JPH0123532B2 - - Google Patents

Info

Publication number
JPH0123532B2
JPH0123532B2 JP16585182A JP16585182A JPH0123532B2 JP H0123532 B2 JPH0123532 B2 JP H0123532B2 JP 16585182 A JP16585182 A JP 16585182A JP 16585182 A JP16585182 A JP 16585182A JP H0123532 B2 JPH0123532 B2 JP H0123532B2
Authority
JP
Japan
Prior art keywords
vanadium
molybdenum
cobalt
catalyst
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16585182A
Other languages
Japanese (ja)
Other versions
JPS5956535A (en
Inventor
Juzo Fukuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP57165851A priority Critical patent/JPS5956535A/en
Publication of JPS5956535A publication Critical patent/JPS5956535A/en
Publication of JPH0123532B2 publication Critical patent/JPH0123532B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水素化脱硫廃触媒より有価物を回収す
るに際し、ニツケル、コバルト、バナジウム及び
モリブデンを含有する水溶液を得る方法に関する
ものである。 アルミナ又はアルミナとシリカからなる触媒担
体に、ニツケル、コバルト、モリブデン等を一種
または数種組み合せて作られた触媒は、主として
重油の水素化脱硫触媒として使用されるのをはじ
め有機化学工業分野で幅広く用いられている。 これらの触媒は、ある期間使用されると、その
機能が低下するので廃触媒として棄却される。 この水素化脱硫廃触媒(以下廃触媒と略する)
には、元来触媒中に存在する上記金属をはじめ、
バナジウム等重油中に含まれる金属が含有されて
いる。 これらの金属を回収しようとするこゝろみは、
すでに長期にわたつて行なわれているが、これま
での方法は何れも一長一短がある。 例えば、この廃触媒には、通常相当量の水分と
油分が含まれているが、これの除去と廃触媒中に
含まれているバナジウム、モリブデンを反応性の
高い酸化物とするため、500〜700℃で酸化焙焼を
行なう方法がある。 しかしながら、この場合廃触媒中に含まれてい
る油分も燃焼するため局部的な温度の上昇は避け
られず、そのため実質的な焙焼温度が高くなるた
め、ニツケルやコバルトも酸化物になつて水や稀
薄な酸等では溶出し難くなる。 また、バナジウムやモリブデンをアルカリで処
理して抽出することも行なわれるが、この場合も
金属分の抽出率を良くするために700℃以上で所
謂ソーダ焙焼を行なつたり、又別の方法として、
オートクレーブを用いての加圧酸化法等がある。
ソーダ焙焼を行なつた場合には、ニツケルやコバ
ルトはアルミニウムと固溶体化し水に不溶性にな
るのでニツケル等の回収は不可能となる。そのた
め廃触媒をそのまゝ、あるいは乾燥したのちオー
トクレーブに装入し100℃以上で加圧酸化して、
ニツケルとコバルトを硫酸塩とし、バナジウム、
モリブデン等を酸化物として分離する方法が提案
されている。 しかしこの方法の場合も廃触媒中に含まれる高
沸点有機化合物がオートクレーブ内で一部分解し
て燃焼するという点、更に研磨剤と同じような性
質を持つアルミナを撹拌しなければならないため
撹拌機やオートクレーブ本体の摩耗が激しいこと
や、高温高圧処理しなければニツケル、コバルト
の充分な抽出ができないこと等からコスト面での
問題点があつた。 本発明の目的は、従来方法の欠点を解消し、よ
り安価に、且つ簡単な操作で廃触媒中の有価物を
抽出する方法を提供することにある。 この目的を達成するため本発明者は、廃触媒中
に含まれるすべての有価物を同時に抽出する方法
について鋭意研究を行なつたところ、まず廃触媒
中に含まれる有価物以外の油分等を廃触媒中の有
価物に影響を与えることなく除去してから適切な
温度条件で焙焼を行なうことにより、廃触媒中の
ニツケル、コバルト及びモリブデン、更に一部の
バナジウムを水又は弱硫酸酸性溶液に極めて易溶
性の形態の化合物となし得ることを実験的に見出
した。 この知見に基ずいて、更に詳細な検討を行なつ
たところ、前記の処理を行なつた場合、ニツケ
ル、コバルトは実質的に硫酸塩として、又、モリ
ブデンと一部のバナジウムは四価の酸化物となつ
て前記の易溶性物質となるものとの推定を得た。 以上の結果から本発明法は廃触媒を5〜50トー
ル(Torr)200℃以上、好ましくは10〜30トール
250〜300℃で2時間以上減圧蒸留するか、あるい
は窒素ガス等の中性雰囲気中で300〜700℃、好ま
しくは400〜500℃で1時間以上処理する工程を経
たのち、該処理物を空気中又は10容量%程度の酸
素を富化した空気中で350〜550℃好ましくは400
〜500℃で焙焼する。 次に焙焼物は好ましくは室温まで冷却したのち
水を加えてスラリーとし、これに含有されるバナ
ジウム量に対し0.6当量以上、好ましくは0.8当量
以上の還元剤を添加してPH2.5以下、好ましくは
PH0.5〜1.0で処理することにより、ニツケル、コ
バルト、バナジウム及びモリブデンを効率よく抽
出し、後不溶解残渣と分離するようにしたもので
ある。 本発明において、最初の工程で所定温度による
減圧蒸留又は中性雰囲気処理を行なうのは廃触媒
中の有価物の形態、例えば硫化物に影響を与える
ことなく水分と油分を除去するためである。 次にこの処理物を、空気中又は酸素を少量富化
した空気中で350〜550℃好ましくは400〜500℃で
焙焼するのは、ニツケルとコバルトのみを硫酸塩
とし、モリブデン、バナジウムはそれぞれ好まし
い酸化物とするためである。前記の好ましい酸化
物とはモリブデンは実質的に四価でバナジウムは
四価と五価の混合物を意味し、要するに適当量の
還元剤の存在下で水又は弱い酸性水溶液で容易に
抽出され得る酸化物のことである。 この焙焼条件について更に詳しく説明すると、
廃触媒中の有価物のうち、ニツケルとコバルトの
抽出率については焙焼温度が支配的となるが、一
方バナジウム、モリブデンについては焙焼時の雰
囲気がその抽出率に影響を与える。 即ち焙焼温度は350℃より低くても、また550℃
より高くなつてもニツケル、コバルトの抽出率は
低下する。 一方焙焼時の雰囲気は、酸素濃度が高いとバナ
ジウムは、その全部が安定な五価の酸化物とな
り、ついでモリブデンも六価の酸化物となり、充
分な還元剤を添加しても、その抽出率は低下す
る。 上記の焙焼工程を終つた処理物は、適当量の水
又は稀薄な硫酸水溶液を添加してスラリーとする
が、そのPHを2.5以下とするのが良い。その理由
はPH2.5以上では有価物の抽出率が低下するため
である。しかし廃触媒の担体であるアルミニウム
の溶出を多くしないようにする場合にはPHを0.5
〜1.0に止めるのが良い。 このスラリーに添加する還元剤については、特
定するものではないが亜硫酸ナトリウム、亜硫酸
水素ナトリウム、亜硫酸ガス、ヒドラジン等を使
用することができる。 還元剤の添加量を、含有するバナジウム量に対
し0.6当量以上好ましくは0.8当量以上とするの
は、前にも述べたように本発明法においては、バ
ナジウムの6割〜8割だけが五価の酸化物として
得られるためであり、それ以外のバナジウム及び
モリブデンは、その形態については明確ではない
が一応四価で、水又は弱酸に易溶性のものである
からである。尚、還元剤の添加は徐々に行なつて
も、一遍に入れても良いが水溶液のPHは一定に保
持しながら行なう必要がある。 スラリーに還元剤を添加し、有価物をまとめて
抽出する操作は60℃以上好ましくは80℃以上で行
なうのが能率的である。 このようにして得られた抽出液中には、原料中
に含まれていた、ニツケル、コバルト、バナジウ
ム及びモリブデンの殆んどが溶解しているが、こ
の抽出液からのそれぞれの金属回収は公知の方法
によつて容易に行なうことができる。 例えばモリブデンは、抽出液にトリノルマルオ
クチルアミン(T.N.O.A)をケロシンで希釈し
た溶媒を添加して、溶媒抽出法により選択抽出し
たのち、水酸化アルカリかアンモニアの水溶液等
によりモリブデンを逆抽出し、次いでこれを濃縮
してモリブデン酸塩を得る。 モリブデンを抽出した残りの母液は、PHを1.5
〜1.8に保ちながら塩素酸ナトリウムか塩素等の
酸化剤を添加し、バナジウムを五価として沈殿さ
せて母液と分離回収する。 モリブデン、バナジウムを分離した母液は水酸
化アルカリの水溶液等を添加してPHを4〜5と
し、生成するアルミニウムの沈殿を分離したの
ち、母液のPHを10.0程度にするとニツケル及びコ
バルトはそれぞれ水酸化物として沈殿するのでほ
ぼ完全に回収することができる。 以上説明したように本発明法によれば、廃触媒
を比較的低い温度と簡単な操作で処理し、廃触媒
中の有価物を水溶液中に効率良く抽出することが
できる。 尚、本発明法はチタニウムを含有する廃触媒等
についても適用することができる。 以下実施例について説明する。 実施例 第1表に示す廃触媒1Kgを、シリコニツト炉を
用いて窒素気流中400〜450℃で1時間処理したと
ころ、871gの処理物を得た。 その結果は第1表に示したように廃触媒に付着
していた油分の殆んどは除去されていた。
The present invention relates to a method for obtaining an aqueous solution containing nickel, cobalt, vanadium, and molybdenum when recovering valuables from a waste hydrodesulfurization catalyst. Catalysts made by combining one or more of nickel, cobalt, molybdenum, etc. on a catalyst carrier made of alumina or alumina and silica are used mainly as hydrodesulfurization catalysts for heavy oil, and are widely used in the organic chemical industry. It is used. After these catalysts have been used for a certain period of time, their functionality deteriorates and they are discarded as waste catalysts. This hydrodesulfurization waste catalyst (hereinafter abbreviated as waste catalyst)
Including the above metals originally present in the catalyst,
Contains metals found in heavy oil such as vanadium. Any attempt to recover these metals is
Although this method has been used for a long time, all of the methods so far have advantages and disadvantages. For example, this waste catalyst normally contains a considerable amount of water and oil, but in order to remove this and convert the vanadium and molybdenum contained in the waste catalyst into highly reactive oxides, There is a method of oxidative roasting at 700℃. However, in this case, the oil contained in the waste catalyst is also burned, so a local temperature rise is unavoidable, and as a result, the actual roasting temperature becomes high, and nickel and cobalt also turn into oxides and become water. It becomes difficult to elute with dilute acids, etc. Vanadium and molybdenum are also extracted by treating them with alkali, but in this case too, so-called soda roasting is performed at a temperature of 700°C or higher to improve the metal extraction rate, or another method is used. ,
There is a pressure oxidation method using an autoclave, etc.
When soda roasting is performed, nickel and cobalt form a solid solution with aluminum and become insoluble in water, making it impossible to recover nickel and the like. Therefore, the spent catalyst is placed in an autoclave either as is or after drying, and oxidized under pressure at over 100℃.
Nickel and cobalt are made into sulfates, vanadium,
A method of separating molybdenum and the like as oxides has been proposed. However, even with this method, the high-boiling point organic compounds contained in the waste catalyst are partially decomposed and burned in the autoclave, and alumina, which has similar properties to abrasives, must be stirred. There were problems in terms of cost, such as severe wear on the autoclave body and the inability to sufficiently extract nickel and cobalt without high-temperature and high-pressure treatment. An object of the present invention is to eliminate the drawbacks of conventional methods and to provide a method for extracting valuables from waste catalysts at a lower cost and with simple operations. In order to achieve this objective, the present inventor conducted intensive research on a method for simultaneously extracting all the valuable substances contained in the waste catalyst. Nickel, cobalt, molybdenum, and some vanadium in the waste catalyst can be removed in water or a weak sulfuric acid solution by removing them without affecting the valuables in the catalyst and then roasting them at appropriate temperatures. It has been experimentally discovered that the compound can be made into an extremely easily soluble form. Based on this knowledge, a more detailed study revealed that when the above treatment is performed, nickel and cobalt are essentially converted into sulfates, and molybdenum and some vanadium are converted into tetravalent oxides. It is estimated that the substance becomes the easily soluble substance mentioned above. From the above results, the method of the present invention is capable of converting waste catalyst to 5 to 50 Torr (Torr) of 200°C or higher, preferably 10 to 30 Torr.
After undergoing a process of vacuum distillation at 250 to 300°C for 2 hours or more, or treatment in a neutral atmosphere such as nitrogen gas at 300 to 700°C, preferably 400 to 500°C for 1 hour or more, the treated product is air-treated. 350 to 550℃, preferably 400℃ in medium or in air enriched with oxygen of about 10% by volume
Roast at ~500℃. Next, the roasted product is preferably cooled to room temperature, then water is added to form a slurry, and a reducing agent of 0.6 equivalent or more, preferably 0.8 equivalent or more relative to the amount of vanadium contained in the slurry is added to reduce the pH to 2.5 or less, preferably teeth
By processing at pH 0.5 to 1.0, nickel, cobalt, vanadium, and molybdenum are efficiently extracted and separated from undissolved residues. In the present invention, the reason why vacuum distillation or neutral atmosphere treatment is performed at a predetermined temperature in the first step is to remove moisture and oil without affecting the form of valuable substances, such as sulfides, in the spent catalyst. Next, this treated product is roasted at 350 to 550℃, preferably 400 to 500℃ in air or air enriched with a small amount of oxygen, so that only nickel and cobalt are converted into sulfates, and molybdenum and vanadium are converted into sulfates. This is to make it a preferable oxide. The above-mentioned preferred oxides mean molybdenum which is substantially tetravalent and vanadium which is a mixture of tetravalent and pentavalent oxides; It's about things. To explain this roasting condition in more detail,
Among the valuable substances in the waste catalyst, the extraction rate of nickel and cobalt is determined by the roasting temperature, while the atmosphere during roasting affects the extraction rate of vanadium and molybdenum. In other words, even if the roasting temperature is lower than 350℃, it is still 550℃.
Even if it becomes higher, the extraction rate of nickel and cobalt will decrease. On the other hand, when the atmosphere during roasting has a high oxygen concentration, vanadium becomes a stable pentavalent oxide, and molybdenum also becomes a hexavalent oxide, so even if a sufficient reducing agent is added, it cannot be extracted. rate decreases. The processed material that has undergone the above-mentioned roasting process is made into a slurry by adding an appropriate amount of water or a dilute aqueous sulfuric acid solution, and the pH of the slurry is preferably 2.5 or less. The reason is that the extraction rate of valuable substances decreases at pH 2.5 or higher. However, if you want to prevent the elution of aluminum, which is the carrier of the waste catalyst, the pH should be set to 0.5.
It is better to stop it at ~1.0. As for the reducing agent to be added to this slurry, sodium sulfite, sodium hydrogen sulfite, sulfur dioxide gas, hydrazine, etc. can be used, although it is not specified. The reason why the amount of the reducing agent added is 0.6 equivalent or more, preferably 0.8 equivalent or more relative to the amount of vanadium contained is that in the method of the present invention, only 60% to 80% of the vanadium is pentavalent. This is because vanadium and molybdenum other than that are obtained as oxides, and although their forms are not clear, they are tetravalent and easily soluble in water or weak acids. The reducing agent may be added gradually or all at once, but it is necessary to keep the pH of the aqueous solution constant. It is efficient to perform the operation of adding a reducing agent to the slurry and extracting valuable substances all at once at a temperature of 60°C or higher, preferably 80°C or higher. Most of the nickel, cobalt, vanadium, and molybdenum contained in the raw materials are dissolved in the extract obtained in this way, but recovery of each metal from this extract is well known. This can be easily done by the following method. For example, molybdenum is selectively extracted by a solvent extraction method by adding a solvent prepared by diluting tri-normal octylamine (TNOA) with kerosene to the extract, and then back-extracting the molybdenum with an aqueous solution of alkali hydroxide or ammonia. This is concentrated to obtain molybdate. The remaining mother liquor from which molybdenum has been extracted has a pH of 1.5.
While maintaining the temperature at ~1.8, add an oxidizing agent such as sodium chlorate or chlorine to precipitate vanadium as pentavalent and separate and recover from the mother liquor. The mother liquor from which molybdenum and vanadium have been separated is adjusted to a pH of 4 to 5 by adding an aqueous solution of alkali hydroxide, etc. After separating the formed aluminum precipitate, the pH of the mother liquor is brought to about 10.0, and nickel and cobalt are hydroxylated, respectively. Since it precipitates as a solid substance, it can be almost completely recovered. As explained above, according to the method of the present invention, waste catalyst can be treated at a relatively low temperature and with simple operations, and valuable substances in the waste catalyst can be efficiently extracted into an aqueous solution. The method of the present invention can also be applied to waste catalysts containing titanium. Examples will be described below. Example When 1 kg of the waste catalyst shown in Table 1 was treated in a siliconite furnace at 400 to 450 DEG C. for 1 hour in a nitrogen stream, 871 g of the treated product was obtained. As shown in Table 1, most of the oil adhering to the waste catalyst was removed.

【表】 第1表の処理物850gを秤り取り、同じシリコ
ニツト炉を使用して10容量%量の酸素を付加した
空気中400〜450℃で4時間焙焼し、809gの焙焼
物を得た。 次に、この焙焼物500gを5のビーカーに分
取し、これに脱イオン水2を加え撹拌したとこ
ろ、このスラリーの上澄液は弱酸性(PH3.4)を
示した。 次いでこのスラリーを加温して80℃に保持して
から1+1の硫酸を添加しPH1.0に調整し、この
PHを保持しながらスラリー中のバナジウム量に対
し0.8当量の250g/亜硫酸ナトリウム水溶液を
徐々に添加し、この還元剤の添加をはじめてから
90分間軽く撹拌しながら処理したのち真空濾過法
により濾過洗浄を行なつた。 得られた不溶解残渣は283g、抽出液は2.3で
あつた。この不溶解残渣の組成を第2表に、有価
物の抽出率を第3表にそれぞれ示す。
[Table] Weighed 850g of the processed material in Table 1 and roasted it for 4 hours at 400-450℃ in air supplemented with 10% by volume of oxygen using the same silicone furnace to obtain 809g of roasted material. Ta. Next, 500 g of this roasted product was taken into a beaker No. 5, and when deionized water No. 2 was added thereto and stirred, the supernatant liquid of this slurry showed weak acidity (PH3.4). Next, this slurry was heated and kept at 80℃, and then 1+1 sulfuric acid was added to adjust the pH to 1.0.
While maintaining the pH, gradually add 0.8 equivalent of 250 g of sodium sulfite aqueous solution to the amount of vanadium in the slurry, and after the first addition of this reducing agent.
After treatment for 90 minutes with gentle stirring, filtration and washing were performed by vacuum filtration. The amount of undissolved residue obtained was 283 g, and the amount of extracted liquid was 2.3 g. The composition of this insoluble residue is shown in Table 2, and the extraction rate of valuable substances is shown in Table 3.

【表】【table】

【表】 第3表より明らかなように廃触媒中に含有され
ていた有価物は何れも90%以上の抽出率を示し
た。 尚、この抽出液からの各金属の回収は、その手
順により若干の相違は認められるが何れも95%以
上の収率で分離回収することが可能である。
[Table] As is clear from Table 3, all of the valuable substances contained in the waste catalyst showed an extraction rate of 90% or more. Although there are some differences in the recovery of each metal from this extract depending on the procedure, it is possible to separate and recover each metal with a yield of 95% or more.

Claims (1)

【特許請求の範囲】[Claims] 1 水素化脱硫廃触媒を減圧下又は中性雰囲気中
で200℃以上で1時間以上処理する工程、該処理
物を空気又は酸素を少量富化した空気中で350〜
550℃で焙焼する工程、該焙焼物に水を加えてス
ラリー状としたのち、含有するバナジウム量に対
し0.6当量以上の還元剤を添加して、PH2.5以下で
処理し、実質的にニツケル、コバルト、バナジウ
ム及びモリブデンを水溶液として含有するスラリ
ーとし、これを水溶液と不溶解残渣とに分離する
工程よりなることを特徴とする脱硫廃触媒からの
有価金属の抽出方法。
1 Process of treating the spent hydrodesulfurization catalyst at 200°C or higher for 1 hour or more under reduced pressure or in a neutral atmosphere, and the treated product is heated at 350°C or more in air or air enriched with a small amount of oxygen.
In the process of roasting at 550℃, water is added to the roasted material to form a slurry, and then a reducing agent of 0.6 equivalent or more is added to the amount of vanadium contained, and the process is carried out at a pH of 2.5 or lower to substantially reduce the A method for extracting valuable metals from a desulfurization waste catalyst, comprising the steps of preparing a slurry containing nickel, cobalt, vanadium, and molybdenum as an aqueous solution, and separating this into an aqueous solution and an insoluble residue.
JP57165851A 1982-09-22 1982-09-22 Method for extracting valuable metal from spent desulfurization catalyst Granted JPS5956535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57165851A JPS5956535A (en) 1982-09-22 1982-09-22 Method for extracting valuable metal from spent desulfurization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57165851A JPS5956535A (en) 1982-09-22 1982-09-22 Method for extracting valuable metal from spent desulfurization catalyst

Publications (2)

Publication Number Publication Date
JPS5956535A JPS5956535A (en) 1984-04-02
JPH0123532B2 true JPH0123532B2 (en) 1989-05-02

Family

ID=15820197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57165851A Granted JPS5956535A (en) 1982-09-22 1982-09-22 Method for extracting valuable metal from spent desulfurization catalyst

Country Status (1)

Country Link
JP (1) JPS5956535A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639731A (en) * 1987-05-22 1997-06-17 Pripps Bryggerier Ab Amino acids for the preparation of a beverage
GB8719840D0 (en) * 1987-08-21 1987-09-30 British Petroleum Co Plc Separation process
JP2985647B2 (en) * 1993-02-26 1999-12-06 住友金属鉱山株式会社 Dissolution method of spent catalyst
JP2751093B2 (en) * 1994-03-11 1998-05-18 住友金属鉱山株式会社 Method for recovering valuable metals from spent catalyst
US6602818B2 (en) * 2000-09-27 2003-08-05 Sk Corporation Method for preparing a catalyst for selective catalytic reduction of nitrogen oxides
US6673740B2 (en) * 2000-09-27 2004-01-06 Sk Corporation Method for preparing a catalyst for reduction of nitrogen oxides
CN111996379B (en) * 2020-08-27 2022-01-25 江西理工大学 Method for recovering valuable metal from waste SCR denitration catalyst

Also Published As

Publication number Publication date
JPS5956535A (en) 1984-04-02

Similar Documents

Publication Publication Date Title
JP3355362B2 (en) Method for leaching valuable metals from spent catalyst
JP4401024B2 (en) Method for recovering metallic molybdenum and vanadium from spent catalyst by alkaline leaching
FR2717188A1 (en) Process for recovering valuable metals from spent catalyst
US5028410A (en) Hydrometallurgical production of zinc oxide from roasted zinc concentrates
CA2326037C (en) The recovery of gold from refractory ores and concentrates of such ores
US5078786A (en) Process for recovering metal values from jarosite solids
US5023059A (en) Recovery of metal values and hydrofluoric acid from tantalum and columbium waste sludge
US3860419A (en) Process for the recovery of molybdenum from roasted molybdenum concentrates
JPH0156128B2 (en)
EP0487368B1 (en) Antipolluting treatment of a used refining catalyst and recuperation of metals
JPS595657B2 (en) Method for extracting tungsten valuables from tungsten-containing materials
SU867319A3 (en) Method of processing materials containing arsenic and metal
RU2192490C2 (en) Method of extraction of metal components from metal-containing material (versions)
US4594102A (en) Recovery of cobalt and nickel from sulphidic material
JPH0123532B2 (en)
JPS6219494B2 (en)
AU2006260586B2 (en) Chemical beneficiation of raw material, containing tantalum-niobium
JPS5839215B2 (en) Recovery method for titanium metal
KR100277503B1 (en) Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst
EP0487379B1 (en) Method of anti-pollution treatment of a used refining catalyst and complete recuperation of the different metal constituents of this catalyst
JP3102331B2 (en) Method for recovering valuable metals from waste Ni catalyst
SU793373A3 (en) Method of purifying zinc sulfate solutions
JPS6059975B2 (en) Method for concentrating silver from copper electrolytic slime
US4218425A (en) Process for extracting arsenic from oxidic materials
US4202863A (en) Separation of iron metal values from titanium metal values