JP3102331B2 - Method for recovering valuable metals from waste Ni catalyst - Google Patents

Method for recovering valuable metals from waste Ni catalyst

Info

Publication number
JP3102331B2
JP3102331B2 JP33252795A JP33252795A JP3102331B2 JP 3102331 B2 JP3102331 B2 JP 3102331B2 JP 33252795 A JP33252795 A JP 33252795A JP 33252795 A JP33252795 A JP 33252795A JP 3102331 B2 JP3102331 B2 JP 3102331B2
Authority
JP
Japan
Prior art keywords
catalyst
waste
water
leaching
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33252795A
Other languages
Japanese (ja)
Other versions
JPH09150065A (en
Inventor
晧 木村
浩介 村井
隆三 若松
Original Assignee
大平洋金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大平洋金属株式会社 filed Critical 大平洋金属株式会社
Priority to JP33252795A priority Critical patent/JP3102331B2/en
Publication of JPH09150065A publication Critical patent/JPH09150065A/en
Application granted granted Critical
Publication of JP3102331B2 publication Critical patent/JP3102331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Ni廃触媒から、
Ni、Co、Mo、Vを高歩留で回収する方法に関す
る。
[0001] The present invention relates to a process for producing a waste Ni catalyst.
The present invention relates to a method for recovering Ni, Co, Mo, and V at a high yield.

【0002】[0002]

【従来の技術】重油の水素化脱硫に用いる触媒には、M
oを主成分とする触媒をアルミナ担体に担持したものが
使用されている。触媒上に重油中の金属成分も付着して
含まれている。現在、使用済触媒からは、MoとVが工
業的に再資源化されている。
2. Description of the Related Art Catalysts used for hydrodesulfurization of heavy oil include M
A catalyst in which an o-based catalyst is supported on an alumina carrier is used. Metal components in heavy oil are also attached and contained on the catalyst. At present, Mo and V are industrially recycled from spent catalysts.

【0003】使用済触媒をソーダバイ焼し、続いてモリ
ブデン酸ナトリウムNa2MoO4及びバナジン酸ナトリ
ウムNaVO3として温水で浸出し、続いて塩析により
Vをメタバナジン酸アンモニウムNH4VO3、又Moを
酸添加によりモリブデン酸H2MoO4として回収する方
法である。
[0003] The spent catalyst is soda-fired and subsequently leached with hot water as sodium molybdate Na 2 MoO 4 and sodium vanadate NaVO 3 , and then V is converted to ammonium metavanadate NH 4 VO 3 and Mo by salting out. This is a method of recovering molybdate H 2 MoO 4 by adding an acid.

【0004】重油からの付着成分としてはVの他にNi
がある。又触媒によっては、Ni及びCoが活性成分と
して添加されているものもある。
[0004] As an adhering component from heavy oil, in addition to V, Ni
There is. Also, some catalysts have Ni and Co added as active components.

【0005】しかしながら、現在用いられているソーダ
バイ焼法では、Ni及びCoはNiAlO4及びCoA
lO4の様な固溶体をつくり、通常の処理方法では容易
に浸出できず回収が困難であることが知られている。
However, in the currently used soda-by firing method, Ni and Co are converted to NiAlO 4 and CoA.
It is known that a solid solution such as 10 4 is formed, and cannot be easily leached out by a usual processing method, and is difficult to recover.

【0006】このソーダバイ焼法によりMo及びVを回
収した後の廃棄物(ここではNi廃触媒と呼称する。M
o及びVも一部含まれる。)からNi、Co、V、Mo
を分離・回収することは、環境保全とともに資源の延
命、安定供給という観点からも重要な課題である。
[0006] The waste after recovering Mo and V by the soda-by firing method (referred to as Ni waste catalyst herein).
o and V are also partially included. ) To Ni, Co, V, Mo
Separation and recovery are important issues from the viewpoints of not only environmental protection but also prolonging the life of resources and providing a stable supply.

【0007】[0007]

【発明が解決しようとする課題】本発明は、通常の処理
方法ではNi、Co等の有価金属の回収が困難であると
考えられているNi廃触媒から湿式粉砕、水浸出及び硫
酸高温溶解法を用いることにより、Ni、Co、Mo及
びVを高歩留で回収する方法を提供するものである。
SUMMARY OF THE INVENTION The present invention relates to a method for wet pulverization, water leaching and high-temperature dissolving of sulfuric acid from a waste Ni catalyst, which is considered to be difficult to recover valuable metals such as Ni and Co by a normal treatment method. Is to provide a method of recovering Ni, Co, Mo and V at a high yield.

【0008】[0008]

【課題を解決するための手段】本発明は、Ni廃触媒と
水を混合し、湿式粉砕後、水浸出して得られた浸出残渣
に硫酸を加えて蒸煮し、得られた溶液をPH調整後、こ
れに硫化剤を添加しNi、Co、Moをミックスサルフ
ァイドとして回収することを特徴とするNi廃触媒から
の有価金属回収方法である。
According to the present invention, a waste nickel catalyst and water are mixed, wet-pulverized, and sulfuric acid is added to a leaching residue obtained by leaching with water, followed by steaming, and the pH of the obtained solution is adjusted. Thereafter, a valuable metal is recovered from the waste Ni catalyst, wherein a sulfurizing agent is added thereto to recover Ni, Co, and Mo as mixed sulfides.

【0009】以下、本発明実施の好ましい態様を図1に
従い各工程毎に説明する。
A preferred embodiment of the present invention will be described below for each step with reference to FIG.

【0010】(1)湿式粉砕工程 この工程では、Ni廃触媒に水を混合し、ボールミルを
用いて100メッシュ以下に粉砕する。好ましくは15
0メッシュ以下(150メッシュよりこまかく)に粉砕
する。これにより、Ni廃触媒中にモリブデン酸ナトリ
ウムNa2MoO4及びバナジン酸ナトリウムNa4VO3
として存在しているMo及びVが次の処理工程で水浸出
が容易になる。
(1) Wet pulverization step In this step, water is mixed with the Ni waste catalyst and pulverized to 100 mesh or less using a ball mill. Preferably 15
Grind to 0 mesh or less (more than 150 mesh). Thereby, sodium molybdate Na 2 MoO 4 and sodium vanadate Na 4 VO 3 are contained in the Ni spent catalyst.
Mo and V which are present as water are easily leached with water in the next processing step.

【0011】(2)水浸出工程 この工程では、湿式粉砕を終了したNi廃触媒をスラリ
ー濃度50〜500g/l、好ましくは100〜250
g/lとし、温度70〜100℃、好ましくは80〜1
00℃、撹拌速度100〜1000rpm、好ましくは
300〜500rpmで常圧で、0.5〜5時間、好ま
しくは1〜3時間浸出し、Mo及びVが主成分の浸出液
と、Ni、Co、Mo、Vを含む浸出残渣を得る。浸出
液はMo、V回収工程へ、浸出残渣はNi、Co及びM
oをミックスサルファイドとして回収する工程へ送る。
(2) Water leaching step In this step, the Ni spent catalyst, which has been subjected to wet pulverization, has a slurry concentration of 50 to 500 g / l, preferably 100 to 250 g / l.
g / l and a temperature of 70 to 100 ° C, preferably 80 to 1 ° C.
Leaching at 00 ° C., stirring speed of 100 to 1000 rpm, preferably 300 to 500 rpm, at normal pressure for 0.5 to 5 hours, preferably 1 to 3 hours, Mo and V leaching solution containing Ni, Co, Mo , V are obtained. The leaching solution goes to the Mo, V recovery step, and the leaching residue is Ni, Co and M
o to the process of recovering as mixed sulfide.

【0012】(3)硫酸高温溶解工程(蒸煮工程) 水浸出後の浸出残渣中のNi及びCoは、前述した様に
Al担体中でNiAlO4及びCoAlO4の様に固溶化
しており通常の浸出方法では浸出が困難である。このた
め、この工程では、硫酸と水の混合割合が(1:1)〜
(10:1)、好ましくは(1:1)〜(3:1)の溶
液を用いて水浸出残渣をスラリー濃度300〜1500
g/l、好ましくは500〜1,000g/l、温度1
10〜170℃、好ましくは120〜130℃で0.2
5〜2.0時間、好ましくは0.5〜1.0時間、高温
溶解する(ここではこの操作を蒸煮工程と呼称する)。
これを水に溶解することによりNi、Co、Mo、Vの
溶液が得られる。このときの各金属浸出率は91%以上
である。
(3) Sulfuric acid high-temperature dissolving step (steaming step) Ni and Co in the leaching residue after water leaching are solid-solved in the Al carrier like NiAlO 4 and CoAlO 4 in the Al carrier as described above. Leaching is difficult with the leaching method. Therefore, in this step, the mixing ratio of sulfuric acid and water is (1: 1) to
(10: 1), preferably using a solution of (1: 1) to (3: 1) to remove the water leaching residue to a slurry concentration of 300 to 1500.
g / l, preferably 500-1,000 g / l, temperature 1
0.2 at 10-170 ° C., preferably 120-130 ° C.
Dissolve at a high temperature for 5 to 2.0 hours, preferably 0.5 to 1.0 hour (this operation is referred to as a steaming step).
This is dissolved in water to obtain a solution of Ni, Co, Mo, and V. At this time, each metal leaching rate is 91% or more.

【0013】(4)PH調整工程 この工程は、蒸煮工程で得られた溶液中のNi、Co及
びMoをミックスサルファイドして効率的に回収するた
め実施する。
(4) PH adjustment step This step is carried out in order to efficiently recover Ni, Co and Mo in the solution obtained in the steaming step by performing mixed sulfide.

【0014】ここでは、浸出液を水酸化カルシウムを用
いてPHを2.5〜4.5、好ましくは2.7〜3.6
にし、温度を40〜90℃、好ましくは60〜80℃で
0.25〜1.5時間、好ましくは0.5〜1.0時間
保持した後、濾過分離を行う。これにより濾過後のケー
キには、Fe(III)とAlの一部が分離される。一
方、濾液は硫化工程へ送る。
Here, the pH of the leachate is adjusted to 2.5 to 4.5, preferably 2.7 to 3.6 using calcium hydroxide.
After maintaining the temperature at 40 to 90 ° C., preferably 60 to 80 ° C. for 0.25 to 1.5 hours, preferably 0.5 to 1.0 hour, filtration and separation are performed. Thereby, a part of Fe (III) and Al is separated from the cake after filtration. On the other hand, the filtrate is sent to the sulfurization step.

【0015】(5)硫化工程 この工程は、PH調整後の濾液からNi、Co及びMo
をミックスサルファイドとして回収するために実施す
る。
(5) Sulfidation Step In this step, Ni, Co and Mo are removed from the filtrate after pH adjustment.
To recover as mixed sulfide.

【0016】この工程は、PH調整後、濾液中に含まれ
るNi、Co及びMoに対して硫化ナトリウム、硫化水
素ナトリウムの様な硫化剤を1.0〜2.0当量、好ま
しくは1.1〜1.3当量添加し、温度20〜90℃、
好ましくは60〜80℃で0.25〜2.0時間、好ま
しくは0.5〜1.0時間反応させる。これによりN
i、Co及びMoは98%以上の歩留でミックスサルフ
ァイドとして回収される。
In this step, after the pH is adjusted, a sulfurizing agent such as sodium sulfide or sodium hydrogen sulfide is added in an amount of 1.0 to 2.0 equivalents, preferably 1.1 to Ni, Co and Mo contained in the filtrate. ~ 1.3 equivalents added, temperature 20 ~ 90 ° C,
The reaction is preferably performed at 60 to 80 ° C for 0.25 to 2.0 hours, preferably 0.5 to 1.0 hour. This gives N
i, Co and Mo are recovered as mixed sulfide with a yield of 98% or more.

【0017】(6)不純物除去工程―(A) ミックスサルファイドを分離後の濾液中には、Alとそ
の他の微量の成分が含まれており、水酸化カルシウムを
用いてPH8〜9.5、好ましくは8.3〜8.7に中
和し濾過分離し、ケーキと濾液を得る。
(6) Impurity Removal Step— (A) The filtrate after the separation of the mixed sulfide contains Al and other trace components, and the pH is preferably 8 to 9.5 using calcium hydroxide. Is neutralized to 8.3 to 8.7 and separated by filtration to obtain a cake and a filtrate.

【0018】一方、水浸出工程後の液中には主としてM
o及びVが含まれており、従来から実施されている方法
(常法)で分離回収する。
On the other hand, the liquid after the water leaching step contains mainly M
It contains o and V, and is separated and collected by a conventionally used method (ordinary method).

【0019】(7)脱P工程 水浸出液中には、約20〜50ppmのPが含まれてい
る。Pは混入を防ぐためV回収工程及びMo回収工程へ
入る前に除く。このPを分離するため塩化マグネシウム
MgCl2をPに対し、1.3〜3.0当量添加し温度
40〜50℃で、1〜2時間反応させる。続いて20℃
以下の温度で2〜3時間保持することによりPをリン酸
マグネシウムMg3(PO4)として晶析分離する。
(7) De-P Step The water leachate contains about 20 to 50 ppm of P. P is removed before entering the V recovery step and the Mo recovery step to prevent contamination. In order to separate this P, 1.3 to 3.0 equivalents of magnesium chloride MgCl 2 are added to the P, and the mixture is reacted at a temperature of 40 to 50 ° C. for 1 to 2 hours. Then 20 ℃
P is crystallized and separated as magnesium phosphate Mg 3 (PO 4 ) by holding at the following temperature for 2 to 3 hours.

【0020】(8)V回収工程 脱P後の濾液にVをメタバナジン酸アンモニウムNH4
VO3として回収するに必要な化学当量の1.1〜1.
3倍の塩化アンモニウムNH4Clを添加し、20〜3
0℃で0.5〜1時間反応させバナジン酸アンモニウム
結晶を得る。これを400〜500℃で0.5〜1時間
反応させメタバナジン酸アンモニウム結晶を得る。これ
を400〜500℃でさらに0.5〜1時間仮焼するこ
とにより五酸化バナジウムV25を得る。
(8) V recovery step V is added to the filtrate after the removal of P from the ammonium metavanadate NH 4.
1.1 to the chemical equivalent required to recover as VO 3.
Add 3 times ammonium chloride NH 4 Cl and add 20 to 3
The reaction is carried out at 0 ° C. for 0.5 to 1 hour to obtain ammonium vanadate crystals. This is reacted at 400 to 500 ° C. for 0.5 to 1 hour to obtain ammonium metavanadate crystals. This is calcined at 400 to 500 ° C. for another 0.5 to 1 hour to obtain vanadium pentoxide V 2 O 5 .

【0021】(9)Mo回収工程 V回収後の濾液にMoをモリブデン酸H2Mo4として回
収するのに必要な化学当量の1.1〜1.3倍の塩酸を
加え、30〜60℃で2〜3時間反応させることにより
モリブデン酸を得る。
(9) Step of recovering Mo To the filtrate after recovery of V, add hydrochloric acid of 1.1 to 1.3 times the chemical equivalent required to recover Mo as H 2 Mo 4 molybdate, and add 30 to 60 ° C. For 2 to 3 hours to obtain molybdic acid.

【0022】(10)不純物除去工程―(B) Mo回収後の液中には、微量の成分が含まれており、水
酸化カルシウムを用いてPH8.5に中和後濾過分離し
ケーキと濾液を得る。
(10) Impurity removal step-(B) The liquid after the recovery of Mo contains a trace amount of components, and is neutralized to pH 8.5 with calcium hydroxide, and then separated by filtration. Get.

【0023】本発明は、以上に示したプロセスにより、
Ni廃触媒からNi、Co、Mo及びVの有価金属を高
歩留で回収する方法を提供するものである。以下に実施
例を示し上述の内容を例証する。
According to the present invention, the process described above
An object of the present invention is to provide a method for recovering valuable metals of Ni, Co, Mo and V from a waste Ni catalyst at a high yield. The following describes examples and exemplifies the above contents.

【0024】[0024]

【実施例1】第1表に示す成分のNi廃触媒250gを
水1,000mlと混合し、ボールミルで150メッシ
ュ以下に粉砕した後、温度100℃で3時間水浸出した
結果、第2表に示す様な浸出液、浸出残渣及び浸出率が
得られた。
EXAMPLE 1 250 g of Ni waste catalyst having the components shown in Table 1 was mixed with 1,000 ml of water, pulverized to 150 mesh or less by a ball mill, and leached with water at 100 ° C. for 3 hours. The leaching solution, leaching residue and leaching rate as shown were obtained.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】Mo及びVは各62.1%及び30.4%
浸出されている。
Mo and V are 62.1% and 30.4%, respectively.
Has been leached.

【0028】[0028]

【実施例2】実施例1で得られた水浸出残渣225g
を、H2SO4:水―1:1の硫酸572mlで温度12
0℃で1時間蒸煮処理後、2,250mlの水に溶解し
た結果第3表の様な浸出液、浸出残渣及び浸出率が得ら
れた。Ni、Co、Mo及びVの浸出率は各91.6
%、94.6%、100.0%及び91.7%であっ
た。
Example 2 225 g of water leaching residue obtained in Example 1
The, H 2 SO 4: water -1: Temperature 12 1 of sulfuric acid 572ml
After steaming at 0 ° C. for 1 hour, the product was dissolved in 2,250 ml of water, and as a result, a leachate, a leach residue and a leach rate as shown in Table 3 were obtained. The leaching rates of Ni, Co, Mo and V were 91.6 each.
%, 94.6%, 100.0% and 91.7%.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【実施例3】実施例2で得られた濾液2,250mlを
Ca(OH)2でPH3.6にPH調整し、濾過分離し
て回収した濾液に、NaHSをNi、CO、Moに対し
1.1当量添加し、60℃で1時間反応させ第4表に示
すミックスサルファイド、濾液及び回収率を得た。ミッ
クスサルファイド中のNi、Co及びMo成分は、各3
0.6%、5.7%及び1.2%であった。又、この時
のNi、Co及びMoの回収率は、99.9%、99.
3%及び98.8%であった。
Example 3 The pH of 2,250 ml of the filtrate obtained in Example 2 was adjusted to pH 3.6 with Ca (OH) 2 , and the filtrate collected by filtration and separation contained NaHS at a ratio of 1% to Ni, CO and Mo. Then, 1 equivalent was added and reacted at 60 ° C. for 1 hour to obtain a mixed sulfide, a filtrate and a recovery rate shown in Table 4. The Ni, Co and Mo components in the mixed sulfide were 3
0.6%, 5.7% and 1.2%. At this time, the recovery rates of Ni, Co and Mo were 99.9%, 99.
3% and 98.8%.

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【実施例4】実施例1の水浸出液1,000mlに塩化
マグネシウムを0.4g添加し、温度40℃で2時間反
応させた後、15℃で2時間冷却し第5表に示す結果を
得た。Pは、tr状態まで分離された。
Example 4 0.4 g of magnesium chloride was added to 1,000 ml of the water leachate of Example 1, reacted at a temperature of 40 ° C. for 2 hours, and cooled at 15 ° C. for 2 hours to obtain the results shown in Table 5. Was. P was separated to the tr state.

【0033】[0033]

【表5】 [Table 5]

【0034】[0034]

【実施例5】実施例4で得られたP分離後液999ml
に塩化アンモニウムNH4Clを1.3g添加し25℃
で1時間反応させ、メタバナジン酸アンモニウム2.8
gを回収した。第6表にVの回収状況を示す。メタバナ
ジン酸アンモニウムを500℃で仮焼し、2.2gの五
酸化バナジウムを回収した。
Example 5 999 ml of the liquid after P separation obtained in Example 4
1.3 g of ammonium chloride NH 4 Cl was added to the mixture at 25 ° C.
With ammonium metavanadate 2.8.
g was collected. Table 6 shows the recovery status of V. Ammonium metavanadate was calcined at 500 ° C. to recover 2.2 g of vanadium pentoxide.

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【実施例6】実施例5に示したV分離後液999mlに
ConcHCl 1.1ml添加し、40℃で2時間反
応させ0.4gのモリブデン酸を回収した。第7表にM
oの回収状況を示す。Moはほぼ全量モリブデン酸とし
て回収された。
Example 6 1.1 ml of ConcHCl was added to 999 ml of the liquid after V separation shown in Example 5, and reacted at 40 ° C. for 2 hours to recover 0.4 g of molybdic acid. Table 7 shows M
This shows the recovery status of o. Mo was almost completely recovered as molybdic acid.

【0037】[0037]

【表7】 [Table 7]

【0038】[0038]

【発明の効果】本発明によりNi廃触媒から湿式粉砕・
水浸出及び蒸煮法を用いることによりNi、Co、Mo
をミックスサルファイドとして、又Mo及びVを各モリ
ブデン酸及び五酸化バナジウムとして、高歩留で回収で
きる。
According to the present invention, wet pulverization from Ni waste catalyst is carried out.
Ni, Co, Mo by water leaching and steaming
As mixed sulfide, and Mo and V as molybdic acid and vanadium pentoxide at high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明回収方法の説明図である。FIG. 1 is an explanatory diagram of the recovery method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C01G 51/00 C01G 51/00 Z 53/00 53/00 B C22B 3/04 C22B 7/00 B 3/44 23/00 101 7/00 34/22 23/00 34/34 101 3/00 A 34/22 Q 34/34 23/04 (72)発明者 若松 隆三 青森県八戸市大字河原木字遠山新田(番 地なし) 大平洋金属株式会社 八戸製 造所内 (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 C01G 25/00 - 47/00 C01G 49/10 - 57/00 C22B 1/00 - 61/00 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI C01G 51/00 C01G 51/00 Z 53/00 53/00 B C22B 3/04 C22B 7/00 B 3/44 23/00 101 7/00 34/22 23/00 34/34 101 3/00 A 34/22 Q 34/34 23/04 (72) Inventor Ryuzo Wakamatsu Hachinohe City, Aomori Prefecture (58) Field surveyed (Int.Cl. 7 , DB name) B01J 21/00-38/74 C01G 25/00-47/00 C01G 49/10-57/00 C22B 1 / 00-61/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ni廃触媒と水を混合し、湿式粉砕後、
水浸出して得られた浸出残渣に硫酸を加えて蒸煮し、得
られた溶液をPH調整後、これに硫化剤を添加しNi、
Co、Moをミックスサルファイドとして回収すること
を特徴とするNi廃触媒からの有価金属回収方法。
1. A Ni waste catalyst and water are mixed and wet pulverized.
Sulfuric acid was added to the leaching residue obtained by water leaching, and the mixture was steamed. After adjusting the pH of the resulting solution, a sulphating agent was added thereto, and Ni,
A method for recovering valuable metals from a waste Ni catalyst, comprising recovering Co and Mo as mixed sulfide.
JP33252795A 1995-11-29 1995-11-29 Method for recovering valuable metals from waste Ni catalyst Expired - Fee Related JP3102331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33252795A JP3102331B2 (en) 1995-11-29 1995-11-29 Method for recovering valuable metals from waste Ni catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33252795A JP3102331B2 (en) 1995-11-29 1995-11-29 Method for recovering valuable metals from waste Ni catalyst

Publications (2)

Publication Number Publication Date
JPH09150065A JPH09150065A (en) 1997-06-10
JP3102331B2 true JP3102331B2 (en) 2000-10-23

Family

ID=18255923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33252795A Expired - Fee Related JP3102331B2 (en) 1995-11-29 1995-11-29 Method for recovering valuable metals from waste Ni catalyst

Country Status (1)

Country Link
JP (1) JP3102331B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817068B1 (en) * 2016-11-21 2018-01-11 중원대학교 산학협력단 Recovering method of molybdenum from nickel-based superalloy scrap
KR101841230B1 (en) * 2016-11-29 2018-03-22 중원대학교 산학협력단 Recovering method of molybdenum from leaching solution containing molybdenum
KR101959981B1 (en) * 2017-11-13 2019-03-19 중원대학교 산학협력단 Recovering method of molybdenum from nickel-based superalloy scrap

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1017974A3 (en) * 2008-01-30 2010-02-02 Variabel Daniel METHOD FOR THE VALORISATION OF USUAL AND / OR DEFECTIVE CATALYTIC SUPPORT ELEMENTS
EP2439293A1 (en) * 2010-10-06 2012-04-11 Ferro Duo GmbH Method for recovering lanthane from zeolites containing lanthane
JP5691732B2 (en) * 2011-03-29 2015-04-01 住友金属鉱山株式会社 Method for producing molybdenum trioxide
JP5500208B2 (en) * 2012-06-12 2014-05-21 住友金属鉱山株式会社 Neutralization method
CN111100987B (en) * 2018-10-26 2022-06-24 中国石油化工股份有限公司 Recovery method of waste catalyst metal component in tail oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817068B1 (en) * 2016-11-21 2018-01-11 중원대학교 산학협력단 Recovering method of molybdenum from nickel-based superalloy scrap
KR101841230B1 (en) * 2016-11-29 2018-03-22 중원대학교 산학협력단 Recovering method of molybdenum from leaching solution containing molybdenum
KR101959981B1 (en) * 2017-11-13 2019-03-19 중원대학교 산학협력단 Recovering method of molybdenum from nickel-based superalloy scrap

Also Published As

Publication number Publication date
JPH09150065A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
EP3093354B1 (en) Scandium recovery method
US20100111787A1 (en) Method of recovering valuable metals from the vrds spent catalyst
JP3430973B2 (en) Method for recovering nickel and scandium from oxidized ore
US20040219082A1 (en) Selective recovery of aluminium, cobalt and platinum values from a spent catalyst composition
CN108751259B (en) Method and device for producing ammonium metatungstate by tungsten-containing waste
JP3355362B2 (en) Method for leaching valuable metals from spent catalyst
EP0011475B1 (en) Recovery of tungsten values from tungsten-bearing materials
US4218240A (en) Method for producing cobaltic hexammine compounds and cobalt metal powder
JPH07252548A (en) Method for recovering valuable metal from waste catalyst
JP3232753B2 (en) Method for recovering valuable metals from waste hydrodesulfurization catalyst
CN108975406B (en) Method and device for producing APT (ammonium paratungstate) by using tungsten-containing waste
US2398493A (en) Production of magnesium chloride from serpentine
US4278463A (en) Process for recovering cobalt
JP3102331B2 (en) Method for recovering valuable metals from waste Ni catalyst
JPH10183265A (en) Method for regenerating tungsten carbide/cobalt using acid digestion
JPH06228666A (en) Method for separating and recovering metal from spent hydrogenation catalyst
US3206277A (en) Process for recovering pure vanadium oxide
JP5549648B2 (en) Molybdenum recovery method and molybdenum extraction solvent
JPH0681050A (en) Method for recovering nickel and cobalt
US4139460A (en) Method for decontaminating waste material from chromium mineral processing by wet treatment with sulphur
US2079805A (en) Process for extracting molybdenum from wulfenite ore
CN110760700A (en) Clean production method for zero discharge of wastewater in ammonium molybdate production process
JP3366997B2 (en) Novel method for preventing pollution of used purification catalyst and complete recovery of various metal components of the catalyst
US4452633A (en) Method for producing cobalt metal powder
JP7347083B2 (en) Manufacturing method of high purity scandium oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees