【0023】
(H)時間等
金属フッ化物のアンモニウム錯体と無機塩(R−X)との反応時間は、特に限定されるものではないが、0.01〜48時間程度が好ましい。しかし、0.01〜12時間が工業的にも特に好ましい。また金属フッ化物のアンモニウム錯体と無機塩(R−X)との反応は、常圧下、真空下、何れで行っても良い。
【0024】
かくして得られた(回収した)金属フッ化物の無機錯体は再度水に分散させ、洗浄を行なう。純度を高めるために洗浄操作を繰り返し行っても良い。
【0025】
回収した金属フッ化物の無機錯体は、電解精錬時の融剤、メッキの融剤、乳濁剤等に再利用可能である。またアンモニウム塩は、肥料及び工業製品として再利用可能である。さらに無機塩(R−X)のアニオンにFを使用した場合、フッ化アンモニウム(NH4F)が再生される為、再度、表面処理工程に利用可能である。なお、この際、フッ化水素酸を加えて使用しても構わない。
【0026】
【実施例】
以下に本発明の代表的な例を示しながら更に具体的に説明する。尚、これらは説明の為の単なる例示であって、本発明はこれらに何等制限されるものではない。
実施例における評価は以下の(1)〜(4)の方法により実施した。
(1)金属不純物量;誘導結合プラズマ原子発光分析にて評価。
(2)粒径;粒度分布計(レーザー回折・散乱法)により評価。
(3)アンモニア含量:滴定により評価。
(4)結晶構造解析:X線回折装置(XRD)により評価。
【0027】
【実施例1】
産業廃棄物として生じた(NH43AlF6中の不純物量は、Ca:20ppm、Cu:50ppm、Fe:150ppm、Mg:850ppm、Mn:20ppm、Na:100ppm、Si<500ppmであった。
【0028】
上記産業廃棄物として生じた(NH43AlF6を243g測りとり、水2.5kgに分散させた。その後、NaClを230g加えた後、90℃で6時間攪拌を行なった。溶液のpHは7.2であった。その後、溶液を40℃まで冷却した後、吸引濾過により、沈殿物と反応濾液に分別した。
【0029】
回収した沈殿物を、40℃で水1kgに分散させ、沈殿物の洗浄を行なった後、濾過により沈殿物と洗浄濾液に分離し、沈殿物を105℃で6時間乾燥させた。
【0030】
さらに、反応濾液は130℃で4時間濃縮を行なった。濃縮液を25℃に冷却させて、結晶を析出させた。この結晶と濾液を濾過により分離し、結晶を105℃で6時間乾燥を行なった。
得られた沈殿物の重量は261gであった。また濾液を濃縮させた液から得られた結晶重量は203gであった。
得られた沈殿の平均粒子径は1.8μmであった。
【0031】
更に沈殿物及び結晶のXRD解析を行なった結果、沈殿物はNa3AlF6に、結晶はNH4Clに帰属された。またNa3AlF6中のアンモニア含量は0.02%であり、その他不純物もCa<5ppm、Cu<5ppm、Fe<5ppm、Mg<5ppm、Mn<1ppm、Si<10ppmであった。さらに、NH4Cl中のNa;0.05%であり、反応は定量的(99.7%)に進んでいることが確認された。不純物としては、Ca<5ppm、Cu<5ppm、Fe<5ppm、Mg<5ppm、Mn<1ppm、Si<10ppmであった。
【0032】
【実施例2】
産業廃棄物として生じた(NH42SiF6中の不純物量は、Ca:30ppm、Cu:20ppm、Fe:100ppm、Mg:500ppm、Mn:100ppm、Na:50ppmであった。
【0033】
上記産業廃棄物として生じた(NH42SiF6を831g測りとり、KClを730g加えた。その後、水8kgを加え、30℃で12時間攪拌を行なった。溶液のpHは7.1であった。吸引濾過により、沈殿物と反応濾液に分別した。
【0034】
回収した沈殿物を、30℃で水5kgに分散させ、沈殿物の洗浄を行なった後、濾過により沈殿物と洗浄濾液に分離し、沈殿物を105℃で8時間乾燥させた。
【0035】
さらに、反応濾液は130℃で13時間濃縮を行なった。濃縮液を25℃に冷却させて、結晶を析出させた。この結晶と濾液を濾過により分離し、結晶を105℃で5時間乾燥を行なった。
【0036】
得られた沈殿物の重量は1.03kgであった。また濾液を濃縮させた液から得られた結晶重量は505gであった。
得られた沈殿の平均粒子径は2.5μmであった。
【0037】
また沈殿物及び結晶のXRD解析を行なった結果、沈殿物はK2SiF6に、結晶はNH4Clに帰属された。またK2SiF6のアンモニア含量は0.05%であり、その他不純物もCa<5ppm、Cu<5ppm、Fe<5ppm、Mg<5ppm、Mn<1ppm、Na<5ppmであった。さらに、NH4Cl中のK;0.1%であり、反応はほぼ定量的(98.9%)に進んでいることが確認された。不純物としては、Ca<5ppm、Cu<5ppm、Fe<5ppm、Mg<5ppm、Mn<1ppm、Si<10ppm、Na<5ppmであった。
【0038】
【実施例3】
産業廃棄物として生じた(NH4)FeF6中の不純物量は、Ca:100ppm、Cu:40ppm、Mg:900ppm、Mn:20ppm、Na:200ppm、Si:400ppmであった。
【0039】
Na2SO4500gを測りとり、水10kgに溶解させた。これに上記産業廃棄物として生じた(NH4)FeF6を500g加えた。その後、Na2SO4を500g加えた後、70℃で12時間攪拌を行なった。溶液のpHは7.1であった。その後、溶液を40℃まで冷却した後、吸引濾過により、沈殿物と反応濾液に分別した。
【0040】
回収した沈殿物を、50℃で水2kgに分散させ、沈殿物の洗浄を行なった後、濾過により沈殿物と洗浄濾液に分離し、沈殿物を105℃で6時間乾燥させた。
さらに、反応濾液は130℃で18時間濃縮を行なった。濃縮液を25℃に冷却させて、結晶を析出させた。この結晶と濾液を濾過により分離し、結晶を105℃で8時間乾燥を行なった。
【0041】
得られた沈殿物の重量は350gであった。また濾液を濃縮させた液から得られた結晶重量は440gであった。
得られた沈殿の平均粒子径は2.5μmであった。
【0042】
更に沈殿物及び結晶のXRD解析を行なった結果、沈殿物はNa3FeF6に、結晶は(NH42SO4に帰属された。またNa3FeF6のアンモニア含量は0.03%であり、その他不純物もCa<5ppm、Cu<5ppm、Mg<5ppm、Mn<1ppm、Si<10ppmであった。さらに、(NH42SO4中のNa;0.03%であり、反応はほぼ定量的(99.3%)に進んでいることが確認された。不純物としては、Ca<5ppm、Cu<5ppm、Fe<5ppm、Mg<5ppm、Mn<1ppm、Si<10ppmであった。
【0043】
【実施例4】
実施例1で使用したものと同じ産業廃棄物として生じた(NH43AlF6を176g測りとり、水5.0kgに分散させた。その後、NaFを119g加えた後、90℃で6時間攪拌を行なった。溶液のpHは7.5であった。その後、溶液を40℃まで冷却した後、吸引濾過により、沈殿物と反応濾液に分別した。
【0044】
回収した沈殿物を、40℃で水1kgに分散させ、沈殿物の洗浄を行なった後、濾過により沈殿物と洗浄濾液に分離し、沈殿物を105℃で6時間乾燥させた。
【0045】
さらに、反応濾液は130℃で3時間濃縮を行なった。濃縮液を25℃に冷却させて、結晶を析出させた。この結晶と濾液を濾過により分離し、結晶を105℃で6時間乾燥を行なった。
得られた沈殿物の重量は186gであった。また濾液を濃縮させた液から得られた結晶重量は98gであった。
得られた沈殿の平均粒子径は1.6μmであった。
【0046】
更に沈殿物及び結晶のXRD解析を行なった結果、沈殿物はNa3AlF6に、結晶はNH4Fに帰属された。またNa3AlF6中のアンモニア含量は0.02%であり、その他不純物もCa<5ppm、Cu<5ppm、Fe<5ppm、Mg<5ppm、Mn<1ppm、Si<10ppmであった。さらに、NH4F中のNa;0.06%であり、反応は定量的(98.4%)に進んでいることが確認された。不純物としては、Ca<5ppm、Cu<5ppm、Fe<5ppm、Mg<5ppm、Mn<1ppm、Si<10ppmであった。
【0047】
【実施例5】
実施例1で使用したものと同じ産業廃棄物として生じた(NH43AlF6を135g測りとり、水3.5kgに分散させた。その後、Na2CO3を116g加えた後、40℃で6時間攪拌を行なった。溶液のpHは7.3であった。その後、吸引濾過により、沈殿物と反応濾液に分別した。
【0048】
回収した沈殿物を、40℃で水1kgに分散させ、沈殿物の洗浄を行なった後、濾過により沈殿物と洗浄濾液に分離し、沈殿物を105℃で6時間乾燥させた。
【0049】
さらに、反応濾液は130℃で4時間濃縮を行なった。濃縮液を25℃に冷却させて、結晶を析出させた。この結晶と濾液を濾過により分離し、結晶を105℃で6時間乾燥を行なった。
得られた沈殿物の重量は145gであった。また濾液を濃縮させた液から得られた結晶重量は97gであった。
得られた沈殿の平均粒子径は1.8μmであった。
【0050】
更に沈殿物及び結晶のXRD解析を行なった結果、沈殿物はNa3AlF6に、結晶は(NH42CO3に帰属された。またNa3AlF6中のアンモニア含量は0.04%であり、その他不純物もCa<5ppm、Cu<5ppm、Fe<5ppm、Mg<5ppm、Mn<1ppm、Si<10ppmであった。さらに、(NH42CO3中のNa;0.05%であり、反応は定量的(99.3%)に進んでいることが確認された。不純物としては、Ca<5ppm、Cu<5ppm、Fe<5ppm、Mg<5ppm、Mn<1ppm、Si<10ppmであった。
【0051】
【実施例6】
実施例1で使用したものと同じ産業廃棄物として生じた(NH43AlF6を81g測りとり、水3.5kgに分散させた。その後、NaNO3を112g加えた後、90℃で6時間攪拌を行なった。溶液のpHは7.3であった。その後、溶液を40℃まで冷却した後、吸引濾過により、沈殿物と反応濾液に分別した。
【0052】
回収した沈殿物を、40℃で水1kgに分散させ、沈殿物の洗浄を行なった後、濾過により沈殿物と洗浄濾液に分離し、沈殿物を105℃で6時間乾燥させた。
【0053】
さらに、反応濾液は130℃で4時間濃縮を行なった。濃縮液を25℃に冷却させて、結晶を析出させた。この結晶と濾液を濾過により分離し、結晶を105℃で6時間乾燥を行なった。
得られた沈殿物の重量は87gであった。また濾液を濃縮させた液から得られた結晶重量は98gであった。
得られた沈殿の平均粒子径は1.8μmであった。
【0054】
更に沈殿物及び結晶のXRD解析を行なった結果、沈殿物はNa3AlF6に、結晶はNH4NO3に帰属された。またNa3AlF6中のアンモニア含量は0.05%であり、その他不純物もCa<5ppm、Cu<5ppm、Fe<5ppm、Mg<5ppm、Mn<1ppm、Si<10ppmであった。さらに、NH4F中のNa;0.05%であり、反応は定量的(98.9%)に進んでいることが確認された。不純物としては、Ca<5ppm、Cu<5ppm、Fe<5ppm、Mg<5ppm、Mn<1ppm、Si<10ppmであった。
【0055】
【発明の効果】
本発明は従来再利用が殆ど行われずに産業廃棄物として処理されていた金属フッ化物のアンモニウム錯体を、簡単な手段により、再利用可能な金属フッ化物の無機錯体に変換することが出来、その産業上の効果は極めて大きい。
[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for recovering an inorganic complex of metal fluoride and an ammonium salt from an ammonium complex of metal fluoride, and further effectively reusing them if necessary. A method of converting an ammonium complex of metal fluoride, which has been discarded as waste, into an inorganic complex of metal fluoride and recovering it as a reusable form, and simultaneously reusing these by-product ammonium salts About.
[0002]
[Prior art]
Ammonium complexes of metal fluoride are mainly generated during the surface treatment of aluminum or its alloys, and these complexes can hardly be reused as they are and are usually treated as industrial waste as they are. It had been.
[0003]
An example of the treatment of aluminum or its alloy by-produced by the metal fluoride ammonium complex is as follows.
[0004]
(A) A treatment method in which an aluminum material is immersed in an aqueous solution of ammonium hydrogen fluoride (acidic ammonium fluoride) containing a Cu compound and / or an Ag compound. At this time, the Cu compound is preferably basic copper carbonate and the Ag compound is preferably silver nitrate.
[0005]
(B) Various surface treatments have been developed as a method for adding a function to the surface of aluminum. For example, there is a chemical conversion treatment described in JP-A-2001-11648. This heats a treatment liquid containing magnesium silicofluoride (MgSiF 6 .6H 2 O) and ammonium silicofluoride ((NH 4 ) 2 SiF 6 ). By immersing aluminum parts in a heated aqueous solution, a mixture of NH 4 MgAlF 6 and MgAlF 5 .1.5H 2 O or a mixture of NH 4 MgAlF 6 and MgAl 2 F 8 .2H 2 O is applied to the aluminum surface. The specific compound film is formed. When a treatment liquid containing magnesium silicofluoride and ammonium silicofluoride is heated to 70 ° C. or higher, both components are hydrolyzed and magnesium ions, ammonium ions, fluorine ions, hydrofluoric acid, silicic acid, etc. coexist. .
[0006]
In any case, in the surface treatment of each aluminum or its alloy shown above, an ammonium complex of metal fluoride is formed.
[0007]
[Problems to be solved by the present invention]
The problem to be solved by the present invention is to recover the above-mentioned metal fluoride ammonium complex, which has not been developed yet, by converting it into a reusable compound, and if necessary, recovering it. It is to provide a means for reusing etc.
[0008]
[Means for Solving the Problems]
This means, the ammonium complex of the resulting metal fluoride as industrial waste and inorganic salts (R-X) by reaction, forms an inorganic complexes and ammonium salts of the metal fluoride, is recovered in this form Further, it can be solved by reusing them as necessary.
R is a cation of the upper-inorganic salt (R-X), and X represents an anion.
However, the ammonium complex of the metal fluoride is at least one of ammonium fluoride (NH 4 ) y MF z containing at least one metal M of Al, Fe and Si (provided that y = 1, 2 or 3) Any one and z = 4, 5, 6 or 7).
The cation (R) of the inorganic salt is at least one of Na and K.
[0009]
[Effects of the Invention]
Regarding the reaction of the metal fluoride ammonium complex of the present invention with an inorganic salt, (NH 4 ) 3 AlF 6 is used as an example of the former metal fluoride ammonium complex, and Na 2 SO 4 is used as a representative example of the latter inorganic salt. The chemical formula is as follows.
[0010]
2 (NH 4 ) 3 AlF 6 + 3Na 2 SO 4 → 2Na 3 AlF 6 +3 (NH 4 ) 2 SO 4
[0011]
As the ammonium complex of metal fluoride used in the present invention, those produced as a by-product in the surface treatment process of aluminum or its alloy are widely used.
[0013]
As the inorganic salt used in the present invention, various salts represented by R—X can be widely used. Here, R represents a cation, X is denotes an anion, specifically as R, is N a, K.
[0014]
X represents an anion. Specifically, Cl, SO 4 , F, CO 3 , HCO 3 , NO 3 , PO 4 and the like can be exemplified, and particularly preferable examples include Cl and SO 4 .
[0015]
The conditions for the above reaction of the present invention will be described in detail below.
(A) The amount of water during the reaction The amount necessary for dissolving the inorganic salt (RX) or the amount necessary for ionizing the inorganic salt (RX) is preferred. In this respect, the amount of water is preferably large, but 100 to 100,000 parts by weight, particularly preferably 100 to 10,000 parts by weight of water is used with respect to 100 parts by weight of the inorganic salt (RX). However, if the amount of water becomes too large, the amount of water produced by the separation step of the recovered metal fluoride with the inorganic complex increases, so the yield of recovered ammonium salt decreases.
[0016]
The amount of water used for washing is not particularly limited, but for the same reason, it is 100 to 100,000 parts by weight, particularly preferably 100 to 10,000 parts by weight based on 100 parts by weight of the recovered metal fluoride inorganic complex. It is good to use the water of the part.
[0017]
(B) pH during reaction
The pH during the reaction is usually 5-9. Under strong acidity or strong alkalinity, the ammonium complex of metal fluoride tends to decompose and generate ammonia gas. Therefore, the reaction is particularly preferably near neutral (pH 6-8).
[0018]
(C) Mixing order After the inorganic salt (RX) is completely dissolved, it may be reacted with an ammonium complex of a metal fluoride. Moreover, you may mix in the state which does not melt | dissolve completely.
[0019]
(D) Addition method Since the metal fluoride ammonium complex is hardly soluble in water, the metal fluoride ammonium complex may be added as a solid, or an aqueous dispersion of the metal fluoride ammonium complex is prepared in advance. This may be added. The ammonium complex of metal fluoride may be added to the inorganic salt (RX) solution at the same time, or one of them may be added first, and the other may be added after a while.
[0020]
(E) Amount of inorganic salt (RX) The amount of inorganic salt (RX) required to make the ammonium in the ammonium complex of the metal fluoride inorganic, and efficiently used as an insoluble residue The inorganic complex is recovered. In this case, the inorganic salt (R-X) is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the metal fluoride ammonium complex, but in order to recover the high-purity metal fluoride inorganic complex, -200 parts by weight are particularly preferred.
[0021]
(F) Particle size The particle size of the inorganic complex of metal fluoride is not particularly limited. However, those having a large particle size are preferred from the viewpoint of filtration and dehydration. Furthermore, there is no problem in preparing the particle size with the polymer flocculant. As the polymer flocculant in this case, any conventionally known polymer flocculants can be used, and representative examples thereof include polyacrylamide flocculants, polymethacrylate ester flocculants, polyacrylic acid soda flocculants, polyamine flocculants. It is possible to use a flocculant, an amino condensation flocculant, and the like. The amount of use may be 5 to 20 ppm with respect to the amount of water.
[0022]
(G) The water temperature at the time of temperature dissolution, reaction, and washing is preferably 15 ° C. or higher that can be handled at room temperature. Even if it is dissolved at a very low temperature, the effect is poor and the recovery rate of the metal fluoride inorganic complex is lowered. Accordingly, the temperature during dissolution, reaction, and washing is 15 to 100 ° C, preferably 25 to 90 ° C.
[0023]
(H) The reaction time of the metal fluoride ammonium complex and the inorganic salt (RX) is not particularly limited, but is preferably about 0.01 to 48 hours. However, 0.01 to 12 hours are particularly preferable industrially. The reaction between the metal fluoride ammonium complex and the inorganic salt (R-X) may be performed under normal pressure or under vacuum.
[0024]
The inorganic complex of metal fluoride thus obtained (recovered) is dispersed again in water and washed. In order to increase the purity, the washing operation may be repeated.
[0025]
The recovered inorganic complex of metal fluoride can be reused as a flux for electrolytic refining, a flux for plating, an emulsion, and the like. Ammonium salts can be reused as fertilizers and industrial products. Further, when F is used as the anion of the inorganic salt (R—X), ammonium fluoride (NH 4 F) is regenerated, so that it can be used again for the surface treatment process. In this case, hydrofluoric acid may be added and used.
[0026]
【Example】
The present invention will be described more specifically with reference to typical examples of the present invention. These are merely examples for explanation, and the present invention is not limited to these.
Evaluation in the examples was performed by the following methods (1) to (4).
(1) Metal impurity amount: evaluated by inductively coupled plasma atomic emission spectrometry.
(2) Particle size: Evaluated by a particle size distribution meter (laser diffraction / scattering method).
(3) Ammonia content: evaluated by titration.
(4) Crystal structure analysis: evaluated by X-ray diffractometer (XRD).
[0027]
[Example 1]
The amount of impurities in (NH 4 ) 3 AlF 6 produced as industrial waste was Ca: 20 ppm, Cu: 50 ppm, Fe: 150 ppm, Mg: 850 ppm, Mn: 20 ppm, Na: 100 ppm, Si <500 ppm.
[0028]
243 g of (NH 4 ) 3 AlF 6 produced as the industrial waste was measured and dispersed in 2.5 kg of water. Thereafter, 230 g of NaCl was added, followed by stirring at 90 ° C. for 6 hours. The pH of the solution was 7.2. Thereafter, the solution was cooled to 40 ° C. and then separated into a precipitate and a reaction filtrate by suction filtration.
[0029]
The collected precipitate was dispersed in 1 kg of water at 40 ° C., washed with the precipitate, then separated into a precipitate and a washing filtrate by filtration, and the precipitate was dried at 105 ° C. for 6 hours.
[0030]
Furthermore, the reaction filtrate was concentrated at 130 ° C. for 4 hours. The concentrate was cooled to 25 ° C. to precipitate crystals. The crystals and the filtrate were separated by filtration, and the crystals were dried at 105 ° C. for 6 hours.
The weight of the obtained precipitate was 261 g. Moreover, the crystal weight obtained from the liquid which concentrated the filtrate was 203g.
The average particle size of the obtained precipitate was 1.8 μm.
[0031]
Further, as a result of XRD analysis of the precipitate and the crystal, the precipitate was assigned to Na 3 AlF 6 and the crystal was assigned to NH 4 Cl. The ammonia content in Na 3 AlF 6 was 0.02%, and other impurities were Ca <5 ppm, Cu <5 ppm, Fe <5 ppm, Mg <5 ppm, Mn <1 ppm, Si <10 ppm. Furthermore, Na in NH 4 Cl; 0.05%, and it was confirmed that the reaction had progressed quantitatively (99.7%). Impurities were Ca <5 ppm, Cu <5 ppm, Fe <5 ppm, Mg <5 ppm, Mn <1 ppm, Si <10 ppm.
[0032]
[Example 2]
The amount of impurities in (NH 4 ) 2 SiF 6 produced as industrial waste was Ca: 30 ppm, Cu: 20 ppm, Fe: 100 ppm, Mg: 500 ppm, Mn: 100 ppm, Na: 50 ppm.
[0033]
831 g of (NH 4 ) 2 SiF 6 produced as the industrial waste was measured, and 730 g of KCl was added. Thereafter, 8 kg of water was added and the mixture was stirred at 30 ° C. for 12 hours. The pH of the solution was 7.1. The precipitate and the reaction filtrate were separated by suction filtration.
[0034]
The collected precipitate was dispersed in 5 kg of water at 30 ° C., and the precipitate was washed, and then separated into a precipitate and a washing filtrate by filtration, and the precipitate was dried at 105 ° C. for 8 hours.
[0035]
Furthermore, the reaction filtrate was concentrated at 130 ° C. for 13 hours. The concentrate was cooled to 25 ° C. to precipitate crystals. The crystals and the filtrate were separated by filtration, and the crystals were dried at 105 ° C. for 5 hours.
[0036]
The weight of the obtained precipitate was 1.03 kg. Moreover, the crystal weight obtained from the liquid which concentrated the filtrate was 505g.
The average particle size of the obtained precipitate was 2.5 μm.
[0037]
As a result of XRD analysis of the precipitate and the crystal, the precipitate was assigned to K 2 SiF 6 and the crystal was assigned to NH 4 Cl. The ammonia content of K 2 SiF 6 was 0.05%, and other impurities were Ca <5 ppm, Cu <5 ppm, Fe <5 ppm, Mg <5 ppm, Mn <1 ppm, Na <5 ppm. Furthermore, K in NH 4 Cl; 0.1%, and it was confirmed that the reaction proceeded almost quantitatively (98.9%). As impurities, Ca <5 ppm, Cu <5 ppm, Fe <5 ppm, Mg <5 ppm, Mn <1 ppm, Si <10 ppm, Na <5 ppm.
[0038]
[Example 3]
The amount of impurities in (NH 4 ) FeF 6 produced as industrial waste was Ca: 100 ppm, Cu: 40 ppm, Mg: 900 ppm, Mn: 20 ppm, Na: 200 ppm, Si: 400 ppm.
[0039]
Na 2 SO 4 500 g was measured and dissolved in 10 kg of water. To this, 500 g of (NH 4 ) FeF 6 produced as industrial waste was added. Thereafter, 500 g of Na 2 SO 4 was added, followed by stirring at 70 ° C. for 12 hours. The pH of the solution was 7.1. Thereafter, the solution was cooled to 40 ° C. and then separated into a precipitate and a reaction filtrate by suction filtration.
[0040]
The collected precipitate was dispersed in 2 kg of water at 50 ° C., washed the precipitate, then separated by filtration into a precipitate and a washing filtrate, and the precipitate was dried at 105 ° C. for 6 hours.
Furthermore, the reaction filtrate was concentrated at 130 ° C. for 18 hours. The concentrate was cooled to 25 ° C. to precipitate crystals. The crystals and the filtrate were separated by filtration, and the crystals were dried at 105 ° C. for 8 hours.
[0041]
The weight of the obtained precipitate was 350 g. Moreover, the crystal weight obtained from the liquid which concentrated the filtrate was 440g.
The average particle size of the obtained precipitate was 2.5 μm.
[0042]
As a result of further XRD analysis of the precipitate and the crystal, the precipitate was assigned to Na 3 FeF 6 and the crystal was assigned to (NH 4 ) 2 SO 4 . The ammonia content of Na 3 FeF 6 was 0.03%, and other impurities were Ca <5 ppm, Cu <5 ppm, Mg <5 ppm, Mn <1 ppm, and Si <10 ppm. Further, Na in (NH 4 ) 2 SO 4 ; 0.03%, and it was confirmed that the reaction proceeded almost quantitatively (99.3%). Impurities were Ca <5 ppm, Cu <5 ppm, Fe <5 ppm, Mg <5 ppm, Mn <1 ppm, Si <10 ppm.
[0043]
[Example 4]
176 g of (NH 4 ) 3 AlF 6 produced as the same industrial waste as used in Example 1 was measured and dispersed in 5.0 kg of water. Then, after adding 119g of NaF, it stirred at 90 degreeC for 6 hours. The pH of the solution was 7.5. Thereafter, the solution was cooled to 40 ° C. and then separated into a precipitate and a reaction filtrate by suction filtration.
[0044]
The collected precipitate was dispersed in 1 kg of water at 40 ° C., washed with the precipitate, then separated into a precipitate and a washing filtrate by filtration, and the precipitate was dried at 105 ° C. for 6 hours.
[0045]
Furthermore, the reaction filtrate was concentrated at 130 ° C. for 3 hours. The concentrate was cooled to 25 ° C. to precipitate crystals. The crystals and the filtrate were separated by filtration, and the crystals were dried at 105 ° C. for 6 hours.
The weight of the obtained precipitate was 186 g. Moreover, the crystal weight obtained from the liquid which concentrated the filtrate was 98g.
The average particle size of the obtained precipitate was 1.6 μm.
[0046]
As a result of further XRD analysis of the precipitate and the crystal, the precipitate was assigned to Na 3 AlF 6 and the crystal was assigned to NH 4 F. The ammonia content in Na 3 AlF 6 was 0.02%, and other impurities were Ca <5 ppm, Cu <5 ppm, Fe <5 ppm, Mg <5 ppm, Mn <1 ppm, Si <10 ppm. Furthermore, Na in NH 4 F; 0.06%, and it was confirmed that the reaction had progressed quantitatively (98.4%). Impurities were Ca <5 ppm, Cu <5 ppm, Fe <5 ppm, Mg <5 ppm, Mn <1 ppm, Si <10 ppm.
[0047]
[Example 5]
135 g of (NH 4 ) 3 AlF 6 produced as the same industrial waste as that used in Example 1 was measured and dispersed in 3.5 kg of water. Thereafter, 116 g of Na 2 CO 3 was added, followed by stirring at 40 ° C. for 6 hours. The pH of the solution was 7.3. Thereafter, the precipitate and the reaction filtrate were separated by suction filtration.
[0048]
The collected precipitate was dispersed in 1 kg of water at 40 ° C., washed with the precipitate, then separated into a precipitate and a washing filtrate by filtration, and the precipitate was dried at 105 ° C. for 6 hours.
[0049]
Furthermore, the reaction filtrate was concentrated at 130 ° C. for 4 hours. The concentrate was cooled to 25 ° C. to precipitate crystals. The crystals and the filtrate were separated by filtration, and the crystals were dried at 105 ° C. for 6 hours.
The weight of the obtained precipitate was 145 g. Moreover, the crystal weight obtained from the liquid which concentrated the filtrate was 97g.
The average particle size of the obtained precipitate was 1.8 μm.
[0050]
As a result of XRD analysis of the precipitate and the crystal, the precipitate was assigned to Na 3 AlF 6 and the crystal was assigned to (NH 4 ) 2 CO 3 . Moreover, the ammonia content in Na 3 AlF 6 was 0.04%, and other impurities were Ca <5 ppm, Cu <5 ppm, Fe <5 ppm, Mg <5 ppm, Mn <1 ppm, Si <10 ppm. Furthermore, Na in (NH 4 ) 2 CO 3 ; 0.05%, and it was confirmed that the reaction had progressed quantitatively (99.3%). Impurities were Ca <5 ppm, Cu <5 ppm, Fe <5 ppm, Mg <5 ppm, Mn <1 ppm, Si <10 ppm.
[0051]
[Example 6]
81 g of (NH 4 ) 3 AlF 6 produced as the same industrial waste as that used in Example 1 was measured and dispersed in 3.5 kg of water. Thereafter, 112 g of NaNO 3 was added, followed by stirring at 90 ° C. for 6 hours. The pH of the solution was 7.3. Thereafter, the solution was cooled to 40 ° C. and then separated into a precipitate and a reaction filtrate by suction filtration.
[0052]
The collected precipitate was dispersed in 1 kg of water at 40 ° C., washed with the precipitate, then separated into a precipitate and a washing filtrate by filtration, and the precipitate was dried at 105 ° C. for 6 hours.
[0053]
Furthermore, the reaction filtrate was concentrated at 130 ° C. for 4 hours. The concentrate was cooled to 25 ° C. to precipitate crystals. The crystals and the filtrate were separated by filtration, and the crystals were dried at 105 ° C. for 6 hours.
The weight of the obtained precipitate was 87 g. Moreover, the crystal weight obtained from the liquid which concentrated the filtrate was 98g.
The average particle size of the obtained precipitate was 1.8 μm.
[0054]
As a result of further XRD analysis of the precipitate and the crystal, the precipitate was assigned to Na 3 AlF 6 and the crystal was assigned to NH 4 NO 3 . The ammonia content in Na 3 AlF 6 was 0.05%, and other impurities were Ca <5 ppm, Cu <5 ppm, Fe <5 ppm, Mg <5 ppm, Mn <1 ppm, Si <10 ppm. Furthermore, Na in NH 4 F; 0.05%, and it was confirmed that the reaction had progressed quantitatively (98.9%). Impurities were Ca <5 ppm, Cu <5 ppm, Fe <5 ppm, Mg <5 ppm, Mn <1 ppm, Si <10 ppm.
[0055]
【The invention's effect】
The present invention can convert an ammonium complex of metal fluoride, which has been treated as industrial waste with little reuse in the past, to a reusable metal fluoride inorganic complex by simple means, The industrial effect is extremely large.

Claims (6)

産業廃棄物として生じた金属フッ化物のアンモニウム錯体と無機塩(R-X:Rはカチオン、Xはアニオンを表す。)とを溶液中で反応させ、金属フッ化物の無機錯体とアンモニウム塩とを回収することを特徴とする金属フッ化物の回収方法。
但し、前記金属フッ化物のアンモニウム錯体が、Al、Fe及びSiの少なくとも1種の金属Mを含むアンモニウムフッ化物(NH 4 ) MF の少なくとも一種であり(但しy=1、2或いは3の何れか一種、及びz=4、5、6或いは7の何れか一種を示す。)、
前記無機塩のカチオン(R)が、Na及びKの少なくとも一種である。
Metal fluoride ammonium complex generated as industrial waste and inorganic salt (RX : R represents a cation, X represents an anion ) are reacted in solution to recover the metal fluoride inorganic complex and ammonium salt. A method for recovering a metal fluoride characterized by the above.
However, the ammonium complex of the metal fluoride is at least one of ammonium fluoride (NH 4 ) y MF z containing at least one metal M of Al, Fe and Si (provided that y = 1, 2 or 3) Any one and z = 4, 5, 6 or 7).
The cation (R) of the inorganic salt is at least one of Na and K.
前記無機塩のアニオン(X)が、Cl、SO4、F、CO3、HCO3、NO3、PO4の少なくとも一種である請求項1に記載の方法。2. The method according to claim 1, wherein the anion (X) of the inorganic salt is at least one of Cl, SO 4 , F, CO 3 , HCO 3 , NO 3 , and PO 4 . 前記金属フッ化物のアンモニウム錯体は、アルミニウム又はその合金の表面処理の際に生ずるものである請求項1又は2記載の方法。The method according to claim 1 or 2, wherein the metal fluoride ammonium complex is formed during the surface treatment of aluminum or an alloy thereof. 前記金属フッ化物のアンモニウム錯体は、不純物としてMgを含む請求項1ないし3のいずれか1項記載の方法。The method according to any one of claims 1 to 3, wherein the ammonium complex of metal fluoride contains Mg as an impurity. 前記反応時のpHは5〜9である請求項1ないし4のいずれか1項記載の方法。The method according to any one of claims 1 to 4, wherein the pH during the reaction is 5 to 9. 請求項1ないし5いずれか1項に記載の方法で得られた金属フッ化物の無機錯体及び/又はアンモニウム塩を再利用することを特徴とする金属フッ化物のアンモニウム錯体の再利用方法。A method for reusing a metal fluoride ammonium complex, wherein the metal fluoride inorganic complex and / or ammonium salt obtained by the method according to any one of claims 1 to 5 is reused.
JP2003179021A 2003-04-24 2003-06-24 Recovery of ammonium complex of metal fluoride and method of reuse Expired - Fee Related JP4322057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179021A JP4322057B2 (en) 2003-04-24 2003-06-24 Recovery of ammonium complex of metal fluoride and method of reuse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003119414A JP2004323286A (en) 2003-04-24 2003-04-24 Recovering and recycling method for ammonium complex of metal fluoride
JP2003179021A JP4322057B2 (en) 2003-04-24 2003-06-24 Recovery of ammonium complex of metal fluoride and method of reuse

Publications (2)

Publication Number Publication Date
JP2005008505A JP2005008505A (en) 2005-01-13
JP4322057B2 true JP4322057B2 (en) 2009-08-26

Family

ID=34106270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179021A Expired - Fee Related JP4322057B2 (en) 2003-04-24 2003-06-24 Recovery of ammonium complex of metal fluoride and method of reuse

Country Status (1)

Country Link
JP (1) JP4322057B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599307B2 (en) * 2006-01-30 2010-12-15 森田化学工業株式会社 Method for recovering fluorine compounds from fluorine-containing waste liquid

Also Published As

Publication number Publication date
JP2005008505A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP4874268B2 (en) Method for producing titanium
CN108675323B (en) Method for preparing lithium carbonate for battery by low-grade lithium phosphate acid conversion method
JP2002505248A (en) Production of high purity lithium salt
JPH09217133A (en) Method for recovering useful element from rear earth-nickel alloy
WO2010004925A1 (en) Method of recovering silicon, titanium, and fluorine
WO2016069263A1 (en) Method for removing iron in the manufacture of phosphoric acid
TWI439414B (en) Method for producing hexafluorophosphate
JPH05192665A (en) Method for separating metal forming difficultly fusible sulfide from industrial waste water
KR20070095439A (en) Methods for producing cesium hydroxide solutions
CN110015855A (en) Treatment method of lithium slag
CN115003627A (en) Method for producing alumina and lithium salt
CN106315648B (en) A method of purification ice crystal
JP4174708B2 (en) Method for recovering and purifying calcium fluoride from a by-product mixed salt containing fluorine
CN105002521B (en) A kind of method that impurity magnesium in electrolytic manganese system is removed using fluorine-containing mineral
JP4322057B2 (en) Recovery of ammonium complex of metal fluoride and method of reuse
JP3102331B2 (en) Method for recovering valuable metals from waste Ni catalyst
JP4275939B2 (en) Method for recovering tantalum compound and / or niobium compound
JP2004323286A (en) Recovering and recycling method for ammonium complex of metal fluoride
CA2142663A1 (en) Process for preparing calcium salts of low aluminum content
JPH03265514A (en) Method for treatment of etching waste liquid containing fluorine compd.
TWI518041B (en) A method of recycling sodium hexafluoroaluminate from hydrofluoric acid waste liquid
CA1142324A (en) Preparation of useful mgcl.sub.2 solution with subsequent recovery of kc1 from carnallite
JP4566642B2 (en) Method for producing sulfonium compound
JP2885692B2 (en) Separation method of nickel in iron chloride solution
JP4322008B2 (en) Method for recovering tantalum compound and / or niobium compound

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050401

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20050506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees