JP3355362B2 - Method for leaching valuable metals from spent catalyst - Google Patents

Method for leaching valuable metals from spent catalyst

Info

Publication number
JP3355362B2
JP3355362B2 JP34923391A JP34923391A JP3355362B2 JP 3355362 B2 JP3355362 B2 JP 3355362B2 JP 34923391 A JP34923391 A JP 34923391A JP 34923391 A JP34923391 A JP 34923391A JP 3355362 B2 JP3355362 B2 JP 3355362B2
Authority
JP
Japan
Prior art keywords
leaching
nickel
spent catalyst
cobalt
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34923391A
Other languages
Japanese (ja)
Other versions
JPH05156375A (en
Inventor
行夫 牧山
筑紫 山本
純二 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO KOKO CO., LTD.
Original Assignee
TAIYO KOKO CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO KOKO CO., LTD. filed Critical TAIYO KOKO CO., LTD.
Priority to JP34923391A priority Critical patent/JP3355362B2/en
Publication of JPH05156375A publication Critical patent/JPH05156375A/en
Application granted granted Critical
Publication of JP3355362B2 publication Critical patent/JP3355362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、重油の脱硫、水素添加
に使用された廃触媒から有価金属を回収するための浸出
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a leaching method for recovering valuable metals from spent catalyst used for desulfurization and hydrogenation of heavy oil.

【0002】[0002]

【従来の技術】モリブデン、ニッケル、コバルト等を一
種または数種組み合わせて作られた触媒が、重油の脱硫
触媒、水素添加触媒として、アルミナ、シリカ等を材質
とする触媒担体とともに広く使用されている。この種の
触媒は、ある期間使用すると性能が低下するので廃触媒
として廃棄されるが、この廃触媒には、上記金属のほか
に、バナジウム、ニッケル、鉄等、重油中に含まれる金
属が付着しているので、これら廃触媒から有価金属を回
収しようとする試みが古くから行われており、多くの回
収方法が提案されている。しかしながら、従来の回収方
法は、いずれも一長一短があり、十分に満足すべき方法
とは言えないのが実情である。例えば、バナジウム、モ
リブデンを反応性の高い酸化物とするため、500〜7
00℃の高温で酸化ばい焼する方法があるが、この方法
では、廃触媒中の油分が燃焼するため、局部的な温度の
上昇が起こり、ニッケル、コバルト等も酸化物となって
水や希薄な酸等では溶けなくなるという問題がある。ま
た、バナジウムやモリブデンをソ−ダばい焼した後アル
カリ抽出する方法もあるが、ニッケル、コバルト等が触
媒の担体であるアルミナと固溶体化して水に溶けなくな
るためニッケル等の回収ができなくなるという問題があ
る。
2. Description of the Related Art Catalysts made of one or a combination of molybdenum, nickel, cobalt and the like are widely used as desulfurization catalysts and hydrogenation catalysts for heavy oil, as well as catalyst carriers made of alumina, silica or the like. . This type of catalyst is discarded as a waste catalyst because its performance deteriorates after a certain period of use.However, in addition to the above-mentioned metals, metals contained in heavy oil such as vanadium, nickel and iron adhere to this waste catalyst. Therefore, attempts to recover valuable metals from these spent catalysts have been made for a long time, and many recovery methods have been proposed. However, all of the conventional recovery methods have advantages and disadvantages, and in fact, they cannot be said to be sufficiently satisfactory. For example, to make vanadium and molybdenum highly reactive oxides, 500 to 7
There is a method of oxidizing and roasting at a high temperature of 00 ° C. However, in this method, the oil in the spent catalyst burns, causing a local rise in temperature. There is a problem that it will not be dissolved with an acid or the like. There is also a method in which vanadium or molybdenum is subjected to soda roasting and then alkali extraction. However, nickel or cobalt becomes a solid solution with alumina as a catalyst carrier and becomes insoluble in water, so that nickel or the like cannot be recovered. There is.

【0003】上記従来の方法を改良するものとして、酸
化ばい焼物を直接酸で浸出する方法がある(例えば特公
平1−23532号)が、この方法は、高価な還元剤を
多量に必要とするため、回収コストが高くなりがちであ
り、浸出された液からモリブデン、バナジウム、ニッケ
ル、コバルトを分離する場合、不純物であるアルミニウ
ム、鉄、リン等が多量に浸出し、処理が複雑になった
り、回収金属の純度を悪化させたり、収率を低下させた
りするという問題点がある。
As a method for improving the above-mentioned conventional method, there is a method in which an oxidized roast is directly leached with an acid (for example, Japanese Patent Publication No. 1-25322), but this method requires a large amount of an expensive reducing agent. Therefore, the recovery cost tends to be high, and when molybdenum, vanadium, nickel, and cobalt are separated from the leached liquid, impurities such as aluminum, iron, and phosphorus are leached in large amounts, and the processing becomes complicated. There are problems that the purity of the recovered metal is deteriorated and the yield is reduced.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明は、高
価な還元剤を多量に必要とせず、有価金属を高純度で収
率良く回収することのできる浸出方法を提供することを
課題としている。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a leaching method which does not require a large amount of an expensive reducing agent and can recover valuable metals with high purity and in good yield. .

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明は次のような構成を採用した。すなわち、本
発明にかかる廃触媒からの有価金属の浸出方法は、バナ
ジウム、モリブデンのうち1種以上、及びニッケル、コ
バルトのうち1種以上を含有する廃触媒を300〜40
0℃で加熱して油分を除去した後、空気中で350〜4
50℃の温度で酸化ばい焼し、得られたばい焼物をpH
10〜12のアルカリ溶液中でアルカリ浸出して、モリ
ブデン、バナジウムのうち1種以上を含む浸出液を得る
とともに、不溶解残渣はpH1〜3の酸性溶液中で酸浸
出してろ過し、ニッケル、コバルトのうち1種以上を含
む浸出液を得ることを特徴としている。以下、具体例を
挙げつつ詳細に説明する。
In order to solve the above problems, the present invention employs the following configuration. That is, the method for leaching valuable metals from spent catalysts according to the present invention comprises the use of 300 to 40 waste catalysts containing at least one of vanadium and molybdenum and at least one of nickel and cobalt.
After heating at 0 ° C. to remove oil, 350-4
Oxidation and roasting at a temperature of 50 ° C.
Alkaline leaching in an alkaline solution of 10 to 12 yields a leaching solution containing at least one of molybdenum and vanadium, and the insoluble residue is acid leached in an acidic solution of pH 1 to 3 and filtered to remove nickel, cobalt Characterized in that a leachate containing at least one of the following is obtained. Hereinafter, a detailed example will be described with reference to specific examples.

【0006】原料である廃触媒は、重油の脱硫触媒、水
素添加触媒等であり、例えばモリブデン、ニッケル、コ
バルト等の有価金属を含み、担体としてアルミナ等が使
用されているものである。この種の廃触媒には、石油中
から入ってくる鉄、ひ素等が含まれていることが多い。
この廃触媒を、例えばロ−タリ−キルンを用いて300
〜400℃に加熱して脱オイルする。ロ−タリ−キルン
の加熱ゾ−ンでの滞留時間は30分程度で良く、この間
廃触媒は、該廃触媒自身から発生する油分、水分等を含
むガス雰囲気にさらされる。この連続脱オイル処理の温
度は、300℃未満では十分に脱オイルが行われず、4
00℃よりも高くなると、オイルの一部が分解し、触媒
の表面にタ−ル状のカ−ボンとして付着して、次工程の
酸化ばい焼工程での酸化反応を阻害するので好ましくな
い。
[0006] The waste catalyst as a raw material is a desulfurization catalyst for heavy oil, a hydrogenation catalyst, or the like. For example, it contains valuable metals such as molybdenum, nickel, and cobalt, and uses alumina or the like as a carrier. This type of waste catalyst often contains iron, arsenic, and the like coming from petroleum.
The spent catalyst is removed by using, for example, a rotary kiln for 300 minutes.
Heat to ~ 400 ° C and deoil. The residence time of the rotary kiln in the heating zone may be about 30 minutes. During this time, the spent catalyst is exposed to a gas atmosphere containing oil, moisture and the like generated from the spent catalyst itself. If the temperature of the continuous deoiling process is less than 300 ° C., the deoiling is not sufficiently performed,
If the temperature is higher than 00 ° C., part of the oil is decomposed and adheres to the surface of the catalyst as tar-like carbon.

【0007】上記脱オイル工程を終えた廃触媒は、空気
雰囲気中で350〜450℃に加熱する酸化ばい焼処理
が行われる。この処理で硫黄(S)、炭素(C)等が除
去され、モリブデンはMoO3 に、バナジウムはV2
5 に酸化される。この場合、微量の低級酸化物が存在し
ても構わない。この処理の温度は、300℃未満では酸
化の進行が非常に遅くなるので好ましくない。また、高
温ではバナジウム、ニッケル、コバルト等がアルミナ
(Al23 )と化合物を作りやすくなり、450℃よ
りも高くなるとその傾向が顕著になる。このような化合
物ができると、後続の浸出工程における浸出率が低下す
るので好ましくない。
[0007] After the deoiling step, the spent catalyst is subjected to an oxidation roasting treatment of heating to 350 to 450 ° C in an air atmosphere. This treatment removes sulfur (S), carbon (C), etc., molybdenum to MoO 3 , and vanadium to V 2 O
Oxidized to 5 . In this case, a small amount of a lower oxide may be present. If the temperature of this treatment is lower than 300 ° C., the progress of oxidation becomes extremely slow, which is not preferable. At a high temperature, vanadium, nickel, cobalt and the like easily form a compound with alumina (Al 2 O 3 ), and when the temperature is higher than 450 ° C., the tendency becomes remarkable. The formation of such a compound is not preferred because the leaching rate in the subsequent leaching step is reduced.

【0008】上記処理により得られたばい焼物は、アル
カリ水溶液中においてアルカリ浸出が行われる。アルカ
リとしては、苛性ソ−ダ(NaOH)、炭酸ソ−ダ(N
2CO3 )等が使用される。アルカリ水溶液のpH値
は、10〜12とするのが好ましく、液の温度は50℃
以上とするのが好ましい。廃触媒中に残存する微量の低
級酸化物を完全に酸化させるため、このアルカリ水溶液
に、少量の酸化剤、例えば過酸化水素を添加しておくの
が好ましい。このアルカリ浸出によって、モリブデンは
モリブデン酸ソ−ダとして、またバナジウムはバナジン
酸ソ−ダとして溶解する。この液をろ過して、ろ液は公
知の湿式処理により処理し、モリブデンとバナジウムを
回収する。
The roasted product obtained by the above treatment is subjected to alkaline leaching in an aqueous alkaline solution. Examples of the alkali include caustic soda (NaOH) and sodium carbonate (N
a 2 CO 3 ) or the like is used. The pH value of the alkaline aqueous solution is preferably 10 to 12, and the temperature of the solution is 50 ° C.
It is preferable to make the above. In order to completely oxidize the trace amount of lower oxide remaining in the spent catalyst, it is preferable to add a small amount of an oxidizing agent, for example, hydrogen peroxide to this aqueous alkali solution. By this alkali leaching, molybdenum dissolves as sodium molybdate and vanadium dissolves as sodium vanadate. This liquid is filtered, and the filtrate is treated by a known wet treatment to recover molybdenum and vanadium.

【0009】一方上記ろ過後の残渣は、酸浸出を行い、
ニッケル、コバルト等を回収する。この酸浸出は、硫
酸、硝酸、塩酸等適当な酸を用いて行われる。この酸性
溶液のpH値は、1〜3とするのが好ましく、pH1.
5〜2とするのがより好ましい。この酸浸出により、ニ
ッケル、コバルト等が例えば硫酸ニッケル、硫酸コバル
ト等の形で溶出するので、この液をろ過し、公知の湿式
処理により、ニッケル、コバルト等の金属を回収する。
On the other hand, the residue after the filtration is subjected to acid leaching,
Recover nickel, cobalt, etc. This acid leaching is performed using a suitable acid such as sulfuric acid, nitric acid, hydrochloric acid and the like. The pH value of this acidic solution is preferably from 1 to 3,
More preferably, it is set to 5 to 2. This acid leaching elutes nickel, cobalt and the like in the form of, for example, nickel sulfate, cobalt sulfate and the like. This solution is filtered, and metals such as nickel and cobalt are recovered by a known wet treatment.

【0010】[0010]

【実施例】以下、本発明の実施例について説明する。表
1に示す化学成分を有する廃触媒1Kgを、ロ−タリ−
キルン式の連続炉を用い、原料温度350℃で脱オイル
した。脱オイル後の重量は820gであった。この廃触
媒820gを、酸化ばい焼炉で、原料温度350〜40
0℃で10時間ばい焼した。このばい焼を終えたものの
重量は、715gであり、その化学成分は表1の通りで
あった。
Embodiments of the present invention will be described below. 1 kg of spent catalyst having the chemical components shown in Table 1 was added to a rotary catalyst.
Using a kiln-type continuous furnace, deoiling was performed at a raw material temperature of 350 ° C. The weight after deoiling was 820 g. 820 g of this spent catalyst was fed to an oxidation roasting furnace at a raw material temperature of 350 to 40.
Roasted at 0 ° C for 10 hours. The weight of the product after the roasting was 715 g, and its chemical components were as shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】上記酸化ばい焼品500gを1.5リット
ルの温水(70℃)で、苛性ソ−ダを加え、pH11で
1時間浸出させた。なお、このアルカリ溶液には、35
%過酸化水素水80mlを添加しておいた。浸出後の液
は、減圧ろ過機でろ過し、モリブデンとバナジウム回収
用の浸出液を得た。残渣は温水1リットルで洗浄した
後、1リットルの温水で、硫酸を加え、pH2.0で1
時間浸出し、減圧ろ過機でろ過し、ニッケルとコバルト
回収用の浸出液を得た。このときの残渣を温水1リット
ルで洗浄し、乾燥機で110℃で1昼夜乾燥した後の重
量は288gであり、化学分析結果は表2の通りであっ
た。
500 g of the above oxidized roasted product was leached with 1.5 liters of hot water (70 ° C.) at pH 11 for 1 hour with caustic soda. The alkaline solution contains 35
80% aqueous hydrogen peroxide was added. The leached liquid was filtered with a reduced pressure filter to obtain a leached liquid for recovering molybdenum and vanadium. The residue was washed with 1 liter of warm water, and sulfuric acid was added with 1 liter of warm water to adjust the pH to 1 at pH 2.0.
After leaching for a time, the solution was filtered with a vacuum filter to obtain a leaching solution for recovering nickel and cobalt. The residue at this time was washed with 1 liter of warm water and dried at 110 ° C. for one day and night with a drier, and weighed 288 g. The results of chemical analysis are shown in Table 2.

【0013】[0013]

【表2】 [Table 2]

【0014】上記アルカリ浸出後の浸出液からは、公知
の湿式処理を施すことにより、モリブデンとバナジウム
を回収し、酸浸出後の浸出液からは、同様に公知の湿式
処理により、ニッケルとコバルトを回収することができ
た。なお、上記有価金属の浸出率は、表3の通りであっ
た。
Molybdenum and vanadium are recovered from the leach liquor after the alkali leaching by performing a known wet treatment, and nickel and cobalt are similarly recovered from the leach liquor after the acid leaching by a known wet treatment. I was able to. The leaching rate of the valuable metal was as shown in Table 3.

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【発明の効果】以上の説明から明らかなように、本発明
にかかる浸出方法によれば、石油精製工程で得られる廃
触媒から、モリブデン、バナジウム、ニッケル、コバル
ト等の有価金属を高収率で浸出させることが可能とな
り、この方法を用いて、これら有価金属を高純度で経済
的に分離回収することが可能となる。
As is apparent from the above description, according to the leaching method of the present invention, valuable metals such as molybdenum, vanadium, nickel, and cobalt can be recovered in high yield from the spent catalyst obtained in the petroleum refining process. Leaching is possible, and by using this method, these valuable metals can be economically separated and recovered with high purity.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−60211(JP,A) 特開 昭51−86002(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-54-60211 (JP, A) JP-A-51-86002 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22B 1/00-61/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 バナジウム、モリブデンのうち1種以
上、及びニッケル、コバルトのうち1種以上を含有する
廃触媒を300〜400℃で加熱して油分を除去した
後、空気中で350〜450℃の温度で酸化ばい焼し、
得られたばい焼物をpH10〜12のアルカリ溶液中で
アルカリ浸出して、モリブデン、バナジウムのうち1種
以上を含む浸出液を得るとともに、不溶解残渣はpH1
〜3の酸性溶液中で酸浸出してろ過し、ニッケル、コバ
ルトのうち1種以上を含む浸出液を得ることを特徴とす
る廃触媒からの有価金属の浸出方法。
1. A vanadium, 1 or more kinds of molybdenum
Above, and a spent catalyst containing at least one of nickel and cobalt is heated at 300 to 400 ° C. to remove oil, and then oxidized and roasted at 350 to 450 ° C. in air.
The obtained roasted product is alkaline leached in an alkaline solution having a pH of 10 to 12 to obtain one of molybdenum and vanadium.
A leachate containing the above is obtained, and the insoluble residue is pH 1
3. A method for leaching valuable metals from a spent catalyst, characterized by obtaining an leaching solution containing at least one of nickel and cobalt by acid leaching in an acidic solution of (1) to (3).
JP34923391A 1991-12-05 1991-12-05 Method for leaching valuable metals from spent catalyst Expired - Fee Related JP3355362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34923391A JP3355362B2 (en) 1991-12-05 1991-12-05 Method for leaching valuable metals from spent catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34923391A JP3355362B2 (en) 1991-12-05 1991-12-05 Method for leaching valuable metals from spent catalyst

Publications (2)

Publication Number Publication Date
JPH05156375A JPH05156375A (en) 1993-06-22
JP3355362B2 true JP3355362B2 (en) 2002-12-09

Family

ID=18402385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34923391A Expired - Fee Related JP3355362B2 (en) 1991-12-05 1991-12-05 Method for leaching valuable metals from spent catalyst

Country Status (1)

Country Link
JP (1) JP3355362B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871046A (en) * 2010-06-29 2010-10-27 青川县天运金属开发有限公司 Method for recycling heavy metal pollution wastes
KR101008496B1 (en) * 2007-03-13 2011-01-14 김만주 Method of recovering valuable metals from the vrds spent catalyst

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2751093B2 (en) * 1994-03-11 1998-05-18 住友金属鉱山株式会社 Method for recovering valuable metals from spent catalyst
KR100277503B1 (en) * 1998-06-12 2001-01-15 곽영훈 Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst
JP4502674B2 (en) * 2004-03-22 2010-07-14 日本キャタリストサイクル株式会社 Method for separating phosphorus-containing material from spent catalyst
WO2007032228A1 (en) * 2005-09-16 2007-03-22 Mitsubishi Rayon Co., Ltd. Methods for recovery of molybdenum and process for preparation of catalysts
KR101469814B1 (en) * 2007-06-08 2014-12-05 문상우 Method for manufacture catalyst material from desulfurization waste catalyst of an oil refinery
US8882882B2 (en) 2007-09-21 2014-11-11 Research Institute Of Industrial Science & Technology Method of manufacturing Fe and Ni containing material and cobalt containing material using recycling residue of spent catalyst and method of manufacturing raw material for stainless using the Fe and Ni containing material and method of manufacturing Fe-Ni alloy
JP5387851B2 (en) * 2008-06-12 2014-01-15 Jfeミネラル株式会社 Method for recovering valuable metals from spent catalyst
JP5547922B2 (en) 2009-07-31 2014-07-16 住友化学株式会社 Method for producing composite oxide containing molybdenum and cobalt
JP2011125794A (en) * 2009-12-18 2011-06-30 Nippon Catalyst Cycle Kk Equipment for treating waste catalyst
CN101785967B (en) * 2010-03-25 2012-03-28 青川县天运金属开发有限公司 Method for treating incineration tail gas of solid hazardous waste
JP2012158482A (en) 2011-01-31 2012-08-23 Sumitomo Chemical Co Ltd Method for recovering molybdenum and cobalt
JP5810897B2 (en) * 2011-12-26 2015-11-11 住友金属鉱山株式会社 Process of leachate
CN102912134A (en) * 2012-09-27 2013-02-06 信丰县包钢新利稀土有限责任公司 Neodymium, iron and boron waste recycling process with approximately zero wastewater discharge
CN104388683B (en) * 2014-12-08 2017-02-22 中南大学 Method for separating and recycling vanadium and chromium from vanadium and chromium-containing material
CN107849639B (en) 2015-07-15 2020-10-27 国立大学法人群马大学 Method for recovering vanadium, method for producing redox flow battery electrolyte, apparatus for recovering vanadium, and apparatus for producing redox flow battery electrolyte
CN105483386A (en) * 2015-12-09 2016-04-13 清华大学 Method for leaching copper from single-layer waste circuit board
CN107058744B (en) * 2017-04-21 2018-07-27 长沙资生环保科技有限公司 A kind of method of red mud synthetical recovery useful metal
CN107164629A (en) * 2017-04-25 2017-09-15 昆明理工大学 A kind of aluminium scrap base hydrogenation catalyst processing method based on microwave oxygen-enriched air roasting
CN111100987B (en) * 2018-10-26 2022-06-24 中国石油化工股份有限公司 Recovery method of waste catalyst metal component in tail oil
CN111363926B (en) * 2020-04-26 2021-11-23 攀钢集团钒钛资源股份有限公司 Method for separating vanadium by shallow oxidation roasting of vanadium slag
KR102366743B1 (en) * 2020-05-11 2022-02-23 주식회사 에코프로에이치엔 Recovery Method of Valuable Metal from Wasted Desulfurization Catalyst
CN111876603B (en) * 2020-07-27 2022-03-25 常州大学 Wet process for recovering Fe, Al, Ni, Mo and Co from waste hydrorefining catalyst
CN114606385B (en) * 2022-01-26 2023-06-30 中南大学 Selective leaching method of molybdenum and vanadium in molybdenum-vanadium-containing spent catalyst
CN117660767B (en) * 2024-01-31 2024-04-26 中国科学院过程工程研究所 Method for recycling sodium vanadate from nickel-aluminum slag by adopting multi-section microbubbles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008496B1 (en) * 2007-03-13 2011-01-14 김만주 Method of recovering valuable metals from the vrds spent catalyst
CN101871046A (en) * 2010-06-29 2010-10-27 青川县天运金属开发有限公司 Method for recycling heavy metal pollution wastes

Also Published As

Publication number Publication date
JPH05156375A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
JP3355362B2 (en) Method for leaching valuable metals from spent catalyst
CA1155084A (en) Process for the recovery of metal values from anode slimes
US4554138A (en) Leaching metals from spent hydroprocessing catalysts with ammonium sulfate
JPH07252548A (en) Method for recovering valuable metal from waste catalyst
EP0771881A1 (en) An integrated process for the recovery of metals and fused alumina from spent catalysts
EP0011475B1 (en) Recovery of tungsten values from tungsten-bearing materials
WO2012065191A2 (en) Method for recovering molybdenum, vanadium, nickel, cobalt and aluminum from spent catalysts
US20130064742A1 (en) Process for the extraction of specific transition metals
JPH0657353A (en) Recovery of molybdenum and vanadium from used catalyst
US4384885A (en) Process for the recovery of metals from catalysts
US5820844A (en) Method for the production of a purified MoO3 composition
JP2000507306A (en) Recovery of valuable metals from solids by digestion in sulfuric acid medium containing reducing agent
KR20090114619A (en) A Separation and Recovery Process of Metals from Petroleum Desulfurization Waste Catalyst
CN113774220B (en) Method for recovering molybdenum, bismuth and vanadium from waste catalysts of acrylic acid and methacrylic acid and esters thereof
US4214896A (en) Process for producing cobalt metal powder
CN114875252B (en) Recovery method of tungsten-containing waste
JP3102331B2 (en) Method for recovering valuable metals from waste Ni catalyst
US3975190A (en) Hydrometallurgical treatment of nickel and copper bearing intermediates
CA1046289A (en) Hydrometallurgical treatment of nickel and copper bearing intermediates
JPS6059975B2 (en) Method for concentrating silver from copper electrolytic slime
CN1072730C (en) Recovery process of waste cobalt-molybdenum catalyst
JPH0123532B2 (en)
JPH0781172B2 (en) Silver refining ore mud purification method
US4578251A (en) Removal of chromium from cobalt
JPH0216247B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees