WO2007032228A1 - Methods for recovery of molybdenum and process for preparation of catalysts - Google Patents

Methods for recovery of molybdenum and process for preparation of catalysts Download PDF

Info

Publication number
WO2007032228A1
WO2007032228A1 PCT/JP2006/317548 JP2006317548W WO2007032228A1 WO 2007032228 A1 WO2007032228 A1 WO 2007032228A1 JP 2006317548 W JP2006317548 W JP 2006317548W WO 2007032228 A1 WO2007032228 A1 WO 2007032228A1
Authority
WO
WIPO (PCT)
Prior art keywords
molybdenum
parts
catalyst
production
aqueous solution
Prior art date
Application number
PCT/JP2006/317548
Other languages
French (fr)
Japanese (ja)
Inventor
Tomomasa Tatsumi
Hiroyuki Naitou
Toru Kuroda
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to JP2006530020A priority Critical patent/JPWO2007032228A1/en
Publication of WO2007032228A1 publication Critical patent/WO2007032228A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • B01J27/192Molybdenum with bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • C22B34/345Obtaining molybdenum from spent catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering at least molybdenum from a molybdenum-containing material containing at least molybdenum, and a method for producing a catalyst using the recovered molybdenum.
  • Molybdenum-containing materials containing at least molybdenum are used, for example, in the production of (meth) acrolein and (meth) acrylic acid by vapor phase contact acid of propylene, isobutylene, or tert-butyl alcohol.
  • Molybdenum bismuth iron-based complex oxide catalysts, molybdenum-vanadium complex oxide catalysts used in the production of acrylic acid using acrolein gas-phase contact acid, etc. are widely known.
  • the catalyst is premised on the use for a certain period, and the catalyst after the use period is taken out from the reaction tube and replaced with a newly produced catalyst.
  • the used spent catalyst contains many elements useful as catalyst production raw materials, such as molybdenum, bismuth, conoleto, nickel, vanadium, rubidium, cesium, and these elements, particularly the main components.
  • Development of technology for recovering and reusing molybdenum has become a very important issue both economically and in reducing the burden on the environment
  • Patent Document 1 Japanese Patent Laid-Open No. 07-165663
  • Patent Document 2 Japanese Patent Laid-Open No. 09-012489
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-305367
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-000936
  • Patent Document 5 Japanese Patent Laid-Open No. 2001-029799
  • Patent Document 6 International Publication No. 2005Z79983 Pamphlet
  • the methods for recovering molybdenum and the like disclosed in Patent Documents 5 and 6 are methods for recovering a precipitate containing at least molybdenum and phosphorus, which is a heteropolyacid-based catalytic force.
  • a precipitate containing at least molybdenum and phosphorus which is a heteropolyacid-based catalytic force.
  • its molybdenum-containing properties are known to recover molybdenum.
  • an object of the present invention is a method for recovering molybdenum in a state in which it can be used as a raw material for catalyst production from a molybdenum-containing material containing at least molybdenum, in particular, a recovered used molybdenum-containing material.
  • the present invention provides a method for producing a catalyst using molybdenum. Means for solving the problem
  • the inventors of the present invention diligently studied to solve the above problems, and disperse a molybdenum-containing material containing at least molybdenum and containing bismuth or vanadium in water, dissolving it in an alkali, and separating it.
  • the present inventors have found a method for recovering molybdenum in a state where it can be used for the production of various catalysts containing molybdenum.
  • a method for recovering molybdenum in a state where it can be used for the production of various catalysts containing molybdenum is also found by extracting with water water the roasted product obtained by adding alkali to at least molybdenum-containing material containing molybdenum.
  • the present invention has been reached.
  • the present invention has a step of obtaining a molybdenum-containing aqueous solution in which at least molybdenum is dissolved in water using a molybdenum-containing material containing at least molybdenum and containing bismuth or vanadium, an alkali, and water. This is a method for recovering molybdenum.
  • the present invention also includes (d) a step of mixing a molybdenum-containing material containing at least molybdenum and an alkali, (e) a step of roasting the obtained mixture at 600 to 1000 ° C, and f) extracting molybdenum contained in the obtained baked product with water to obtain a molybdenum-containing aqueous solution in which at least molybdenum is dissolved in water.
  • the present invention includes (X) a step of adding an acid to the molybdenum-containing aqueous solution to adjust the pH of the molybdenum-containing aqueous solution to 3 or less to produce a molybdenum-containing precipitate, and (y) And the step of separating the molybdenum-containing precipitate.
  • the present invention is a method for producing a catalyst, characterized in that a catalyst containing at least molybdenum is produced using the molybdenum-containing aqueous solution or the molybdenum-containing precipitate obtained by the above method.
  • molybdenum can be recovered from a molybdenum-containing material containing at least molybdenum, in particular, a recovered used molybdenum-containing material in a state where it can be used as a raw material for catalyst production. Also, using the recovered molybdenum, it has the same performance as a new catalyst. Can be produced.
  • the present invention is a method for recovering molybdenum from a molybdenum-containing material containing at least molybdenum, and is suitable for recovering molybdenum from molybdenum-containing material containing at least molybdenum and containing bismuth or vanadium.
  • the molybdenum-containing material include a catalyst used in the production reaction of (meth) acrolein and Z or (meth) acrylic acid by vapor phase catalytic oxidation of propylene, isobutylene, and tert-butyl alcohol, acrolein, and the like.
  • Examples include catalysts used in the production reaction of acrylic acid by gas phase catalytic oxidation.
  • Mo, Bi, Fe, Si, and O represent molybdenum, bismuth, iron, silicon, and oxygen, respectively
  • M 1 is at least one element selected from the group consisting of conoleto and nickel power
  • X 1 represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum, and zinc carbonate
  • Y 1 represents phosphorus.
  • Z 1 is selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium.
  • a catalyst having the composition of the following formula (2) is preferable.
  • ⁇ , V and ⁇ represent molybdenum, vanadium and oxygen, respectively, and ⁇ 2 is at least selected from the group consisting of iron, cobalt, chromium, aluminum and strontium force.
  • X 2 is germanium, boron, arsenic, selenium, silver, kaen, sodium
  • Y 2 represents magnesium, titanium, manganese, copper, zinc, zirconium, niobium, and at least one element selected from the group consisting of tellurium, lithium, antimony, phosphorus, potassium, and barium And at least one element selected from the group consisting of tungsten, tantalum, calcium, tin and bismuth.
  • molybdenum-containing material for recovering molybdenum those usually used in the production reaction of (meth) acrolein and Z or (meth) acrylic acid, the production reaction of acrylic acid, etc. are used. It is not particularly limited to use a material that is no longer used, or one that has been withdrawn from the reaction tube during use.
  • molybdenum is recovered from the molybdenum-containing material by a method including a step of obtaining an aqueous solution containing at least molybdenum using a molybdenum-containing material, an alkali, and water. That is, in order to recover molybdenum from the molybdenum-containing material, a molybdenum-containing aqueous solution is obtained by bringing the molybdenum-containing material into contact with an alkali so as to be dissolved in water.
  • Step (a) a dispersion is prepared in which a molybdenum-containing material containing at least molybdenum and containing bismuth or vanadium is dispersed in water (Ste (a)). Then, an alkali is added to the dispersion to adjust the pH of the dispersion to 8 or more (step (b)). By adjusting the pH, at least a part of molybdenum in the molybdenum-containing material is dissolved in water.
  • the alkali that can be used here is not particularly limited, and examples thereof include sodium hydroxide, potassium hydroxide, potassium hydroxide, sodium carbonate, aqueous ammonia, and the like. Sodium is preferred.
  • air calcination, chlorination, hydrogen peroxide treatment, etc. before adding alkali, or chlorination, hydrogen peroxide treatment, etc. after adding alkali It is preferable to oxidize with.
  • the amount of alkali added is preferably such that the pH becomes 8.5 to 13 which is the amount that makes the pH of the dispersion 8 or higher.
  • the holding time at this time is preferably about 0.5 to 24 hours, and the temperature of the liquid is preferably from room temperature to about 90 ° C. Although it may be left still during the holding, it is preferable to stir.
  • Dispersion force insoluble matter whose pH is adjusted to 8 or more as described above is removed, and a molybdenum-containing aqueous solution in which molybdenum is dissolved in water can be obtained as a filtrate (step (c)).
  • the method for removing the insoluble matter is not particularly limited, and for example, general methods such as filtration separation such as gravity filtration, pressure filtration, vacuum filtration, filter press, and centrifugal separation can be applied.
  • molybdenum-containing physical force containing at least molybdenum In the second embodiment for recovering molybdenum, first, a molybdenum-containing material containing at least molybdenum and an alkali are mixed (step (d)), and the resulting mixture is mixed. Roast at 600-1000 ° C (step (e)). Then, molybdenum contained in the obtained roasted product is extracted with water (step (f)). By doing so, at least a part of molybdenum contained in the roasted product is dissolved and extracted in water, and a molybdenum-containing aqueous solution in which molybdenum is dissolved in water can be obtained as an extract.
  • the present invention can also be applied when the molybdenum-containing material does not contain bismuth or vanadium, but is suitable when the molybdenum-containing material contains bismuth or vanadium.
  • the alkali that can be used here is not particularly limited, and examples thereof include sodium hydroxide, sodium carbonate, sodium bicarbonate, and the like, and sodium carbonate and sodium hydroxide are particularly preferable.
  • the amount of alkali added is preferably 1 or more times the equivalent of molybdenum, tandastene and vanadium contained in the molybdenum-containing material. Although there is no problem even if the amount of alkali added is large, it is contained in the molybdenum-containing material because the amount of the cleaning liquid used to remove sodium element can be reduced by washing the recovered molybdenum-containing precipitate described later. Less than twice the equivalent of molybdenum, tungsten and vanadium elements is preferred.
  • the roasting conditions are 600 to 1000 ° C in an oxygen-containing gas atmosphere such as air. If the roasting temperature is less than 600 ° C, molybdenum extraction is insufficient and the recovery rate is low. When the roasting temperature exceeds 1000 ° C, the recovery rate decreases due to the scattering of molybdenum.
  • the roasting time is preferably 0.5 hours or more.
  • the molybdenum-containing aqueous solution obtained by the above method can be used as a molybdenum raw material. This is a form of molybdenum recovery that can be used for the production of a catalyst.
  • an acid is added to the obtained molybdenum-containing aqueous solution to adjust the pH of the molybdenum-containing aqueous solution to 3 or less, thereby producing a molybdenum-containing precipitate containing at least a part of molybdenum (step (X)).
  • the acid that can be used here is not particularly limited, and examples thereof include strong acids such as hydrochloric acid, nitric acid, and sulfuric acid, and nitric acid or hydrochloric acid is preferable.
  • the amount of acid added is preferably such that the pH of the molybdenum-containing aqueous solution is 3 or less, particularly preferably 2 or less.
  • the holding time at this time is preferably about 0.5 to 24 hours, and the temperature of the liquid is preferably from room temperature to about 90 ° C. Although it may be left still during the holding, it is preferable to stir.
  • a method for separating the molybdenum-containing precipitate is not particularly limited, and general methods such as gravity filtration, pressure filtration, vacuum filtration, filtration separation such as a filter press, and centrifugal separation can be used.
  • the separated molybdenum-containing precipitate may be washed as necessary to remove impurities.
  • the washing liquid may be selected in consideration of the use and solubility of the molybdenum-containing precipitate. For example, pure water, a thin aqueous solution of ammonium nitrate, salt and ammonium, etc. may be used.
  • the molybdenum-containing precipitate after the washing is not more than 0.1 mol with respect to 12 mol of sodium element and chlorine power molybdenum element contained in the molybdenum-containing precipitate. Therefore, the cleaning conditions are set.
  • the molybdenum-containing material used for the recovery contains silicon, it is preferable to adjust the pH of the molybdenum-containing aqueous solution to 4 to 8 to precipitate and remove it.
  • phosphorus may be contained in the molybdenum-containing material used for recovery.
  • the pH of the molybdenum-containing aqueous solution is adjusted to 6 to 12, preferably 7 to L 1.
  • the amount of magnesium element and ammonia to be added is 1 mol or more per 1 mol of phosphorus element.
  • the compound having a magnesium element to be used is not particularly limited, and magnesium chloride, magnesium sulfate, magnesium nitrate and the like can be used.
  • vanadium is contained in the molybdenum-containing aqueous solution.
  • the method for removing vanadium is not particularly limited. For example, after adjusting the pH of a molybdenum-containing aqueous solution containing vanadium in addition to molybdenum to 3.5 to 7.5, it is adsorbed and removed with a weakly basic anion exchange resin. Examples of the method include a method of precipitation separation using ammonium sulfate.
  • the molybdenum-containing aqueous solution and the recovered molybdenum-containing precipitate obtained in this manner are used as the catalyst production raw material. it can.
  • the state of the recovered molybdenum-containing material used in the catalyst production is not particularly limited, and may be in a solution state, a wet state, or a dry state.
  • this fired product is also a form of “recovered molybdenum-containing material”.
  • the firing conditions are preferably 300 to 600 ° C in an oxygen-containing gas atmosphere such as air, and the firing time is preferably 0.5 hours or more.
  • the method for producing a catalyst using the recovered molybdenum-containing material is not particularly limited, and it is used as a raw material from various methods such as a coprecipitation method, an evaporation to dryness method, and an oxide mixing method. It is suitably selected according to the state of the recovered molybdenum-containing material.
  • the molybdenum raw material used for the production of the catalyst may be only the recovered molybdenum-containing material. If necessary, the molybdenum raw material or molybdenum recovered by a method other than the above-described recovery method may be used. Ore isotope It can be used together with other molybdenum raw materials such as molybdenum raw materials used in the production of ordinary catalysts. Examples of the molybdenum raw material used for normal catalyst production include molybdenum molybdenum salts, oxides, halides, oxygen acids, and the like. Specific examples thereof include ammonium molybdate and triacids. And molybdenum, molybdic acid, and salt molybdenum.
  • the production method of the molybdenum raw material used for normal catalyst production is not particularly limited.
  • crude molybdenum trioxide obtained by roasting molybdenum ore is washed with nitric acid, dissolved in ammonia water, purified, Next, the molybdic acid obtained by adjusting the pH with nitric acid was dissolved again in aqueous ammonia, and then concentrated and crystallized to obtain paramolybdic acid ammonium and paramolybdic acid ammonium-molybdbudene acid.
  • molybdenum trioxide obtained by firing sinter for example, crude molybdenum trioxide obtained by roasting molybdenum ore is washed with nitric acid, dissolved in ammonia water, purified.
  • the molybdic acid obtained by adjusting the pH with nitric acid was dissolved again in aqueous ammonia, and then concentrated and crystallized to obtain paramolybdic acid ammonium and paramolyb
  • raw materials other than the molybdenum raw material used for the production of the catalyst are not particularly limited, and a combination of nitrate, carbonate, acetate, ammonium salt, oxide, halide, oxygen acid, etc. of each element.
  • bismuth, bismuth nitrate, bismuth, bismuth chloride, etc . vanadium, ammonium metavanadate, vanadium pentoxide, etc .
  • Ammonium phosphate can be used.
  • Specific catalyst production methods include, for example, production of (meth) acrolein and Z or (meth) acrylic acid by any gas phase catalytic oxidation of propylene, isobutylene, and tert-butyl alcohol.
  • a molybdenum bismuth iron-based composite oxide catalyst for example, there may be mentioned a method of firing a slurry containing at least bismuth and an iron element together with a molybdenum raw material containing a recovered molybdenum-containing material.
  • the molybdenum-vanadium complex oxide catalyst used in the production of acrylic acid by vapor phase catalytic oxidation of acrolein is calcined by drying a slurry containing at least the vanadium element together with the molybdenum raw material containing the recovered molybdenum-containing material. And the like.
  • Examples of the heteropolyacid catalyst used in the production of methacrylic acid by vapor phase contact acid of methacrolein include a method of firing a dry slurry containing at least phosphorus together with a molybdenum raw material containing a recovered molybdenum-containing material. .
  • the catalyst structure contained in the recovered molybdenum-containing material used as a raw material may be added when the amount of the raw material containing these elements is adjusted.
  • the amount of vanadium element is adjusted by reducing the amount of ammonium metavanadate
  • the amount of potassium ions is reduced by adding ammonia water to the lack of ammonium ions.
  • the amount of potassium nitrate is adjusted by reducing the amount of potassium nitrate or cesium nitrate added, the insufficient nitrate ions can be adjusted by adding nitric acid or the like.
  • the liquid temperature of the solution or slurry may be the same as in the case of normal catalyst production that does not use the recovered molybdenum-containing material of the present invention. It may be different from the usual catalyst production in part or all.
  • the liquid temperature is preferably appropriately determined from the particle size distribution of the precipitated particles in the slurry, the moldability of the obtained powder, the pore distribution of the catalyst, the reaction results of the catalyst, and the like.
  • the method for drying the slurry is not particularly limited, and a drying method using a box-type dryer, a spray dryer, a drum dryer, a slurry dryer, or the like can be used.
  • the dried product (catalyst precursor) obtained at this time is preferably in the form of a powder in consideration of molding.
  • the dried product may be molded as it is, or may be molded after firing.
  • molybdenum bismuth monoiron complex oxide used in the production of (meth) acrolein and Z or (meth) acrylic acid.
  • the dried product it is preferable that the dried product is calcined in the range of 200 to 400 ° C. for about 1 to 5 hours, shaped as necessary or supported on an inert carrier, and then calcined.
  • the firing conditions vary depending on the raw material of the catalyst used, the catalyst composition, and the preparation conditions, for example, in the case of a molybdenum bismuth-iron-based complex oxide catalyst, an oxygen-containing gas such as air is used. Firing is carried out under conditions of 400 to 650 ° C, preferably 450 to 600 ° C for 0.5 hour or more, preferably 1 to 40 hours under circulation and under Z or inert gas. In the case of a molybdenum-vanadium-based composite oxide catalyst, similarly, under an oxygen-containing gas flow such as air and Z or inert gas flow, 250 to 500 ° C, preferably 300 to 450 ° C, 0.5 hours or more, preferably Bake for 1 to 40 hours.
  • an oxygen-containing gas flow such as air and Z or inert gas flow
  • a heteropolyacid catalyst it is also 300 to 500 ° C, preferably 300 to 450 ° C under an oxygen-containing gas flow such as air and Z or inert gas flow, preferably at 300 to 450 ° C for 0.5 hour or more. Baking is preferably performed for 1 to 40 hours.
  • the molding method is not particularly limited, and examples thereof include tableting molding, extrusion molding, granulation, and support.
  • the supported catalyst carrier include inert carriers such as silica, alumina, silica′alumina, silicon carbide and the like.
  • inorganic salts such as barium sulfate and ammonium nitrate, graphite, etc.
  • Additives such as lubricants, celluloses, starches, polybutyl alcohol, stearic acid and other organic substances, silica sols, hydroxide sols such as alumina sols, inorganic fibers such as whiskers, glass fibers and carbon fibers Moyo.
  • the reaction conditions for carrying out the gas phase catalytic oxidation reaction using the catalyst produced by the method of the present invention are not particularly limited, and known reaction conditions can be applied.
  • the following are the reaction conditions for producing (meth) acrolein or methacrolein by vapor phase catalytic oxidation of propylene, isobutylene, and tert butyl alcohol, and acrylic acid is produced by vapor phase catalytic oxidation of acrolein.
  • the reaction conditions in this case and the reaction conditions in the case of producing methacrylic acid by the gas phase contact acid of methacrolein will be described.
  • the concentration of the raw material in the raw material gas is preferably 1 to 20% by volume, and more preferably 3 to 10% by volume, which can be varied over a wide range.
  • the raw material may contain a small amount of impurities that do not substantially affect the reaction.
  • the raw material gas may contain such impurities.
  • the source gas needs to contain molecular oxygen
  • the amount of molecular oxygen in the source gas is preferably 0.4 to 4 times the molar amount of the raw material, particularly 0.5 to 3 times. Mole is preferred.
  • air is industrially advantageous to use air as the molecular oxygen source of the raw material gas, air enriched with pure oxygen and oxygen can be used if necessary.
  • the raw material gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide, water vapor or the like.
  • the reaction pressure of the gas phase catalytic oxidation is from atmospheric pressure to several atmospheres.
  • the reaction temperature is usually 200-450. C, preferably 250-400 ° C.
  • the contact time between the raw material gas and the catalyst is usually 1.5 to 15 seconds, preferably 2 to 7 seconds.
  • a catalyst for producing acrolein or methacrolein by any gas phase catalytic oxidation of propylene, isobutylene, and tert-butyl alcohol has a composition represented by the following formula (1): Is preferred.
  • Mo, Bi, Fe, Si, and O represent molybdenum, bismuth, iron, silicon, and oxygen, respectively
  • M 1 is at least one element selected from the group consisting of conoleto and nickel power
  • X 1 represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum, and zinc carbonate
  • Y 1 represents phosphorus.
  • Z 1 is selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium.
  • the concentration of acrolein in the raw material gas can be varied over a wide range, preferably 1-20% by volume, especially 3-10% by volume.
  • the raw material acrolein may contain a small amount of impurities such as water and lower saturated aldehyde that do not substantially affect the reaction.
  • the raw material gas contains such acrolein-derived impurities.
  • the source gas must contain molecular oxygen, but the amount of molecular oxygen in the source gas is preferably 0.4 to 4 times the mol of acrolein, particularly 0.5 to 3 times. Mole is preferred. It is industrially advantageous to use air as the molecular oxygen source of the source gas, but air enriched with pure oxygen and oxygen can also be used if necessary.
  • the raw material gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide, water vapor or the like.
  • the reaction pressure of gas phase catalytic oxidation is from atmospheric pressure to several atmospheres.
  • the reaction temperature is usually 200-450. C, preferably 250-400 ° C.
  • the contact time between the raw material gas and the catalyst is usually 1.5 to 15 seconds, preferably 2 to 7 seconds.
  • a catalyst for producing acrylic acid by vapor phase contact acid of acrolein is represented by the following formula (2) U, which has a composition represented by U, is preferred.
  • the concentration of methacrolein in the raw material gas is preferably 1 to 20% by volume which can be changed over a wide range.
  • the raw material methacrolein may contain a small amount of impurities that do not substantially affect the reaction, such as water and lower saturated aldehydes.
  • the raw material gas contains such impurities derived from methacrolein. It may be.
  • the source gas needs to contain molecular oxygen, the amount of molecular oxygen in the source gas is 0.4 to 4 times the molar force of methacrolein, particularly 0.5 to A 3-fold mole is preferred. Although it is industrially advantageous to use air as the molecular oxygen source of the source gas, air enriched with pure oxygen can be used if necessary.
  • the source gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide, or water vapor.
  • the reaction pressure of the gas phase catalytic oxidation is from atmospheric pressure to several atmospheres.
  • the reaction temperature is usually 200-450. C, preferably 250-400 ° C.
  • the contact time between the raw material gas and the catalyst is usually 1.5 to 15 seconds, preferably 2 to 7 seconds.
  • the catalyst for producing methacrylic acid by gas-phase catalytic oxidation of methacrolein is preferably one having a composition represented by the following formula (3).
  • X 3 is potassium
  • Rubidium represents at least one element selected from the group also cesium and thallium force, Y 3 iron, the Leto, nickel, copper, zinc, magnesium, calcium, strontium arm, Bruno potassium, titanium, vanadium, chromium , Tungsten, Manganese, Silver, Boron, Ca, Aluminum, Gallium, Germanium, Tin, Lead, Arsenic, Antimony, Bismuth, Niobium, Tantalum, Zirconium, Indium, Zio, Selenium, Tellurium, Lanthanum and Cerium Represents at least one element.
  • part is parts by mass, and quantitative analysis of contained elements (or molecules) was performed by ICP emission spectrometry and atomic absorption spectrometry. Analysis of raw materials and products in the production of acrolein, methacrolein, acrylic acid, or methacrylic acid was performed by gas chromatography. The recovery rate of molybdenum, the conversion rate of propylene, isobutylene, acrolein, or methacrolein as raw materials, and the selectivity and yield of the produced acrolein, methacrolein, acrylic acid, or methacrylic acid are as follows. Defined in
  • W is the mass of recovered molybdenum
  • W is the mass of molybdenum contained in the catalyst used for recovery.
  • A is the number of moles of propylene, isobutylene, acrolein, or methacrolein supplied
  • B is the number of reacted propylene, isobutylene, acrolein, or methacrolein
  • C is the number of moles of acrolein, methacrolein, acrylic acid or methacrylic acid produced.
  • the dried powder thus obtained was calcined at 300 ° C for 1 hour, then formed into a 3mm diameter cylinder with a diameter and height of 3mm, and calcined at 510 ° C for 3 hours.
  • the catalyst A for acrolein production is packed in a reaction tube, and a mixed gas of 5% by volume of propylene, 12% by volume of oxygen, 10% by volume of steam, and 73% by volume of nitrogen is reacted at 310 ° C and contact time is 3.6. In seconds, propylene conversion 98.4%, acrolein selectivity 90.1%, acrylic acid selectivity 5.9%, acrolein yield 88.7%, acrylic acid yield 5. It was 8%.
  • the catalyst after the production of acrolein of Reference Example 1 for 2000 hours was recovered. 100 parts of this recovered catalyst contained 43.9 parts of molybdenum, 0.7 part of tungsten, 9.6 parts of bismuth, 2.6 parts of iron, 3.7 parts of antimony, 9.7 parts of corundol, and 1.3 parts of zinc. Part and potassium 0.1 part.
  • the composition of elements excluding oxygen atoms is Mo Bi Fe Co Zn W Sb K
  • acrolein was produced under the same reaction conditions as in acrolein production test A of Reference Example 1.
  • the propylene conversion rate was 98.3% and acrolein selectivity was 90.2%.
  • the selectivity for acrylic acid was 5.8%, the yield of acrolein was 88.7%, and the yield of acrylic acid was 5.7%. .
  • solution A To 1000 parts of pure water, 500 parts of ammonium paramolybdate, 6.2 parts of ammonium tungstate, and 1.4 parts of potassium nitrate were added and dissolved at 60 ° C (solution A). Separately, 41.9 parts of 60 mass% nitric acid aqueous solution was added to 1000 parts of pure water, and after homogenizing, 103.0 parts of bismuth nitrate was dissolved. To this, 133.5 parts of iron nitrate, 295.3 parts of corn nitrate, and 14.0 parts of zinc nitrate were sequentially added and dissolved (solution B). Liquid B was added to liquid A to obtain an aqueous slurry, and then 6.9 parts of antimony trioxide was aged at 80 ° C.
  • the catalyst after the production of acrolein of Reference Example 2 for 2000 hours was recovered. 100 parts of this recovered catalyst contained 47.1 parts molybdenum, 0.8 parts tungsten, 7.7 parts bismuth, 3.2 parts iron, 1.0 part antimony, 10.4 parts connort, 0.5 parts zinc. Part, and 0.1 part potassium.
  • the composition of elements excluding oxygen atoms is Mo Bi Fe Co Zn W Sb
  • acrolein production catalyst B 1 135.0 parts of iron nitrate, 298.7 parts of cobalt nitrate, and 14.2 parts of zinc nitrate were sequentially added and dissolved (solution B).
  • Liquid B was added to liquid A to prepare an aqueous slurry, 7.0 parts of antimony trioxide was added, and the mixture was aged at 80 ° C. for 1 hour, and then evaporated to dryness.
  • the cake-like material thus obtained was dried at 120 ° C, calcined at 300 ° C for 1 hour, and then pulverized. Thereafter, it was pressure-molded into a cylindrical shape having a diameter and height of 3 mm, and calcined at 500 ° C. for 6 hours to obtain acrolein production catalyst B 1.
  • the composition of this acrolein production catalyst B 1 excluding oxygen atoms is the same as that of the acrolein production catalyst B produced in Reference Example 2.
  • acrolein was produced under the same reaction conditions as in acrolein production test A of Reference Example 1.
  • the propylene conversion was 99.6% and the acrolein selectivity was 90.8%.
  • the selectivity for acrylic acid was 6.8%, the yield of acrolein was 90.4%, and the yield of acrylic acid was 6.8%. .
  • “recovered molybdenum-containing material B3” was obtained in the same manner as the molybdenum recovery B1 of Example 2, except that the roasting temperature was changed to 400 ° C.
  • the recovered molybdenum-containing material B3 contained 115.9 parts molybdenum, 2.4 parts tungsten, and 0.18 parts potassium. At this time, the recovery rate of molybdenum was 41.0%, and the recovery rate dropped significantly.
  • Liquid B was added to the liquid A to form an aqueous slurry, and then 38.5 parts of antimony trimonate was aged at 80 ° C. for 1 hour, and then evaporated to dryness.
  • the cake-like material thus obtained was dried at 120 ° C, calcined at 300 ° C for 1 hour, and then pulverized. After that, it was pressure-molded into a cylindrical shape with a diameter and height of 3 mm, and calcined at 500 ° C for 6 hours to produce catalyst C for methacrolein C (formation to remove oxygen atoms: Mo Bi Fe Ni Co Zn W Sb Cs).
  • the catalyst C for producing methacrolein is charged into a reaction tube, and a mixed gas of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor, and 73% by volume of nitrogen is reacted at 340 ° C and contact time is 3.6 seconds.
  • the conversion rate of isobutylene was 97.7%
  • the selectivity of methacrolein was 89.1%
  • the selectivity of methacrylic acid was 3.0%
  • the yield of methacrolein was 87.1%
  • Yield 2.9% The conversion rate of isobutylene was 97.7%
  • the selectivity of methacrolein was 89.1%
  • the selectivity of methacrylic acid was 3.0%
  • the yield of methacrolein was 87.1%
  • Yield 2.9% Yield 2.9%.
  • the catalyst after the production of methacrolein of Reference Example 3 for 2000 hours was recovered. 100 parts of this recovered catalyst contained 40.4 parts of molybdenum, 0.6 part of tungsten, 5.1 parts of bismuth, 4.1 parts of iron, 3.0 parts of antimony, 5.1 parts of nickel, and 10.1 parts of Conor. , 0.5 parts of zinc, and 2.8 parts of cesium. It should be noted that the elements of elements other than oxygen atoms are Mo Bi Fe
  • solution B 173.7 parts of iron nitrate, 256.3 parts of nitrate nitrate, 74.5 parts of nickel nitrate, and 12.2 parts of zinc nitrate were sequentially added and dissolved (solution B).
  • Liquid B was added to liquid A to form an aqueous slurry, and then 33.4 parts of antimony trioxide was aged at 80 ° C for 1 hour, and then evaporated to dryness.
  • the cake-like material thus obtained was dried at 120 ° C, calcined at 300 ° C for 1 hour, and then pulverized. Thereafter, it was pressure-formed into a cylindrical shape having a diameter and height of 3 mm, and calcined at 500 ° C.
  • catalyst C1 for producing methacrolein The composition of this catalyst for producing methacrolein C1 excluding oxygen atoms is Mo Bi Fe Ni Co Zn W Sb Cs which is the same as the catalyst C for producing methacrolein prepared in Reference Example 3. there were.
  • solution B 199.7 parts of iron nitrate, 294.7 parts of nitric nitrate, 85.7 parts of nickel nitrate, and 14.0 parts of zinc nitrate were sequentially added to dissolve (solution B).
  • Liquid B was added to liquid A to form an aqueous slurry, and then 38.4 parts of antimony trioxide was aged at 80 ° C. for 1 hour, and then evaporated to dryness.
  • the cake-like material thus obtained was dried at 120 ° C, calcined at 300 ° C for 1 hour, and then pulverized. Thereafter, it was pressure-molded into a cylinder with a diameter and height of 3 mm, and calcined at 500 ° C.
  • catalyst C2 for producing methacrolein The composition of this catalyst for producing methacrolein C2 excluding oxygen atoms is the same as that of the catalyst for producing methacrolein C prepared in Reference Example 3 Mo Bi Fe Ni Co Z
  • the aqueous slurry was dried with a spray dryer (dryer inlet temperature: 300 ° C.). After calcining at ° C for 1 hour, it was formed into a cylinder with a diameter and height of 3 mm, and calcined at 510 ° C for 3 hours to produce methacrolein production catalyst D (composition excluding oxygen atoms: Mo Bi Fe Ni Co Pb PW Sb Cs)
  • the catalyst after the production of methacrolein of Reference Example 4 for 2000 hours was recovered.
  • the recovered catalyst (100 parts) contains 41.3 parts of molybdenum, 0.7 parts of tungsten, 4.5 parts of bismuth, 4.0 parts of iron, 0.9 parts of antimony, 2.1 parts of nickel, and 13.8 parts of nickel. Part, 2.2 parts lead, 0.1 part phosphorus, and 2.3 parts cesium.
  • the elemental yarn excluding oxygen was Mo Bi Fe Ni Co Pb P W Sb Cs.
  • a recovered molybdenum-containing precipitate (recovered molybdenum-containing material D1) was obtained in the same manner as the molybdenum recovered A1 of Example 1.
  • the recovered molybdenum-containing material D1 contained 241.8 parts of molybdenum, 3.6 parts of tungsten, and 5.4 parts of cesium. At this time, the recovery rate of molybdenum was 97.6%.
  • the composition excluding oxygen atoms of the catalyst D1 for producing methacrolein was the same Mo Bi Fe Ni Co Zn W Sb Cs as the catalyst C for producing methacrolein produced in Reference Example 3.
  • the catalyst E for acrylic acid production is filled into a reaction tube, and a mixed gas of 5% by volume of acrolein, 10% by volume of oxygen, 30% by volume of steam, and 55% by volume of nitrogen is reacted at 270 ° C and contact time 3.
  • a mixed gas of 5% by volume of acrolein, 10% by volume of oxygen, 30% by volume of steam, and 55% by volume of nitrogen is reacted at 270 ° C and contact time 3.
  • the conversion of acrolein was 98.6%
  • the selectivity of acrylic acid was 95.0%
  • the yield of acrylic acid was 93.7%.
  • the dissolved solution was added, and 41.8 parts of 20 mass% silica sol (dispersion medium: water) was further added.
  • the mixture was evaporated to dryness, dried, molded and calcined in the same manner as in the production of the acrylic acid production catalyst soot in Reference Example 5 to obtain an acrylic acid production catalyst E1.
  • the composition excluding oxygen atoms of this acrylic acid production catalyst E1 was Mo V Fe Co Si Na Mn W similar to the acrylic acid production catalyst ⁇ ⁇ produced in Reference Example 5.
  • This acrylic acid production catalyst El was used to produce acrylic acid under the same reaction conditions as in acrylic acid production test E in Reference Example 5. As a result, acrolein conversion was 98.4% and acrylic acid was selected. The rate was 95.3% and the yield of acrylic acid was 93.8%, which was the same performance as the catalyst E for acrylic acid production in Reference Example 5.
  • This catalyst F for producing methacrylic acid is filled in a reaction tube, and a mixed gas of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor and 55% by volume of nitrogen is reacted at 290 ° C and contact time is 3.6 seconds.
  • the conversion of methacrolein was 87.5%
  • the selectivity of methacrylic acid was 85.6%
  • the yield of methacrylic acid was 74.9%.
  • a liquid B was added to the liquid A to form an aqueous slurry, and 15.7 parts of ammonium metavanadate were aged at 85 ° C. for 2 hours, and then evaporated to dryness.
  • the cake-like material thus obtained was dried, shaped and calcined in the same manner as in the production of the methacrylic acid production catalyst F in Reference Example 6 to obtain a methacrylic acid production catalyst F1.
  • the formation of this methacrylic acid production catalyst F1 by removing oxygen atoms is the same as the methacrylic acid production catalyst F produced in Reference Example 6 Mo P Cs K V Cu Ge Ni W
  • This methacrylic acid production catalyst F1 was used to produce methacrylic acid under the same reaction conditions as methacrylic acid production test F of Reference Example 6. As a result, the methacrolein conversion rate was 87.3% and the selection of methacrylic acid. The ratio was 85.7% and the yield of methacrylic acid was 74.8%, which was the same performance as the catalyst F for producing methacrylic acid of Reference Example 6.
  • a molybdenum-containing aqueous solution was obtained in the same manner as in the recovery of molybdenum in Example 2 B1. After neutralizing this solution to pH 7 with 36% by mass hydrochloric acid, a solution prepared by dissolving 64.5 parts of magnesium chloride hexahydrate in 200 parts of pure water and 14.5 parts of 29% by mass ammonia water were added, and 29 Mass% aqueous ammonia was added to adjust the pH to 9, and the mixture was kept at 30 ° C. for 3 hours with stirring, and the produced precipitate and the solution (molybdenum-containing aqueous solution) were separated by filtration.
  • a molybdenum-containing precipitate (recovered molybdenum-containing material F2) was obtained in the same manner as in the molybdenum recovery B1 of Example 2.
  • the recovered molybdenum-containing material F2 contained 272.0 parts molybdenum, 6.5 parts vanadium, 3.8 parts tungsten, 1.1 parts potassium and 6.5 parts cesium.
  • the molybdenum recovery rate at this time was 96.8%.
  • Liquid B was added to the liquid A to make an aqueous slurry, 1.7 parts of ammonium metavanadate was added and aged at 85 ° C for 2 hours, and then evaporated to dryness.
  • the cake-like material thus obtained was dried, shaped and calcined in the same manner as in the production of methacrylic acid production catalyst F in Reference Example 6 to obtain methacrylic acid production catalyst F2.
  • This methacrylic acid production catalyst F2 was used to produce methacrylic acid under the same reaction conditions as in methacrylic acid production test F of Reference Example 6. As a result, the methacrolein conversion rate was 87.4% and the selection of methacrylic acid. The ratio was 85.7% and the yield of methacrylic acid was 74.9%, which was the same performance as Catalyst F for producing methacrylic acid in Reference Example 6.
  • molybdenum can be recovered in a higher yield than a molybdenum-containing material containing at least molybdenum, so that the molybdenum-containing material after use can be used effectively.
  • a catalyst can be produced from a recovered molybdenum-containing material recovered from a molybdenum-containing material containing at least molybdenum, and a molybdenum-containing material containing at least molybdenum, particularly a catalyst for acrolein production, methacrolein.
  • the catalyst for production, the catalyst for producing acrylic acid, and the catalyst for producing methacrylic acid can be effectively utilized even after use.

Abstract

The invention aims at providing methods for recovering molybdenum in a state usable as the raw material in the production of catalysts from a molybdenum-containing substance and a process for producing catalysts by use of the recovered molybdenum. The recovery of molybdenum according to the invention is conducted either by using a molybdenum-containing substance further containing bismuth or vanadium as the additional component, an alkali, and water and recovering molybdenum as an aqueous solution, or by roasting a mixture of a molybdenum-containing substance with an alkali and extracting the roasted mixture with water. Further, a molybdenum-containing precipitate can be obtained by the addition of an acid to the obtained solution. Additionally, catalysts containing molybdenum as the essential component can be prepared by using the obtained molybdenum -containing aqueous solution or precipitate.

Description

明 細 書  Specification
モリブデンの回収方法及び触媒の製造方法  Molybdenum recovery method and catalyst production method
技術分野  Technical field
[0001] 本発明は、少なくともモリブデンを含むモリブデン含有物より少なくともモリブデンを 回収する方法、及び回収されたモリブデンを用いる触媒の製造方法に関する。  The present invention relates to a method for recovering at least molybdenum from a molybdenum-containing material containing at least molybdenum, and a method for producing a catalyst using the recovered molybdenum.
背景技術  Background art
[0002] 少なくともモリブデンを含むモリブデン含有物としては、例えば、プロピレン、イソブ チレン、又は tert—ブチルアルコールの気相接触酸ィ匕による(メタ)ァクロレイン及び( メタ)アクリル酸の製造等で用 、るモリブデン ビスマス 鉄系複合酸化物触媒、ァク ロレインの気相接触酸ィ匕によるアクリル酸製造等で用いるモリブデン一バナジウム系 複合酸化物触媒などが広く知られて ヽる。  [0002] Molybdenum-containing materials containing at least molybdenum are used, for example, in the production of (meth) acrolein and (meth) acrylic acid by vapor phase contact acid of propylene, isobutylene, or tert-butyl alcohol. Molybdenum bismuth iron-based complex oxide catalysts, molybdenum-vanadium complex oxide catalysts used in the production of acrylic acid using acrolein gas-phase contact acid, etc. are widely known.
[0003] 一般に、工業的気相酸化反応では触媒は一定期間の使用が前提となっており、使 用期間が過ぎた触媒は反応管より取り出され、新しく製造された触媒と交換される。こ の際、取り出された使用済み触媒には、モリブデン、ビスマス、コノ レト、ニッケル、バ ナジゥム、ルビジウム、セシウムなど触媒製造原料として有用な元素が多く含まれて おり、これらの元素、特に主成分であるモリブデンを回収、再利用する技術の開発は 、経済的にも、また、環境への負荷を低減する上でも非常に重要な課題となっている  [0003] Generally, in an industrial gas phase oxidation reaction, the catalyst is premised on the use for a certain period, and the catalyst after the use period is taken out from the reaction tube and replaced with a newly produced catalyst. At this time, the used spent catalyst contains many elements useful as catalyst production raw materials, such as molybdenum, bismuth, conoleto, nickel, vanadium, rubidium, cesium, and these elements, particularly the main components. Development of technology for recovering and reusing molybdenum has become a very important issue both economically and in reducing the burden on the environment
[0004] 使用済み触媒の再利用について、プロピレン、イソブチレン、又は tert—ブチルァ ルコールの気相接触酸ィ匕による (メタ)ァクロレイン及び (メタ)アクリル酸の製造等で 用いるモリブデン ビスマス一鉄系複合酸ィ匕物触媒では、反応に使用した使用済み 触媒を反応に実質的に不活性な酸化モリブデンと混合する再生方法 (例えば、特許 文献 1参照)、反応に使用した使用済み触媒と反応に未使用の複合酸化物触媒を共 存させて反応に使用する方法 (例えば、特許文献 2参照)等が知られている。また、ァ クロレインの気相接触酸ィ匕によるアクリル酸製造等で用 、るモリブデン一バナジウム 系複合酸化物触媒では、反応に使用した使用済み触媒にモリブデン含有溶液を添 加し、焼成する再生方法 (例えば、特許文献 3参照)、使用済み触媒を 5〜: LOO m に粉砕し、再度成形した後に焼成する再生方法 (例えば、特許文献 4参照)等が知ら れている。 [0004] Regarding the reuse of spent catalyst, molybdenum bismuth-monoiron complex acid used in the production of (meth) acrolein and (meth) acrylic acid by propylene, isobutylene, or gas phase catalytic acid of tert-butyl alcohol. For metal catalysts, a regeneration method in which the spent catalyst used in the reaction is mixed with molybdenum oxide that is substantially inert to the reaction (see, for example, Patent Document 1), the spent catalyst used in the reaction, and unused in the reaction A method of using the composite oxide catalyst in the coexistence in the reaction (for example, see Patent Document 2) is known. In addition, in the case of molybdenum-vanadium-based composite oxide catalysts used in the production of acrylic acid by acrolein gas-phase contact acid, etc., a regeneration method in which a molybdenum-containing solution is added to the spent catalyst used in the reaction and calcined. (For example, refer to Patent Document 3), used catalyst 5 ~: LOO m There is known a regeneration method (for example, see Patent Document 4) in which the material is pulverized, reshaped, and fired.
[0005] また、使用済み触媒からのモリブデン等の回収、再利用について、メタクロレインの 気相接触酸ィ匕によるメタクリル酸製造等で用いるヘテロポリ酸系触媒では、反応に使 用した使用済み触媒を水に分散してアル力リに溶解した後、 pHを調整して少なくとも モリブデンとリンおよび Zまたはヒ素を含む沈殿を回収する沈殿の回収方法、回収し た沈殿を使用して上記触媒を再び製造する触媒の製造方法が知られている(例えば 、特許文献 5及び 6参照)。  [0005] In addition, with regard to the recovery and reuse of molybdenum and the like from spent catalysts, heteropolyacid catalysts used in the production of methacrylic acid by gas-phase catalytic acid of methacrolein, etc., the spent catalyst used in the reaction is used. Disperse in water and dissolve in Al force, then adjust the pH to recover a precipitate containing at least molybdenum and phosphorus and Z or arsenic. Recover the catalyst using the recovered precipitate. There are known methods for producing such catalysts (see, for example, Patent Documents 5 and 6).
特許文献 1 :特開平 07— 165663号公報  Patent Document 1: Japanese Patent Laid-Open No. 07-165663
特許文献 2:特開平 09— 012489号公報  Patent Document 2: Japanese Patent Laid-Open No. 09-012489
特許文献 3:特開 2003 - 305367号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-305367
特許文献 4:特開 2004— 000936号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004-000936
特許文献 5:特開 2001— 029799号公報  Patent Document 5: Japanese Patent Laid-Open No. 2001-029799
特許文献 6 :国際公開 2005Z79983号パンフレット  Patent Document 6: International Publication No. 2005Z79983 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、特許文献 1〜4等に開示されている触媒の再生方法では、触媒はあ る程度の活性レベルまでは再生されるが、再生された触媒を用いて気相接触酸化反 応を行うと、通常の方法で製造された触媒を用いた場合よりも目的生成物の収率が 低いという問題などがある。  However, in the catalyst regeneration methods disclosed in Patent Documents 1 to 4 and the like, the catalyst is regenerated up to a certain level of activity, but the regenerated catalyst is used for gas phase contact. When the oxidation reaction is performed, there is a problem that the yield of the target product is lower than when a catalyst produced by a normal method is used.
[0007] また、特許文献 5及び 6に開示されているモリブデン等の回収方法は、ヘテロポリ酸 系触媒力 少なくともモリブデン及びリンを含む沈殿を回収する方法であり、前記のよ うにモリブデン含有物がモリブデンだけでなくビスマス又はバナジウムを含む場合に、 そのモリブデン含有物力 モリブデンを回収する方法は知られて 、な 、。  [0007] Further, the methods for recovering molybdenum and the like disclosed in Patent Documents 5 and 6 are methods for recovering a precipitate containing at least molybdenum and phosphorus, which is a heteropolyacid-based catalytic force. In addition to containing bismuth or vanadium, its molybdenum-containing properties are known to recover molybdenum.
[0008] 従って、本発明の課題は、少なくともモリブデンを含むモリブデン含有物、特に回収 された使用済みのモリブデン含有物から、触媒製造の原料として用いうる状態でモリ ブデンを回収する方法、及び回収されたモリブデンを用いて触媒を製造する方法を 提供することである。 課題を解決するための手段 [0008] Therefore, an object of the present invention is a method for recovering molybdenum in a state in which it can be used as a raw material for catalyst production from a molybdenum-containing material containing at least molybdenum, in particular, a recovered used molybdenum-containing material. The present invention provides a method for producing a catalyst using molybdenum. Means for solving the problem
[0009] 本発明者らは、上記課題を解決するために鋭意検討し、少なくともモリブデンを含 み、かつビスマス又はバナジウムを含むモリブデン含有物を水に分散させ、アルカリ に溶解させて分離することによって、モリブデンを含む各種触媒の製造に利用できる 状態でモリブデンを回収する方法を見出し本発明に至った。また、少なくともモリブデ ンを含むモリブデン含有物にアルカリを添加して焙焼した焙焼物を水で抽出すること によっても、モリブデンを含む各種触媒の製造に利用できる状態でモリブデンを回収 する方法を見出し、本発明に至った。  [0009] The inventors of the present invention diligently studied to solve the above problems, and disperse a molybdenum-containing material containing at least molybdenum and containing bismuth or vanadium in water, dissolving it in an alkali, and separating it. The present inventors have found a method for recovering molybdenum in a state where it can be used for the production of various catalysts containing molybdenum. In addition, a method for recovering molybdenum in a state where it can be used for the production of various catalysts containing molybdenum is also found by extracting with water water the roasted product obtained by adding alkali to at least molybdenum-containing material containing molybdenum. The present invention has been reached.
[0010] すなわち、本発明は、少なくともモリブデンを含み、かつビスマス又はバナジウムを 含むモリブデン含有物と、アルカリと、水とを用いて、少なくともモリブデンが水に溶解 したモリブデン含有水溶液を得る工程を有することを特徴とするモリブデンの回収方 法である。  That is, the present invention has a step of obtaining a molybdenum-containing aqueous solution in which at least molybdenum is dissolved in water using a molybdenum-containing material containing at least molybdenum and containing bismuth or vanadium, an alkali, and water. This is a method for recovering molybdenum.
[0011] また、本発明は、(d)少なくともモリブデンを含むモリブデン含有物と、アルカリとを 混合する工程と、(e)得られた混合物を 600〜1000°Cで焙焼する工程と、(f)得られ た焙焼物に含まれるモリブデンを水で抽出して、少なくともモリブデンが水に溶解した モリブデン含有水溶液を得る工程とを有することを特徴とするモリブデンの回収方法 である。  [0011] The present invention also includes (d) a step of mixing a molybdenum-containing material containing at least molybdenum and an alkali, (e) a step of roasting the obtained mixture at 600 to 1000 ° C, and f) extracting molybdenum contained in the obtained baked product with water to obtain a molybdenum-containing aqueous solution in which at least molybdenum is dissolved in water.
[0012] また、本発明は、(X)前記モリブデン含有水溶液に酸を添加して該モリブデン含有 水溶液の pHを 3以下に調整して、モリブデン含有沈殿物を生じさせる工程と、(y)前 記モリブデン含有沈殿物を分離する工程と、をさらに有することを特徴とする前記の モリブデンの回収方法である。  [0012] Further, the present invention includes (X) a step of adding an acid to the molybdenum-containing aqueous solution to adjust the pH of the molybdenum-containing aqueous solution to 3 or less to produce a molybdenum-containing precipitate, and (y) And the step of separating the molybdenum-containing precipitate.
[0013] さらに、本発明は、前記の方法で得られたモリブデン含有水溶液又はモリブデン含 有沈殿物を用いて、少なくともモリブデンを含有する触媒を製造することを特徴とする 触媒の製造方法である。  [0013] Furthermore, the present invention is a method for producing a catalyst, characterized in that a catalyst containing at least molybdenum is produced using the molybdenum-containing aqueous solution or the molybdenum-containing precipitate obtained by the above method.
発明の効果  The invention's effect
[0014] 本発明によれば、少なくともモリブデンを含むモリブデン含有物、特に回収された使 用済みのモリブデン含有物から、触媒製造の原料として用いうる状態でモリブデンを 回収できる。また、その回収されたモリブデンを用いて新品触媒と同等の性能を有す る触媒を製造することができる。 [0014] According to the present invention, molybdenum can be recovered from a molybdenum-containing material containing at least molybdenum, in particular, a recovered used molybdenum-containing material in a state where it can be used as a raw material for catalyst production. Also, using the recovered molybdenum, it has the same performance as a new catalyst. Can be produced.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明は、少なくともモリブデンを含むモリブデン含有物からモリブデンを回収する 方法であり、少なくともモリブデンを含み、かつビスマス又はバナジウムを含むモリブ デン含有物からのモリブデンの回収に好適である。そのモリブデン含有物としては、 例えば、プロピレン、イソブチレン、及び tert—ブチルアルコールのいずれかの気相 接触酸化による (メタ)ァクロレイン及び Z又は (メタ)アクリル酸の製造反応等に使用 された触媒、ァクロレインの気相接触酸化によるアクリル酸の製造反応等に使用され た触媒が挙げられる。  [0015] The present invention is a method for recovering molybdenum from a molybdenum-containing material containing at least molybdenum, and is suitable for recovering molybdenum from molybdenum-containing material containing at least molybdenum and containing bismuth or vanadium. Examples of the molybdenum-containing material include a catalyst used in the production reaction of (meth) acrolein and Z or (meth) acrylic acid by vapor phase catalytic oxidation of propylene, isobutylene, and tert-butyl alcohol, acrolein, and the like. Examples include catalysts used in the production reaction of acrylic acid by gas phase catalytic oxidation.
[0016] プロピレン、イソブチレン、及び tert—ブチルアルコールの!/、ずれかの気相接触酸 ィ匕による (メタ)ァクロレイン及び Z又は (メタ)アクリル酸の製造用触媒の場合、下記 式(1)の組成のものが好まし!/、。  [0016] In the case of a catalyst for the production of (meth) acrolein and Z or (meth) acrylic acid by propylene, isobutylene and tert-butyl alcohol! /, Any gas phase catalytic acid, the following formula (1) The composition is preferred! /.
[0017] Mo Bi Fe M1 X1 Y1 Ζ1 Si Ο (1) [0017] Mo Bi Fe M 1 X 1 Y 1 Ζ 1 Si Ο (1)
a b c d e f g h i  a b c d e f g h i
(式中、 Mo、 Bi、 Fe、 Si及び Oは、それぞれモリブデン、ビスマス、鉄、ケィ素及び酸 素を示し、 M1は、コノ レト及びニッケル力 なる群より選ばれた少なくとも 1種の元素 を示し、 X1は、クロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム 、スズ、タンタル及び亜鉛カゝらなる群より選ばれた少なくとも 1種の元素を示し、 Y1は、 リン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンか らなる群より選ばれた少なくとも 1種の元素を示し、 Z1は、リチウム、ナトリウム、カリウム 、ルビジウム、セシウム及びタリウムなる群より選ばれた少なくとも 1種の元素を示す。 a 、 b、 c、 d、 e、 f、 g、 h及び iは各元素の原子比を表し、 a= 12のとき、 b = 0. 01〜3、 c =0. 01〜5、 d= l〜12、 e = 0〜8、 f=0〜5、 g = 0. 001〜2、 h=0〜20であり、 i は前記各成分の原子価を満足するのに必要な酸素原子比である。) (In the formula, Mo, Bi, Fe, Si, and O represent molybdenum, bismuth, iron, silicon, and oxygen, respectively, and M 1 is at least one element selected from the group consisting of conoleto and nickel power. X 1 represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum, and zinc carbonate, and Y 1 represents phosphorus. Represents at least one element selected from the group consisting of boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium, and Z 1 is selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium. Indicates at least one selected element: a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element, and when a = 12, b = 0.01-3 , C = 0.01-5, d = l-12, e = 0 to 8, f = 0 to 5, g = 0.001 to 2, h = 0 to 20, and i is an oxygen atomic ratio necessary to satisfy the valence of each component.)
ァクロレインの気相接触酸化によるアクリル酸の製造用触媒の場合、下記式(2)の 組成のものが好ましい。  In the case of a catalyst for producing acrylic acid by vapor phase catalytic oxidation of acrolein, a catalyst having the composition of the following formula (2) is preferable.
[0018] Mo V A2X2 Y2 Ο (2) [0018] Mo VA 2 X 2 Y 2 Ο (2)
j k 1 m η ο  j k 1 m η ο
(式中、 Μο、 V及び Οはそれぞれモリブデン、バナジウム及び酸素を示し、 Α2は、鉄 、コバルト、クロム、アルミニウム及びストロンチウム力 なる群より選ばれた少なくとも 一種の元素を示し、 X2は、ゲルマニウム、ホウ素、ヒ素、セレン、銀、ケィ素、ナトリウム(Where Μο, V and Ο represent molybdenum, vanadium and oxygen, respectively, and Α 2 is at least selected from the group consisting of iron, cobalt, chromium, aluminum and strontium force. Indicates a kind of element, X 2 is germanium, boron, arsenic, selenium, silver, kaen, sodium
、テルル、リチウム、アンチモン、リン、カリウム、及びバリウムカゝらなる群より選ばれた 少なくとも 1種の元素を示し、 Y2は、マグネシウム、チタン、マンガン、銅、亜鉛、ジル コ-ゥム、ニオブ、タングステン、タンタル、カルシウム、スズ及びビスマスからなる群よ り選ばれた少なくとも 1種の元素を示す。 j、 k、 1、 m、 n及び oは各元素の原子比率を 表し、 j = 12のとき、 k=0. 01〜6、 1=0〜5、 m=0〜10、 n=0〜5であり、 oは前記 各成分の原子価を満足するのに必要な酸素原子数である。 ) Y 2 represents magnesium, titanium, manganese, copper, zinc, zirconium, niobium, and at least one element selected from the group consisting of tellurium, lithium, antimony, phosphorus, potassium, and barium And at least one element selected from the group consisting of tungsten, tantalum, calcium, tin and bismuth. j, k, 1, m, n and o represent the atomic ratio of each element.When j = 12, k = 0.01-6, 1 = 0-5, m = 0-10, n = 0- 5 and o is the number of oxygen atoms necessary to satisfy the valence of each component. )
なお、モリブデンを回収するモリブデン含有物としては、通常 (メタ)ァクロレイン及び Z又は (メタ)アクリル酸の製造反応、アクリル酸の製造反応等に使用されたものを用 いるが、なんらかの都合で反応に使用されなくなつたもの、あるいは使用途中で反応 管より抜き出されたもの等を用いてもよぐ特に限定されない。  In addition, as the molybdenum-containing material for recovering molybdenum, those usually used in the production reaction of (meth) acrolein and Z or (meth) acrylic acid, the production reaction of acrylic acid, etc. are used. It is not particularly limited to use a material that is no longer used, or one that has been withdrawn from the reaction tube during use.
[0019] 本発明では、モリブデン含有物と、アルカリと、水とを用いて、少なくともモリブデン を含む水溶液を得る工程を有する方法により、モリブデン含有物カゝらモリブデンを回 収する。すなわち、モリブデン含有物からモリブデンを回収するために、モリブデン含 有物をアルカリと接触させて水に溶解できる形態にしてモリブデン含有水溶液を得る In the present invention, molybdenum is recovered from the molybdenum-containing material by a method including a step of obtaining an aqueous solution containing at least molybdenum using a molybdenum-containing material, an alkali, and water. That is, in order to recover molybdenum from the molybdenum-containing material, a molybdenum-containing aqueous solution is obtained by bringing the molybdenum-containing material into contact with an alkali so as to be dissolved in water.
[0020] 少なくともモリブデンを含むモリブデン含有物力 モリブデンを回収する第一の実施 形態では、まず、少なくともモリブデンを含み、かつビスマス又はバナジウムを含むモ リブデン含有物を水に分散させた分散液を調製する(工程 (a) )。そして、その分散液 にアルカリを添加して分散液の pHを 8以上に調整する(工程 (b) )。この pHの調整に より、モリブデン含有物中のモリブデンの少なくとも一部が水に溶解する。 [0020] Molybdenum-containing physical strength containing at least molybdenum In the first embodiment for recovering molybdenum, first, a dispersion is prepared in which a molybdenum-containing material containing at least molybdenum and containing bismuth or vanadium is dispersed in water ( Step (a)). Then, an alkali is added to the dispersion to adjust the pH of the dispersion to 8 or more (step (b)). By adjusting the pH, at least a part of molybdenum in the molybdenum-containing material is dissolved in water.
[0021] ここで用いることができるアルカリは、特に限定されないが、例えば、水酸化ナトリウ ム、水酸ィ匕カリウム、水酸ィ匕セシウム、炭酸ナトリウム、アンモニア水等が挙げられ、特 に水酸ィ匕ナトリウムが好ましい。また、モリブデン含有物の全部あるいは一部が還元 状態にあるときは、アルカリを加える前に空気焼成、塩素処理、過酸化水素処理等で 、あるいはアルカリを加えた後に塩素処理、過酸化水素処理等で酸化しておくことが 好ましい。アルカリの添カ卩量は、分散液の pHが 8以上となる量である力 pH8. 5〜1 3となる量が好ましい。 [0022] また、 pH調整後は、モリブデンを溶解するために一定時間保持することが好ま 、 。このときの保持時間は 0. 5〜24時間程度が好ましぐ液の温度は常温から 90°C程 度が好ましい。保持中は静置しておいてもよいが、攪拌することが好ましい。 [0021] The alkali that can be used here is not particularly limited, and examples thereof include sodium hydroxide, potassium hydroxide, potassium hydroxide, sodium carbonate, aqueous ammonia, and the like. Sodium is preferred. When all or part of the molybdenum-containing material is in a reduced state, air calcination, chlorination, hydrogen peroxide treatment, etc. before adding alkali, or chlorination, hydrogen peroxide treatment, etc. after adding alkali It is preferable to oxidize with. The amount of alkali added is preferably such that the pH becomes 8.5 to 13 which is the amount that makes the pH of the dispersion 8 or higher. [0022] Further, after pH adjustment, it is preferable to hold for a certain period of time in order to dissolve molybdenum. The holding time at this time is preferably about 0.5 to 24 hours, and the temperature of the liquid is preferably from room temperature to about 90 ° C. Although it may be left still during the holding, it is preferable to stir.
[0023] 上記のようにして pHが 8以上に調整された分散液力 不溶物を除去し、濾液として モリブデンが水に溶解したモリブデン含有水溶液を得ることができる(工程 (c) )。不 溶物を除去する方法は特に限定されず、例えば、重力濾過、加圧濾過、減圧濾過、 フィルタープレス等の濾過分離や遠心分離等の一般的な方法が適用できる。  [0023] Dispersion force insoluble matter whose pH is adjusted to 8 or more as described above is removed, and a molybdenum-containing aqueous solution in which molybdenum is dissolved in water can be obtained as a filtrate (step (c)). The method for removing the insoluble matter is not particularly limited, and for example, general methods such as filtration separation such as gravity filtration, pressure filtration, vacuum filtration, filter press, and centrifugal separation can be applied.
[0024] 少なくともモリブデンを含むモリブデン含有物力 モリブデンを回収する第二の実施 形態では、まず、少なくともモリブデンを含むモリブデン含有物と、アルカリと、を混合 し (工程 (d) )、得られた混合物を 600〜1000°Cで焙焼する(工程 (e) )。そして、得ら れた焙焼物に含まれるモリブデンを水で抽出する(工程 (f) )。こうすることで、焙焼物 に含まれるモリブデンの少なくとも一部が水に溶解して抽出され、抽出液としてモリブ デンが水に溶解したモリブデン含有水溶液を得ることができる。この実施形態では、 モリブデン含有物がビスマス又はバナジウムを含まない場合にも適用できるが、モリ ブデン含有物がビスマス又はバナジウムを含む場合に好適である。  [0024] Molybdenum-containing physical force containing at least molybdenum In the second embodiment for recovering molybdenum, first, a molybdenum-containing material containing at least molybdenum and an alkali are mixed (step (d)), and the resulting mixture is mixed. Roast at 600-1000 ° C (step (e)). Then, molybdenum contained in the obtained roasted product is extracted with water (step (f)). By doing so, at least a part of molybdenum contained in the roasted product is dissolved and extracted in water, and a molybdenum-containing aqueous solution in which molybdenum is dissolved in water can be obtained as an extract. In this embodiment, the present invention can also be applied when the molybdenum-containing material does not contain bismuth or vanadium, but is suitable when the molybdenum-containing material contains bismuth or vanadium.
[0025] ここで用いることができるアルカリは、特に限定されないが、水酸化ナトリウム、炭酸 ナトリウム、炭酸水素ナトリウム等が挙げられ、特に炭酸ナトリウム、水酸ィ匕ナトリウムが 好ましい。アルカリの添カ卩量は、モリブデン含有物中に含まれるモリブデン、タンダス テン及びバナジウム元素の当量の 1倍以上が好ましい。アルカリの添加量は多くても 問題は生じないが、後述する回収モリブデン含有沈殿物の洗浄で、ナトリウム元素の 除去に用いる洗浄液の使用量を少なくすることができることより、モリブデン含有物中 に含まれるモリブデン、タングステン及びバナジウム元素の当量の 2倍以下が好まし い。  [0025] The alkali that can be used here is not particularly limited, and examples thereof include sodium hydroxide, sodium carbonate, sodium bicarbonate, and the like, and sodium carbonate and sodium hydroxide are particularly preferable. The amount of alkali added is preferably 1 or more times the equivalent of molybdenum, tandastene and vanadium contained in the molybdenum-containing material. Although there is no problem even if the amount of alkali added is large, it is contained in the molybdenum-containing material because the amount of the cleaning liquid used to remove sodium element can be reduced by washing the recovered molybdenum-containing precipitate described later. Less than twice the equivalent of molybdenum, tungsten and vanadium elements is preferred.
[0026] 焙焼の条件は、空気等の酸素含有ガス雰囲気下で 600〜1000°Cとする。焙焼温 度が 600°C未満では、モリブデンの抽出が不充分で回収率が低くなる。焙焼温度が 1000°Cを超えると、モリブデンの飛散等により回収率が低くなる。焙焼時間は 0. 5時 間以上が好ましい。  [0026] The roasting conditions are 600 to 1000 ° C in an oxygen-containing gas atmosphere such as air. If the roasting temperature is less than 600 ° C, molybdenum extraction is insufficient and the recovery rate is low. When the roasting temperature exceeds 1000 ° C, the recovery rate decreases due to the scattering of molybdenum. The roasting time is preferably 0.5 hours or more.
[0027] 上記の方法で得られたモリブデン含有水溶液は、そのままでもモリブデン原料とし て触媒の製造に使用可能であり、モリブデンの回収の一形態であるが、さらに pHを 調整して、少なくともモリブデンを含むモリブデン含有沈殿物としてモリブデンを回収 する形態が好ましい。具体的には、得られたモリブデン含有水溶液に酸を添加して 該モリブデン含有水溶液の pHを 3以下に調整し、モリブデンの少なくとも一部を含む モリブデン含有沈殿物を生じさせ (工程 (X) )、そのモリブデン含有沈殿物を分離する (工程 (y) )ことで、モリブデン含有沈殿物としてモリブデンを回収することが好ま ヽ [0027] The molybdenum-containing aqueous solution obtained by the above method can be used as a molybdenum raw material. This is a form of molybdenum recovery that can be used for the production of a catalyst. However, it is preferable to adjust the pH to recover molybdenum as a molybdenum-containing precipitate containing at least molybdenum. Specifically, an acid is added to the obtained molybdenum-containing aqueous solution to adjust the pH of the molybdenum-containing aqueous solution to 3 or less, thereby producing a molybdenum-containing precipitate containing at least a part of molybdenum (step (X)). It is preferable to recover the molybdenum as a molybdenum-containing precipitate by separating the molybdenum-containing precipitate (step (y)).
[0028] ここで用いることができる酸は特に限定されず、塩酸、硝酸、硫酸等の強酸類が挙 げられ、好ましくは硝酸又は塩酸である。酸の添加量は、モリブデン含有水溶液の p Hが 3以下となる量が好ましぐ特に好ましくは 2以下である。 [0028] The acid that can be used here is not particularly limited, and examples thereof include strong acids such as hydrochloric acid, nitric acid, and sulfuric acid, and nitric acid or hydrochloric acid is preferable. The amount of acid added is preferably such that the pH of the molybdenum-containing aqueous solution is 3 or less, particularly preferably 2 or less.
[0029] pH調整後は、沈殿生成のために一定時間保持することが好ましい。このときの保 持時間は 0. 5〜24時間程度が好ましぐ液の温度は常温から 90°C程度が好ましい 。保持中は静置しておいてもよいが、攪拌することが好ましい。  [0029] After pH adjustment, it is preferable to hold for a certain period of time for precipitation. The holding time at this time is preferably about 0.5 to 24 hours, and the temperature of the liquid is preferably from room temperature to about 90 ° C. Although it may be left still during the holding, it is preferable to stir.
[0030] モリブデン含有沈殿物を分離する方法は特に限定されず、重力濾過、加圧濾過、 減圧濾過、フィルタープレス等の濾過分離、遠心分離等の一般的な方法を用いるこ とができる。分離されたモリブデン含有沈殿物は、不純物を除去するために必要に応 じて洗浄してもよ ヽ。この際の洗浄液はモリブデン含有沈殿物の用途や溶解性を考 慮して選ばれる力 例えば、純水、硝酸アンモ-ゥムゃ塩ィ匕アンモ-ゥム等の薄い水 溶液等が挙げられる。洗浄後のモリブデン含有沈殿物は、モリブデン含有沈殿物中 に含まれるナトリウム元素および塩素力 モリブデン元素 12モルに対して 0. 1モル以 下であることが好ましぐ 0. 05モル以下であることがより好ましいことから、洗浄条件 等を設定する。  [0030] A method for separating the molybdenum-containing precipitate is not particularly limited, and general methods such as gravity filtration, pressure filtration, vacuum filtration, filtration separation such as a filter press, and centrifugal separation can be used. The separated molybdenum-containing precipitate may be washed as necessary to remove impurities. In this case, the washing liquid may be selected in consideration of the use and solubility of the molybdenum-containing precipitate. For example, pure water, a thin aqueous solution of ammonium nitrate, salt and ammonium, etc. may be used. It is preferable that the molybdenum-containing precipitate after the washing is not more than 0.1 mol with respect to 12 mol of sodium element and chlorine power molybdenum element contained in the molybdenum-containing precipitate. Therefore, the cleaning conditions are set.
[0031] なお、回収に用いるモリブデン含有物中にケィ素が含まれる場合は、モリブデン含 有水溶液の pHを 4〜8に調整して、ケィ素を沈殿除去しておくことが好ましい。  [0031] When the molybdenum-containing material used for the recovery contains silicon, it is preferable to adjust the pH of the molybdenum-containing aqueous solution to 4 to 8 to precipitate and remove it.
[0032] また、回収に用いるモリブデン含有物中にリンが含まれる場合がある。回収されたモ リブデン含有水溶液又はモリブデン含有沈殿物を用いて製造する触媒の組成又は 調製方法によっては、リンの一部又は全部を除去しておくことが好ましい。リンを除去 する方法としては、モリブデン含有水溶液の pHを 6〜 12、好ましくは 7〜: L 1に調整し 、次 、でマグネシウム元素を含む溶液とアンモニア水を添カ卩して少なくともマグネシゥ ムとリンを含む沈殿物を生成させ、その沈殿物を分離、除去する方法が好ましい。こ こで、加えるマグネシウム元素及びアンモニアの量はリン元素 1モルに対してそれぞ れ 1モル以上であることが好ましい。使用するマグネシウム元素を有する化合物は特 に限定されず、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム等を用いるこ とがでさる。 [0032] Further, phosphorus may be contained in the molybdenum-containing material used for recovery. Depending on the composition or preparation method of the catalyst produced using the recovered molybdenum-containing aqueous solution or molybdenum-containing precipitate, it is preferable to remove part or all of phosphorus. As a method of removing phosphorus, the pH of the molybdenum-containing aqueous solution is adjusted to 6 to 12, preferably 7 to L 1. Then, it is preferable to add a solution containing magnesium element and ammonia water to form a precipitate containing at least magnesium and phosphorus, and to separate and remove the precipitate. Here, it is preferable that the amount of magnesium element and ammonia to be added is 1 mol or more per 1 mol of phosphorus element. The compound having a magnesium element to be used is not particularly limited, and magnesium chloride, magnesium sulfate, magnesium nitrate and the like can be used.
[0033] また、アクリル酸の製造に用いるモリブデン バナジウム系複合酸ィ匕物触媒などで は、モリブデン含有水溶液中にバナジウムが含まれる。回収されたモリブデン含有水 溶液又はモリブデン含有沈殿物を用いて製造する触媒の組成又は調製方法によつ ては、バナジウムの一部又は全部を除去しておくことが好ましい。バナジウムを除去 する方法は特に限定されないが、例えば、モリブデン以外にバナジウムを含むモリブ デン含有水溶液の pHを 3. 5〜7. 5に調整した後、弱塩基性陰イオン交換樹脂で吸 着除去する方法ゃ塩ィヒアンモニゥムゃ硫酸アンモニゥムを用いて沈殿分離する方法 などが挙げられる。  [0033] In the molybdenum vanadium-based complex oxide catalyst used for the production of acrylic acid, vanadium is contained in the molybdenum-containing aqueous solution. Depending on the composition or preparation method of the catalyst produced using the recovered molybdenum-containing aqueous solution or molybdenum-containing precipitate, it is preferable to remove part or all of vanadium. The method for removing vanadium is not particularly limited. For example, after adjusting the pH of a molybdenum-containing aqueous solution containing vanadium in addition to molybdenum to 3.5 to 7.5, it is adsorbed and removed with a weakly basic anion exchange resin. Examples of the method include a method of precipitation separation using ammonium sulfate.
[0034] 本発明では、このようにして得られたモリブデン含有水溶液及び回収モリブデン含 有沈殿物(以下、これらを併せて「回収モリブデン含有物」と 、う)を触媒の製造原料 として用いることができる。触媒製造において用いる回収モリブデン含有物の状態は 特に限定されず、溶液の状態あるいは湿潤状態、乾燥状態のいずれでもよい。また、 触媒の原料として酸ィ匕物の状態で使用したい場合には、これらの回収モリブデン含 有物、特に回収モリブデン含有沈殿物を焼成して酸ィ匕物としたものを用いることがで きる(以下では、この焼成物も「回収モリブデン含有物」の一形態とする)。焼成の条 件は空気等の酸素含有ガス雰囲気下で 300〜600°C、焼成時間は 0. 5時間以上が 好ましい。  [0034] In the present invention, the molybdenum-containing aqueous solution and the recovered molybdenum-containing precipitate obtained in this manner (hereinafter collectively referred to as "recovered molybdenum-containing material") are used as the catalyst production raw material. it can. The state of the recovered molybdenum-containing material used in the catalyst production is not particularly limited, and may be in a solution state, a wet state, or a dry state. In addition, when it is desired to use the catalyst in the form of an oxide, it is possible to use these recovered molybdenum-containing materials, particularly those obtained by calcining the recovered molybdenum-containing precipitates. (Hereinafter, this fired product is also a form of “recovered molybdenum-containing material”). The firing conditions are preferably 300 to 600 ° C in an oxygen-containing gas atmosphere such as air, and the firing time is preferably 0.5 hours or more.
[0035] 本発明にお 、て、回収モリブデン含有物を用いた触媒を製造する方法は特に限定 されず、共沈法、蒸発乾固法、酸化物混合法等の種々の方法から原料として用いる 回収モリブデン含有物の状態に応じて適宜選択される。  [0035] In the present invention, the method for producing a catalyst using the recovered molybdenum-containing material is not particularly limited, and it is used as a raw material from various methods such as a coprecipitation method, an evaporation to dryness method, and an oxide mixing method. It is suitably selected according to the state of the recovered molybdenum-containing material.
[0036] また、触媒の製造に用いるモリブデン原料は、回収モリブデン含有物のみを用いて もよ 、し、必要に応じて上記の回収方法以外で回収されたモリブデン原料やモリブデ ン鉱石等力 製造された通常の触媒製造に用いられるモリブデン原料等のその他の モリブデン原料と一緒に用いてもょ 、。通常の触媒製造に用いられるモリブデン原料 としては、例えば、モリブデンのアンモ-ゥム塩、酸化物、ハロゲン化物、酸素酸等が 挙げられ、具体的には、パラモリブデン酸アンモ-ゥム、三酸ィ匕モリブデン、モリブデ ン酸、塩ィ匕モリブデン等が挙げられる。通常の触媒製造に用いられるモリブデン原料 の製造方法は特に限定されず、例えば、モリブデン鉱石を焙焼して得られた粗三酸 化モリブデンを、硝酸で洗浄した後にアンモニア水で溶解、精製し、次いで硝酸で P Hを調整して得られたモリブデン酸を再びアンモニア水に溶解した後に濃縮、晶析を 行って得られたパラモリブデン酸アンモ-ゥム、パラモリブデン酸アンモ-ゥムゃモリ ブデン酸を焼成することによって得られた三酸ィ匕モリブデンなどが挙げられる。 [0036] The molybdenum raw material used for the production of the catalyst may be only the recovered molybdenum-containing material. If necessary, the molybdenum raw material or molybdenum recovered by a method other than the above-described recovery method may be used. Ore isotope It can be used together with other molybdenum raw materials such as molybdenum raw materials used in the production of ordinary catalysts. Examples of the molybdenum raw material used for normal catalyst production include molybdenum molybdenum salts, oxides, halides, oxygen acids, and the like. Specific examples thereof include ammonium molybdate and triacids. And molybdenum, molybdic acid, and salt molybdenum. The production method of the molybdenum raw material used for normal catalyst production is not particularly limited. For example, crude molybdenum trioxide obtained by roasting molybdenum ore is washed with nitric acid, dissolved in ammonia water, purified, Next, the molybdic acid obtained by adjusting the pH with nitric acid was dissolved again in aqueous ammonia, and then concentrated and crystallized to obtain paramolybdic acid ammonium and paramolybdic acid ammonium-molybdbudene acid. For example, molybdenum trioxide obtained by firing sinter.
[0037] また、触媒の製造に用いるモリブデン原料以外の原料は特に限定されず、各元素 の硝酸塩、炭酸塩、酢酸塩、アンモニゥム塩、酸化物、ハロゲンィ匕物、酸素酸等を組 み合わせて使用することができる。例えば、ビスマスの原料としては硝酸ビスマス、酸 ィ匕ビスマス、塩化ビスマス等;バナジウムの原料としてはメタバナジン酸アンモ-ゥム、 五酸ィ匕バナジウム等;リンの原料としては、リン酸、五酸化リン、リン酸アンモ-ゥム等 が使用できる。 [0037] In addition, raw materials other than the molybdenum raw material used for the production of the catalyst are not particularly limited, and a combination of nitrate, carbonate, acetate, ammonium salt, oxide, halide, oxygen acid, etc. of each element. Can be used. For example, bismuth, bismuth nitrate, bismuth, bismuth chloride, etc .; vanadium, ammonium metavanadate, vanadium pentoxide, etc .; phosphorous, phosphoric acid, phosphorus pentoxide, etc. Ammonium phosphate can be used.
[0038] 具体的な触媒の製造方法としては、例えば、プロピレン、イソブチレン、及び tert— ブチルアルコールの ヽずれかの気相接触酸化による(メタ)ァクロレイン及び Z又は( メタ)アクリル酸の製造等で用 、るモリブデン ビスマス 鉄系複合酸化物触媒の製 造の場合は、回収モリブデン含有物を含むモリブデン原料とともに、少なくともビスマ ス及び鉄元素を含むスラリーを乾燥したものを焼成する方法等が挙げられる。ァクロ レインの気相接触酸化によるアクリル酸の製造等で用 、るモリブデン—バナジウム系 複合酸化物触媒では、回収モリブデン含有物を含むモリブデン原料とともに、少なく ともバナジウム元素を含むスラリーを乾燥したものを焼成する方法等が挙げられる。メ タクロレインの気相接触酸ィ匕によるメタクリル酸の製造等で用いるヘテロポリ酸系触媒 では、回収モリブデン含有物を含むモリブデン原料とともに少なくともリンを含むスラリ 一を乾燥したものを焼成する方法等が挙げられる。  [0038] Specific catalyst production methods include, for example, production of (meth) acrolein and Z or (meth) acrylic acid by any gas phase catalytic oxidation of propylene, isobutylene, and tert-butyl alcohol. In the case of producing a molybdenum bismuth iron-based composite oxide catalyst, for example, there may be mentioned a method of firing a slurry containing at least bismuth and an iron element together with a molybdenum raw material containing a recovered molybdenum-containing material. The molybdenum-vanadium complex oxide catalyst used in the production of acrylic acid by vapor phase catalytic oxidation of acrolein is calcined by drying a slurry containing at least the vanadium element together with the molybdenum raw material containing the recovered molybdenum-containing material. And the like. Examples of the heteropolyacid catalyst used in the production of methacrylic acid by vapor phase contact acid of methacrolein include a method of firing a dry slurry containing at least phosphorus together with a molybdenum raw material containing a recovered molybdenum-containing material. .
[0039] また、触媒の製造で、原料として用いる回収モリブデン含有物中に含まれる触媒構 成元素由来の不純物含有量を考慮して、これらの元素を含む原料の添加量を調整 した際は、原料中に含まれる対イオンの不足分を追加してもよい。例えば、バナジゥ ム元素の添力卩量をメタバナジン酸アンモ-ゥムの添力卩量を減らして調整した場合は、 不足するアンモ-ゥムイオンをアンモニア水などを加えることによって、カリウムゃセシ ゥム元素の添加量を硝酸カリウムや硝酸セシウムの添加量を減らして調整した場合 は、不足する硝酸イオンを硝酸などを加えることによって調整することができる。 [0039] Further, in the production of the catalyst, the catalyst structure contained in the recovered molybdenum-containing material used as a raw material. In consideration of the content of impurities derived from the elements, the amount of counter ions contained in the raw material may be added when the amount of the raw material containing these elements is adjusted. For example, when the amount of vanadium element is adjusted by reducing the amount of ammonium metavanadate, the amount of potassium ions is reduced by adding ammonia water to the lack of ammonium ions. When the amount of potassium nitrate is adjusted by reducing the amount of potassium nitrate or cesium nitrate added, the insufficient nitrate ions can be adjusted by adding nitric acid or the like.
[0040] また、本発明の触媒製造に際し、溶液やスラリーの液温は、本発明の回収モリブデ ン含有物を使用しない通常の触媒製造の場合と同じであってもよいが、製造工程の 一部又は全部で該通常の触媒製造の場合と異なっていてもよい。なお、液温は、ス ラリー中の沈殿粒子の粒径分布、得られた粉の成形性、触媒の細孔分布、触媒の反 応成績などより適宜決定することが好まし 、。  [0040] In the production of the catalyst of the present invention, the liquid temperature of the solution or slurry may be the same as in the case of normal catalyst production that does not use the recovered molybdenum-containing material of the present invention. It may be different from the usual catalyst production in part or all. The liquid temperature is preferably appropriately determined from the particle size distribution of the precipitated particles in the slurry, the moldability of the obtained powder, the pore distribution of the catalyst, the reaction results of the catalyst, and the like.
[0041] 本発明において、スラリーの乾燥方法は特に限定されず、箱型乾燥機、噴霧乾燥 機、ドラムドライヤー、スラリードライヤー等を用いる乾燥方法が使用できる。その際に 得られる乾燥物 (触媒前駆体)は成形を考慮して粉体状であることが好ま ヽ。乾燥 物はそのまま成形してもよいし、焼成した後に成形してもよいが、例えば、(メタ)ァク ロレイン及び Z又は (メタ)アクリル酸の製造等で用いるモリブデン ビスマス一鉄系 複合酸化物触媒では、前記乾燥物を 200〜400°Cの範囲で 1〜5時間程度仮焼し、 必要に応じて成形するか又は不活性担体に担持し、その後焼成を実施することが好 ましい。  In the present invention, the method for drying the slurry is not particularly limited, and a drying method using a box-type dryer, a spray dryer, a drum dryer, a slurry dryer, or the like can be used. The dried product (catalyst precursor) obtained at this time is preferably in the form of a powder in consideration of molding. The dried product may be molded as it is, or may be molded after firing. For example, molybdenum bismuth monoiron complex oxide used in the production of (meth) acrolein and Z or (meth) acrylic acid. For the catalyst, it is preferable that the dried product is calcined in the range of 200 to 400 ° C. for about 1 to 5 hours, shaped as necessary or supported on an inert carrier, and then calcined.
[0042] 焼成条件は、用いる触媒の原料、触媒組成、調製条件当によって異なるのでー概 には言えないが、例えば、モリブデン ビスマス一鉄系複合酸ィ匕物触媒では、空気 等の酸素含有ガス流通下及び Z又は不活性ガス流通下で 400〜650°C、好ましくは 450〜600°Cで 0. 5時間以上、好ましくは 1〜40時間の条件で焼成する。モリブデ ンーバナジウム系複合酸化物触媒では、同じく空気等の酸素含有ガス流通下及び Z又は不活性ガス流通下で 250〜500°C、好ましくは 300〜450°Cで 0. 5時間以上 、好ましくは 1〜40時間の条件で焼成する。また、ヘテロポリ酸系触媒では、同じく空 気等の酸素含有ガス流通下及び Z又は不活性ガス流通下で 300〜500°C、好まし くは 300〜450°Cで、 0. 5時間以上、好ましくは 1〜40時間の条件で焼成する。 [0043] 本発明において、成形方法としては特に限定されず、例えば、打錠成形、押出成 形、造粒、担持等が挙げられる。担持触媒の担体としては、例えば、シリカ、アルミナ 、シリカ 'アルミナ、シリコンカーバイド等の不活性担体が挙げられる。成形に際しては 、成形物の比表面積、細孔容積及び細孔分布を制御したり、機械的強度を高めたり する目的で、例えば、硫酸バリウム、硝酸アンモ-ゥム等の無機塩類、グラフアイト等 の滑剤、セルロース類、でんぷん、ポリビュルアルコール、ステアリン酸等の有機物、 シリカゾル、アルミナゾル等の水酸ィ匕物ゾル、ゥイスカー、ガラス繊維、炭素繊維等の 無機質繊維等の添加剤を適宜添加してもよ 、。 [0042] Since the firing conditions vary depending on the raw material of the catalyst used, the catalyst composition, and the preparation conditions, for example, in the case of a molybdenum bismuth-iron-based complex oxide catalyst, an oxygen-containing gas such as air is used. Firing is carried out under conditions of 400 to 650 ° C, preferably 450 to 600 ° C for 0.5 hour or more, preferably 1 to 40 hours under circulation and under Z or inert gas. In the case of a molybdenum-vanadium-based composite oxide catalyst, similarly, under an oxygen-containing gas flow such as air and Z or inert gas flow, 250 to 500 ° C, preferably 300 to 450 ° C, 0.5 hours or more, preferably Bake for 1 to 40 hours. Further, in the case of a heteropolyacid catalyst, it is also 300 to 500 ° C, preferably 300 to 450 ° C under an oxygen-containing gas flow such as air and Z or inert gas flow, preferably at 300 to 450 ° C for 0.5 hour or more. Baking is preferably performed for 1 to 40 hours. [0043] In the present invention, the molding method is not particularly limited, and examples thereof include tableting molding, extrusion molding, granulation, and support. Examples of the supported catalyst carrier include inert carriers such as silica, alumina, silica′alumina, silicon carbide and the like. In molding, for example, inorganic salts such as barium sulfate and ammonium nitrate, graphite, etc., for the purpose of controlling the specific surface area, pore volume and pore distribution of the molded product and increasing mechanical strength. Additives such as lubricants, celluloses, starches, polybutyl alcohol, stearic acid and other organic substances, silica sols, hydroxide sols such as alumina sols, inorganic fibers such as whiskers, glass fibers and carbon fibers Moyo.
[0044] 本発明の方法で製造された触媒を用いて気相接触酸化反応を行う際の反応条件 は特に限定されず、公知の反応条件を適用することができる。以下に、プロピレン、ィ ソブチレン、及び tert ブチルアルコールのいずれかの気相接触酸化により(メタ)ァ クロレイン又はメタクロレインを製造する場合の反応条件、ァクロレインの気相接触酸 化によりアクリル酸を製造する場合の反応条件、及び、メタクロレインの気相接触酸ィ匕 によりメタクリル酸を製造する場合の反応条件について説明する。  [0044] The reaction conditions for carrying out the gas phase catalytic oxidation reaction using the catalyst produced by the method of the present invention are not particularly limited, and known reaction conditions can be applied. The following are the reaction conditions for producing (meth) acrolein or methacrolein by vapor phase catalytic oxidation of propylene, isobutylene, and tert butyl alcohol, and acrylic acid is produced by vapor phase catalytic oxidation of acrolein. The reaction conditions in this case and the reaction conditions in the case of producing methacrylic acid by the gas phase contact acid of methacrolein will be described.
[0045] プロピレン、イソブチレン、及び tert ブチルアルコールの!/、ずれか(原料)気相接 触酸ィ匕によりァクロレイン (プロピレンの場合)又はメタクロレイン (イソブチレン又は ter t ブチルアルコールの場合)を製造する場合、原料ガス中の原料の濃度は広い範 囲で変えることができる力 1〜20容量%が好ましぐ特に 3〜10容量%が好ましい。 また、原料には実質的に反応に影響を与えない不純物が少量含まれている場合が ある力 原料ガスにはこのような不純物が含まれていてもよい。  [0045] Produce acrolein (in the case of propylene) or methacrolein (in the case of isobutylene or tert-butyl alcohol) from propylene, isobutylene, and tert-butyl alcohol! In this case, the concentration of the raw material in the raw material gas is preferably 1 to 20% by volume, and more preferably 3 to 10% by volume, which can be varied over a wide range. In addition, the raw material may contain a small amount of impurities that do not substantially affect the reaction. The raw material gas may contain such impurities.
[0046] 原料ガスには分子状酸素が含まれている必要があるが、原料ガス中の分子状酸素 の量は原料の 0. 4〜4倍モルが好ましぐ特に 0. 5〜3倍モルが好ましい。原料ガス の分子状酸素源には空気を用いるのが工業的に有利であるが、必要に応じて純酸 素で酸素を富化した空気も使用できる。また原料ガスは、窒素、炭酸ガス等の不活性 ガス、水蒸気等で希釈されていることが好ましい。  [0046] Although the source gas needs to contain molecular oxygen, the amount of molecular oxygen in the source gas is preferably 0.4 to 4 times the molar amount of the raw material, particularly 0.5 to 3 times. Mole is preferred. Although it is industrially advantageous to use air as the molecular oxygen source of the raw material gas, air enriched with pure oxygen and oxygen can be used if necessary. The raw material gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide, water vapor or the like.
[0047] 気相接触酸化の反応圧力は常圧〜数気圧である。反応温度は、通常 200〜450 。C、好ましくは 250〜400°Cである。原料ガスと触媒の接触時間は通常 1. 5〜15秒 、好ましくは 2〜7秒である。 [0048] プロピレン、イソブチレン、及び tert—ブチルアルコールの!/ヽずれかの気相接触酸 化によりァクロレイン又はメタクロレインを製造するための触媒は、下記式(1)で表さ れる組成を有するものが好まし 、。 [0047] The reaction pressure of the gas phase catalytic oxidation is from atmospheric pressure to several atmospheres. The reaction temperature is usually 200-450. C, preferably 250-400 ° C. The contact time between the raw material gas and the catalyst is usually 1.5 to 15 seconds, preferably 2 to 7 seconds. [0048] A catalyst for producing acrolein or methacrolein by any gas phase catalytic oxidation of propylene, isobutylene, and tert-butyl alcohol has a composition represented by the following formula (1): Is preferred.
[0049] Mo Bi Fe M1 X1 Y1 Z1 Si O (1) [0049] Mo Bi Fe M 1 X 1 Y 1 Z 1 Si O (1)
a b c d e f g h i  a b c d e f g h i
(式中、 Mo、 Bi、 Fe、 Si及び Oは、それぞれモリブデン、ビスマス、鉄、ケィ素及び酸 素を示し、 M1は、コノ レト及びニッケル力 なる群より選ばれた少なくとも 1種の元素 を示し、 X1は、クロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム 、スズ、タンタル及び亜鉛カゝらなる群より選ばれた少なくとも 1種の元素を示し、 Y1は、 リン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンか らなる群より選ばれた少なくとも 1種の元素を示し、 Z1は、リチウム、ナトリウム、カリウム 、ルビジウム、セシウム及びタリウムなる群より選ばれた少なくとも 1種の元素を示す。 a 、 b、 c、 d、 e、 f、 g、 h及び iは各元素の原子比を表し、 a= 12のとき、 b = 0. 01〜3、 c =0. 01〜5、 d= l〜12、 e = 0〜8、 f=0〜5、 g = 0. 001〜2、 h=0〜20であり、 i は前記各成分の原子価を満足するのに必要な酸素原子比である。) (In the formula, Mo, Bi, Fe, Si, and O represent molybdenum, bismuth, iron, silicon, and oxygen, respectively, and M 1 is at least one element selected from the group consisting of conoleto and nickel power. X 1 represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum, and zinc carbonate, and Y 1 represents phosphorus. Represents at least one element selected from the group consisting of boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium, and Z 1 is selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium. Indicates at least one selected element: a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element, and when a = 12, b = 0.01-3 , C = 0.01-5, d = l-12, e = 0 to 8, f = 0 to 5, g = 0.001 to 2, h = 0 to 20, and i is an oxygen atomic ratio necessary to satisfy the valence of each component.)
ァクロレインの気相接触酸ィ匕によりアクリル酸を製造する場合、原料ガス中のァクロ レインの濃度は広い範囲で変えることができる力 1〜20容量%が好ましぐ特に 3〜 10容量%が好ましい。原料のァクロレインには、水、低級飽和アルデヒド等の実質的 に反応に影響を与えない不純物が少量含まれている場合がある力 原料ガスにはこ のようなァクロレイン由来の不純物が含まれて 、てもよ 、。  When acrylic acid is produced by acrolein gas-phase contact acid, the concentration of acrolein in the raw material gas can be varied over a wide range, preferably 1-20% by volume, especially 3-10% by volume. . The raw material acrolein may contain a small amount of impurities such as water and lower saturated aldehyde that do not substantially affect the reaction. The raw material gas contains such acrolein-derived impurities. Anyway.
[0050] 原料ガスには分子状酸素が含まれている必要があるが、原料ガス中の分子状酸素 の量はァクロレインの 0. 4〜4倍モルが好ましぐ特に 0. 5〜3倍モルが好ましい。原 料ガスの分子状酸素源には空気を用いるのが工業的に有利であるが、必要に応じて 純酸素で酸素を富化した空気も使用できる。また原料ガスは、窒素、炭酸ガス等の不 活性ガス、水蒸気等で希釈されていることが好ましい。  [0050] The source gas must contain molecular oxygen, but the amount of molecular oxygen in the source gas is preferably 0.4 to 4 times the mol of acrolein, particularly 0.5 to 3 times. Mole is preferred. It is industrially advantageous to use air as the molecular oxygen source of the source gas, but air enriched with pure oxygen and oxygen can also be used if necessary. The raw material gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide, water vapor or the like.
[0051] 気相接触酸化の反応圧力は常圧〜数気圧である。反応温度は、通常 200〜450 。C、好ましくは 250〜400°Cである。原料ガスと触媒の接触時間は通常 1. 5〜15秒 、好ましくは 2〜7秒である。  [0051] The reaction pressure of gas phase catalytic oxidation is from atmospheric pressure to several atmospheres. The reaction temperature is usually 200-450. C, preferably 250-400 ° C. The contact time between the raw material gas and the catalyst is usually 1.5 to 15 seconds, preferably 2 to 7 seconds.
[0052] ァクロレインの気相接触酸ィ匕によりアクリル酸を製造するための触媒は、下記式(2) で表される組成を有するものが好ま U、。 [0052] A catalyst for producing acrylic acid by vapor phase contact acid of acrolein is represented by the following formula (2) U, which has a composition represented by U, is preferred.
[0053] Mo V A2X2 Y2 Ο (2) [0053] Mo VA 2 X 2 Y 2 Ο (2)
j k 1 m η ο  j k 1 m η ο
(式中、 Μο、 V及び Οは、それぞれモリブデン、バナジウム及び酸素を示し、 Α2は、 鉄、コバルト、クロム、アルミニウム及びストロンチウム力 なる群より選ばれた少なくと も一種の元素を示し、 X2は、ゲルマニウム、ホウ素、ヒ素、セレン、銀、ケィ素、ナトリウ ム、テルル、リチウム、アンチモン、リン、カリウム及びバリウムカゝらなる群より選ばれた 少なくとも 1種の元素を示し、 Υ2は、マグネシウム、チタン、マンガン、銅、亜鉛、ジル コ-ゥム、ニオブ、タングステン、タンタル、カルシウム、スズ及びビスマスからなる群よ り選ばれた少なくとも 1種の元素を示す。 j、 k、 1、 m、 n及び oは各元素の原子比率を 表し、 j = 12のとき、 k=0. 01〜6、 1=0〜5、 m=0〜10、 n=0〜5であり、 oは前記 各成分の原子価を満足するのに必要な酸素原子数である。 ) (In the formula, Μο, V and Ο represent molybdenum, vanadium and oxygen, respectively, and Α 2 represents at least one element selected from the group consisting of iron, cobalt, chromium, aluminum and strontium, and X 2 shows germanium, boron, arsenic, selenium, silver, Keimoto, sodium, tellurium, lithium, antimony, phosphorus, at least one element selected from potassium and Bariumuka Ra group consisting, Upsilon 2, It represents at least one element selected from the group consisting of magnesium, titanium, manganese, copper, zinc, zirconium, niobium, tungsten, tantalum, calcium, tin and bismuth j, k, 1, m , N and o represent the atomic ratio of each element, and when j = 12, k = 0.01-6, 1 = 0-5, m = 0-10, n = 0-5, o is the above Necessary to satisfy the valence of each component The number of oxygen atoms.
また、メタクロレインの気相接触酸ィ匕によりメタクリル酸を製造する場合、原料ガス中 のメタクロレインの濃度は広い範囲で変えることができる力 1〜20容量%が好ましく Further, when producing methacrylic acid by gas phase contact acid of methacrolein, the concentration of methacrolein in the raw material gas is preferably 1 to 20% by volume which can be changed over a wide range.
、特に 3〜10容量%が好ましい。原料のメタクロレインには、水、低級飽和アルデヒド 等の実質的に反応に影響を与えない不純物が少量含まれている場合があるが、原 料ガスにはこのようなメタクロレイン由来の不純物が含まれていてもよい。 In particular, 3 to 10% by volume is preferable. The raw material methacrolein may contain a small amount of impurities that do not substantially affect the reaction, such as water and lower saturated aldehydes. However, the raw material gas contains such impurities derived from methacrolein. It may be.
[0054] 原料ガスには分子状酸素が含まれている必要があるが、原料ガス中の分子状酸素 の量はメタクロレインの 0. 4〜4倍モル力 子ましく、特に 0. 5〜3倍モルが好ましい。 原料ガスの分子状酸素源には空気を用いるのが工業的に有利であるが、必要に応 じて純酸素で酸素を富化した空気も使用できる。また原料ガスは、窒素、炭酸ガス等 の不活性ガス、水蒸気等で希釈されて ヽることが好ま ヽ。  [0054] Although the source gas needs to contain molecular oxygen, the amount of molecular oxygen in the source gas is 0.4 to 4 times the molar force of methacrolein, particularly 0.5 to A 3-fold mole is preferred. Although it is industrially advantageous to use air as the molecular oxygen source of the source gas, air enriched with pure oxygen can be used if necessary. The source gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide, or water vapor.
[0055] 気相接触酸化の反応圧力は常圧〜数気圧である。反応温度は、通常 200〜450 。C、好ましくは 250〜400°Cである。原料ガスと触媒の接触時間は通常 1. 5〜15秒 、好ましくは 2〜7秒である。  [0055] The reaction pressure of the gas phase catalytic oxidation is from atmospheric pressure to several atmospheres. The reaction temperature is usually 200-450. C, preferably 250-400 ° C. The contact time between the raw material gas and the catalyst is usually 1.5 to 15 seconds, preferably 2 to 7 seconds.
[0056] メタクロレインの気相接触酸化によりメタクリル酸を製造するための触媒は、下記式 ( 3)で表される組成を有するものが好ま U、。  [0056] The catalyst for producing methacrylic acid by gas-phase catalytic oxidation of methacrolein is preferably one having a composition represented by the following formula (3).
[0057] Mo P X3 Y3 O (3) [0057] Mo PX 3 Y 3 O (3)
P q r s t  P q r s t
(式中、 Mo、 Pおよび Oはそれぞれモリブデン、リンおよび酸素を表し、 X3はカリウム 、ルビジウム、セシウムおよびタリウム力もなる群より選ばれた少なくとも 1種の元素を 表し、 Y3は鉄、コノ レト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウ ム、ノ リウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケィ素 、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ 、タンタル、ジルコニウム、インジウム、ィォゥ、セレン、テルル、ランタンおよびセリウム 力 なる群より選ばれた少なくとも 1種の元素を表す。 p、 q、 r、 sおよび tは各元素の原 子比を表し、 ρ = 12のとき、 q=0. 1〜3、 r=0. 01〜3、 s = 0〜3であり、 tは前記各 成分の原子比を満足するのに必要な酸素の原子比である。 ) (Where Mo, P and O represent molybdenum, phosphorus and oxygen, respectively, X 3 is potassium , Rubidium, represents at least one element selected from the group also cesium and thallium force, Y 3 iron, the Leto, nickel, copper, zinc, magnesium, calcium, strontium arm, Bruno potassium, titanium, vanadium, chromium , Tungsten, Manganese, Silver, Boron, Ca, Aluminum, Gallium, Germanium, Tin, Lead, Arsenic, Antimony, Bismuth, Niobium, Tantalum, Zirconium, Indium, Zio, Selenium, Tellurium, Lanthanum and Cerium Represents at least one element. p, q, r, s and t represent the atomic ratio of each element, and when ρ = 12, q = 0.1 to 3, r = 0.01 to 3, s = 0 to 3, and t Is the atomic ratio of oxygen necessary to satisfy the atomic ratio of each component. )
実施例  Example
[0058] 以下、本発明を実施例により説明する。実施例において「部」は質量部であり、含有 元素 (又は分子)の定量分析は ICP発光分析法、原子吸光分析法により行った。ァク ロレイン、メタクロレイン、アクリル酸、又はメタクリル酸の製造における原料と生成物の 分析はガスクロマトグラフィーにより行った。また、モリブデンの回収率、原料であるプ ロピレン、イソブチレン、ァクロレイン、又はメタクロレインの転化率、並びに生成したァ クロレイン、メタクロレイン、アクリル酸、又はメタクリル酸の選択率及び収率は、以下 のように定義される。  [0058] Hereinafter, the present invention will be described by way of examples. In the examples, “parts” is parts by mass, and quantitative analysis of contained elements (or molecules) was performed by ICP emission spectrometry and atomic absorption spectrometry. Analysis of raw materials and products in the production of acrolein, methacrolein, acrylic acid, or methacrylic acid was performed by gas chromatography. The recovery rate of molybdenum, the conversion rate of propylene, isobutylene, acrolein, or methacrolein as raw materials, and the selectivity and yield of the produced acrolein, methacrolein, acrylic acid, or methacrylic acid are as follows. Defined in
[0059] a)モリブデンの回収率  [0059] a) Molybdenum recovery
回収率(質量%) = (W /W ) X 100  Recovery rate (mass%) = (W / W) X 100
ここで、 Wは回収したモリブデンの質量であり、 Wは回収に用いた触媒中に含まれ るモリブデンの質量である。  Here, W is the mass of recovered molybdenum, and W is the mass of molybdenum contained in the catalyst used for recovery.
[0060] b)原料であるプロピレン、イソブチレン、ァクロレイン、又はメタクロレインの転化率、 生成したァクロレイン、メタクロレイン、アクリル酸、又はメタクリル酸の選択率及び収 率  [0060] b) Conversion rate of raw material propylene, isobutylene, acrolein, or methacrolein, selectivity and yield of acrolein, methacrolein, acrylic acid, or methacrylic acid produced
転化率 (モル%) = (B/A) X 100  Conversion (mol%) = (B / A) X 100
選択率(モル%) = (C/B) X 100  Selectivity (mol%) = (C / B) X 100
収率 (モル%) = (CZA) X 100  Yield (mol%) = (CZA) X 100
ここで、 Aは供給したプロピレン、イソブチレン、ァクロレイン、又はメタクロレインのモ ル数であり、 Bは反応したプロピレン、イソブチレン、ァクロレイン、又はメタクロレイン のモル数であり、 Cは生成したァクロレイン、メタクロレイン、アクリル酸、又はメタクリル 酸のモル数である。 Where A is the number of moles of propylene, isobutylene, acrolein, or methacrolein supplied, and B is the number of reacted propylene, isobutylene, acrolein, or methacrolein. C is the number of moles of acrolein, methacrolein, acrylic acid or methacrylic acid produced.
[0061] 〔参考例 1〕  [0061] [Reference Example 1]
(ァクロレイン製造用触媒 Aの製造)  (Manufacture of acrolein production catalyst A)
純水 1000部に、パラモリブデン酸アンモ-ゥム 500部、ノ ラタングステン酸アンモ -ゥム 6. 2部、硝酸カリウム 1. 4部、三酸ィ匕アンチモン 27. 5部、及び三酸化ビスマ ス 66. 0部をカ卩え、加熱攪拌した (A液)。これとは別に純水 1000部に、硝酸鉄 114. 4部、硝酸コバルト 295. 3部、及び硝酸亜鉛 35. 1部を順次カ卩えて溶解した (B液)。 前記 A液に B液をカ卩ぇ水性スラリーとした後、この水性スラリーをスプレー乾燥機で乾 燥した(乾燥機入口温度: 300°C)。このようにして得られた乾燥粉を 300°Cにて 1時 間仮焼した後、直径及び高さが共に 3mmの円柱状に成形し、 510°Cで 3時間焼成し てァクロレイン製造用触媒 A (酸素原子を除く組成: Mo Bi Fe Co Zn W  In 1000 parts of pure water, 500 parts of ammonium paramolybdate, 6.2 parts of ammonium tungstate, 1.4 parts of potassium nitrate, 27.5 parts of antimony trioxide, and bismuth trioxide 66. 0 parts were added and stirred with heating (Liquid A). Separately, 114.4 parts of iron nitrate, 295.3 parts of cobalt nitrate, and 35.1 parts of zinc nitrate were sequentially dissolved in 1000 parts of pure water (solution B). After the liquid B was made into an aqueous slurry of the liquid A, the aqueous slurry was dried with a spray dryer (dryer inlet temperature: 300 ° C.). The dried powder thus obtained was calcined at 300 ° C for 1 hour, then formed into a 3mm diameter cylinder with a diameter and height of 3mm, and calcined at 510 ° C for 3 hours. A (Composition excluding oxygen atoms: Mo Bi Fe Co Zn W
12 1. 2 1. 2 4. 3 0. 5 0. 1 12 1. 2 1. 2 4. 3 0. 5 0. 1
Sb K ;)を得た。 Sb K;) was obtained.
0. 8 0. 06  0. 8 0. 06
[0062] (ァクロレイン製造テスト A)  [0062] (Acrolein production test A)
このァクロレイン製造用触媒 Aを反応管に充填し、プロピレン 5容量%、酸素 12容 量%、水蒸気 10容量%、及び窒素 73容量%の混合ガスを反応温度 310°C、接触時 間 3. 6秒で通じたところ、プロピレンの転化率 98. 4%、ァクロレインの選択率 90. 1 %、アクリル酸の選択率 5. 9%、ァクロレインの収率 88. 7%、アクリル酸の収率 5. 8 %であった。  The catalyst A for acrolein production is packed in a reaction tube, and a mixed gas of 5% by volume of propylene, 12% by volume of oxygen, 10% by volume of steam, and 73% by volume of nitrogen is reacted at 310 ° C and contact time is 3.6. In seconds, propylene conversion 98.4%, acrolein selectivity 90.1%, acrylic acid selectivity 5.9%, acrolein yield 88.7%, acrylic acid yield 5. It was 8%.
[0063] 〔実施例 1〕 [Example 1]
(モリブデンの回収 A1)  (Molybdenum recovery A1)
参考例 1のァクロレインの製造を 2000時間行った後の触媒を回収した。この回収し た触媒 100部にはモリブデン 43. 9部、タングステン 0. 7部、ビスマス 9. 6部、鉄 2. 6 部、アンチモン 3. 7部、コノ レト 9. 7部、亜鉛 1. 3部及びカリウム 0. 1部が含まれて いた。なお、酸素原子を除く元素の組成は Mo Bi Fe Co Zn W Sb K  The catalyst after the production of acrolein of Reference Example 1 for 2000 hours was recovered. 100 parts of this recovered catalyst contained 43.9 parts of molybdenum, 0.7 part of tungsten, 9.6 parts of bismuth, 2.6 parts of iron, 3.7 parts of antimony, 9.7 parts of corundol, and 1.3 parts of zinc. Part and potassium 0.1 part. The composition of elements excluding oxygen atoms is Mo Bi Fe Co Zn W Sb K
12 1. 2 1. 2 4. 3 0. 5 0. 1 0. 8 0 である。この回収した触媒 600部を純水 2400部に分散させた。これに 45質量% 12 1. 2 1. 2 4. 3 0. 5 0. 1 0. 8 0. 600 parts of the recovered catalyst was dispersed in 2400 parts of pure water. 45% by mass
. 06 . 06
水酸ィ匕ナトリウム水溶液 800部をカ卩えて 60°Cで 3時間攪拌した(このときの ρΗは 12. 6であった)後に、不溶部を濾別してモリブデン含有水溶液を得た。このようにして得 られたモリブデン含有水溶液に 36質量%塩酸を加えて pHを 1. 0に調整した後、攪 拌しながら 30°Cで 3時間攪拌保持した。このようにして生じた沈殿を濾過し、 2質量% 硝酸アンモ-ゥム水溶液で洗浄して、モリブデン含有沈殿物(回収モリブデン含有物 A1)を得た。回収モリブデン含有物 A1は、モリブデン 257. 4部、タングステン 3. 6部 及びカリウム 0. 1部を含んでいた。また、このときのモリブデンの回収率は 97. 8%で めつに。 After adding 800 parts of sodium hydroxide aqueous solution and stirring at 60 ° C. for 3 hours (ρΗ was 12.6 at this time), the insoluble part was filtered off to obtain a molybdenum-containing aqueous solution. Obtained in this way 36% by mass hydrochloric acid was added to the obtained molybdenum-containing aqueous solution to adjust the pH to 1.0, and the mixture was stirred and maintained at 30 ° C for 3 hours with stirring. The precipitate thus formed was filtered and washed with a 2% by mass aqueous ammonium nitrate solution to obtain a molybdenum-containing precipitate (recovered molybdenum-containing material A1). The recovered molybdenum-containing material A1 contained 257.4 parts of molybdenum, 3.6 parts of tungsten and 0.1 part of potassium. The recovery rate of molybdenum at this time is 97.8%.
[0064] (ァクロレイン製造用触媒 A1の製造)  [0064] (Manufacture of acrolein production catalyst A1)
純水 950部に上記で得られた回収モリブデン含有物 A1の全量を分散した後、 29 質量0 /0アンモニア水 135部をカ卩えて加熱攪拌した。これにパラタングステン酸アンモ -ゥム 0. 8部、硝酸カリウム 1. 1部、三酸ィ匕アンチモン 26. 1部、及び三酸化ビスマ ス 62. 5部を加え、更に加熱攪拌した (A液)。これとは別に純水 950部に、硝酸鉄 10 8. 4部、硝酸コノ レト 279. 8部、及び硝酸亜鉛 33. 3部を順次カ卩えて溶解した (B液 )。前記 A液に B液を加え水性スラリーとした後、参考例 1のァクロレイン製造用触媒 A の製造と同様に乾燥、仮焼、成形、及び焼成を実施して、ァクロレイン製造用触媒 A 1を得た。このァクロレイン製造用触媒 A1の酸素原子を除く組成は、参考例 1におい て製造したァクロレイン製造用触媒 Aと同じ Mo Bi Fe Co Zn W Sb K After dispersing the whole amount of the recovered molybdenum-containing material A1 obtained above in pure water 950 parts, it was heated and stirred example mosquitoes卩135 parts 29 mass 0/0 aqueous ammonia. To this was added 0.8 parts of ammonium paratungstate, 1.1 parts of potassium nitrate, 26.1 parts of antimony trioxide and 62.5 parts of bismuth trioxide, and the mixture was further heated and stirred (Liquid A). . Separately, 108.4 parts of iron nitrate, 279.8 parts of nitrate nitrate, and 33.3 parts of zinc nitrate were sequentially dissolved in 950 parts of pure water (solution B). After B liquid is added to A liquid to make an aqueous slurry, drying, calcination, molding, and calcination are performed in the same manner as in the manufacture of acrolein production catalyst A of Reference Example 1 to obtain acrolein production catalyst A 1. It was. The composition of this acrolein production catalyst A1 excluding oxygen atoms is the same as that of the acrolein production catalyst A produced in Reference Example 1. Mo Bi Fe Co Zn W Sb K
12 1. 2 1. 2 4. 3 0. 5 0. 1 0. 8 であった。  12 1. 2 1. 2 4. 3 0. 5 0. 1 0. 8
0. 06  0. 06
[0065] (ァクロレイン製造テスト Al)  [0065] (Acrolein production test Al)
このァクロレイン製造用触媒 A1を用いて参考例 1のァクロレイン製造テスト Aと同じ 反応条件でァクロレインの製造を行った結果、プロピレンの転ィ匕率 98. 3%、ァクロレ インの選択率 90. 2%、アクリル酸の選択率 5. 8%、ァクロレインの収率 88. 7%、ァ クリル酸の収率 5. 7%であり、参考例 1のァクロレイン製造用触媒 Aと同等の性能で めつに。  Using this acrolein production catalyst A1, acrolein was produced under the same reaction conditions as in acrolein production test A of Reference Example 1. As a result, the propylene conversion rate was 98.3% and acrolein selectivity was 90.2%. The selectivity for acrylic acid was 5.8%, the yield of acrolein was 88.7%, and the yield of acrylic acid was 5.7%. .
[0066] 〔比較例 1〕 [Comparative Example 1]
(モリブデンの回収 A2)  (Molybdenum recovery A2)
実施例 1のモリブデンの回収 A1において、 45質量%水酸ィ匕ナトリウム水溶液の添 加量を 200部に変更(添加後の pHは 7. 1であった)した以外は、実施例 1のモリブデ ンの回収 A1と同様にして「回収モリブデン含有物 A2」を得た。回収モリブデン含有 物 A2はモリブデン 110. 9部、タングステン 3. 0部及びカリウム 0. 18部を含んでいた 。また、このときのモリブデンの回収率は 42. 1%であり、モリブデンの回収率が大幅 に低下した。 Recovery of Molybdenum in Example 1 In A1, the amount of 45% by weight aqueous sodium hydroxide and sodium hydroxide was changed to 200 parts (pH after addition was 7.1). In the same manner as in recovery A1, “recovered molybdenum-containing material A2” was obtained. Contains recovered molybdenum Product A2 contained 110.9 parts molybdenum, 3.0 parts tungsten, and 0.18 parts potassium. At this time, the recovery rate of molybdenum was 42.1%, which greatly reduced the recovery rate of molybdenum.
[0067] 〔参考例 2〕 [0067] [Reference Example 2]
(ァクロレイン製造用触媒 Bの製造)  (Manufacture of catalyst acrolein B)
純水 1000部に、パラモリブデン酸アンモ-ゥム 500部、ノ ラタングステン酸アンモ -ゥム 6. 2部、及び硝酸カリウム 1. 4部を加え、 60°Cで溶解した (A液)。これとは別 に純水 1000部に 60質量%硝酸水溶液 41. 9部をカ卩え、均一にした後、硝酸ビスマ ス 103. 0部をカ卩ぇ溶解した。これに硝酸鉄 133. 5部、硝酸コノ レト 295. 3部、及び 硝酸亜鉛 14. 0部を順次加えて溶解した (B液)。前記 A液に B液を加え水性スラリー とした後、三酸化アンチモン 6. 9部をカ卩ぇ 80°Cで 1時間熟成した後に蒸発乾固した 。このようにして得られたケーキ状物質を 120°Cで乾燥させ、 300°Cで 1時間仮焼し た後粉砕した。その後、直径及び高さが共に 3mmの円柱状に加圧成形し、 500°Cで 6時間焼成してァクロレイン製造用触媒 B (酸素原子を除く糸且成: Mo Bi Fe Co  To 1000 parts of pure water, 500 parts of ammonium paramolybdate, 6.2 parts of ammonium tungstate, and 1.4 parts of potassium nitrate were added and dissolved at 60 ° C (solution A). Separately, 41.9 parts of 60 mass% nitric acid aqueous solution was added to 1000 parts of pure water, and after homogenizing, 103.0 parts of bismuth nitrate was dissolved. To this, 133.5 parts of iron nitrate, 295.3 parts of corn nitrate, and 14.0 parts of zinc nitrate were sequentially added and dissolved (solution B). Liquid B was added to liquid A to obtain an aqueous slurry, and then 6.9 parts of antimony trioxide was aged at 80 ° C. for 1 hour, and then evaporated to dryness. The cake-like material thus obtained was dried at 120 ° C, calcined at 300 ° C for 1 hour, and then pulverized. After that, it was pressure-molded into a cylindrical shape with a diameter and height of 3 mm, and calcined at 500 ° C for 6 hours.
12 0. 9 1. 4 4 12 0. 9 1. 4 4
Zn W Sb K )を得た。 Zn W Sb K) was obtained.
. 3 0. 2 0. 1 0. 2 0. 06  .3 0. 2 0. 1 0. 2 0. 06
[0068] (ァクロレイン製造テスト B)  [0068] (Acrolein production test B)
このァクロレイン製造用触媒 Bを用いて参考例 1のァクロレイン製造テスト Aと同じ反 応条件でァクロレインの製造を行った結果、プロピレンの転ィ匕率 99. 5%、ァクロレイ ンの選択率 91. 0%、アクリル酸の選択率 6. 6%、ァクロレインの収率 90. 5%、ァク リル酸の収率 6. 6%であった。  As a result of producing acrolein using this acrolein production catalyst B under the same reaction conditions as in acrolein production test A of Reference Example 1, the propylene conversion was 99.5% and the acrolein selectivity was 91.0. %, The selectivity of acrylic acid was 6.6%, the yield of acrolein was 90.5%, and the yield of acrylic acid was 6.6%.
[0069] 〔実施例 2〕 [Example 2]
(モリブデンの回収 B1)  (Molybdenum recovery B1)
参考例 2のァクロレインの製造を 2000時間行った後の触媒を回収した。この回収し た触媒 100部にはモリブデン 47. 1部、タングステン 0. 8部、ビスマス 7. 7部、鉄 3. 2 部、アンチモン 1. 0部、コノ ルト 10. 4部、亜鉛 0. 5部、及びカリウム 0. 1部が含まれ ていた。なお、酸素原子を除く元素の組成は Mo Bi Fe Co Zn W Sb  The catalyst after the production of acrolein of Reference Example 2 for 2000 hours was recovered. 100 parts of this recovered catalyst contained 47.1 parts molybdenum, 0.8 parts tungsten, 7.7 parts bismuth, 3.2 parts iron, 1.0 part antimony, 10.4 parts connort, 0.5 parts zinc. Part, and 0.1 part potassium. The composition of elements excluding oxygen atoms is Mo Bi Fe Co Zn W Sb
12 0. 9 1. 4 4. 3 0. 2 0. 1 0. 2 12 0. 9 1. 4 4. 3 0. 2 0. 1 0. 2
K である。この回収した触媒 600部を炭酸ナトリウム 350部と混合し、外熱式ローK. 600 parts of this recovered catalyst is mixed with 350 parts of sodium carbonate,
0. 06 0. 06
タリーキルンに挿入し、焙焼温度 800°Cで 1時間焼成して焙焼物を得た。次いで得ら れた焙焼物を純水に混合して 60°Cで 3時間攪拌した後に不溶部を濾別してモリブデ ン含有水溶液を得た。このようにして得られたモリブデン含有水溶液から、実施例 1 のモリブデン回収 A1と同様の手順で、モリブデン含有沈殿物(回収モリブデン含有 物 B1)を得た。回収モリブデン含有物 B1は、モリブデン 274. 8部、タングステン 4. 2 部及びカリウム 0. 1部を含んでいた。また、このときのモリブデンの回収率は 97. 3% であった。 It was inserted into a tally kiln and baked at a baking temperature of 800 ° C for 1 hour to obtain a baked product. Then obtained The roasted product was mixed with pure water and stirred at 60 ° C. for 3 hours, and then the insoluble part was filtered off to obtain a molybdenine-containing aqueous solution. From the molybdenum-containing aqueous solution thus obtained, a molybdenum-containing precipitate (recovered molybdenum-containing material B1) was obtained in the same manner as molybdenum recovery A1 in Example 1. The recovered molybdenum-containing material B1 contained 274.8 parts molybdenum, 4.2 parts tungsten, and 0.1 parts potassium. The molybdenum recovery rate at this time was 97.3%.
[0070] (ァクロレイン製造用触媒 B1の製造)  [0070] (Production of acrolein production catalyst B1)
純水 1000部に上記で得られた回収モリブデン含有物 B 1の全量を分散した後、 29 質量0 /0アンモニア水 144部をカ卩えて加熱攪拌した。これにパラタングステン酸アンモ -ゥム 0. 3部、硝酸カリウム 1. 2部を加え、 60°Cで溶解した (A液)。これとは別〖こ純 水 1000部に 60質量%硝酸水溶液 42. 4部を加え、均一にした後、硝酸ビスマス 10 4. 2部をカ卩ぇ溶解した。これに硝酸鉄 135. 0部、硝酸コバルト 298. 7部、及び硝酸 亜鉛 14. 2部を順次加えて溶解した (B液)。前記 A液に B液を加え水性スラリーとし た後、三酸化アンチモン 7. 0部を加え 80°Cで 1時間熟成した後に蒸発乾固した。こ のようにして得られたケーキ状物質を 120°Cで乾燥させ、 300°Cで 1時間仮焼した後 粉砕した。その後、直径及び高さが共に 3mmの円柱状に加圧成形し、 500°Cで 6時 間焼成してァクロレイン製造用触媒 B 1を得た。このァクロレイン製造用触媒 B 1の酸 素原子を除く組成は、参考例 2において製造したァクロレイン製造用触媒 Bと同じ MoAfter dispersing the whole amount of the recovered molybdenum-containing compound B 1 obtained above in pure water 1000 parts, heated and stirred example mosquitoes卩29 mass 0/0 aqueous ammonia 144 parts. To this, 0.3 part of ammonium paratungstate and 1.2 parts of potassium nitrate were added and dissolved at 60 ° C. (solution A). Separately, 42.4 parts of a 60% by weight nitric acid aqueous solution was added to 1000 parts of pure water, and after homogenizing, 104.2 parts of bismuth nitrate was dissolved. To this, 135.0 parts of iron nitrate, 298.7 parts of cobalt nitrate, and 14.2 parts of zinc nitrate were sequentially added and dissolved (solution B). Liquid B was added to liquid A to prepare an aqueous slurry, 7.0 parts of antimony trioxide was added, and the mixture was aged at 80 ° C. for 1 hour, and then evaporated to dryness. The cake-like material thus obtained was dried at 120 ° C, calcined at 300 ° C for 1 hour, and then pulverized. Thereafter, it was pressure-molded into a cylindrical shape having a diameter and height of 3 mm, and calcined at 500 ° C. for 6 hours to obtain acrolein production catalyst B 1. The composition of this acrolein production catalyst B 1 excluding oxygen atoms is the same as that of the acrolein production catalyst B produced in Reference Example 2.
Bi Fe Co Zn W Sb K であった。 BiFeCoZnWSbK.
12 0. 9 1. 4 4. 3 0. 2 0. 1 0. 2 0. 06  12 0. 9 1. 4 4. 3 0. 2 0. 1 0. 2 0. 06
[0071] (ァクロレイン製造テスト Bl)  [0071] (Acrolein production test Bl)
このァクロレイン製造用触媒 B1を用いて参考例 1のァクロレイン製造テスト Aと同じ 反応条件でァクロレインの製造を行った結果、プロピレンの転ィ匕率 99. 6%、ァクロレ インの選択率 90. 8%、アクリル酸の選択率 6. 8%、ァクロレインの収率 90. 4%、ァ クリル酸の収率 6. 8%であり、参考例 2のァクロレイン製造用触媒 Bと同等の性能で めつに。  Using this acrolein production catalyst B1, acrolein was produced under the same reaction conditions as in acrolein production test A of Reference Example 1. As a result, the propylene conversion was 99.6% and the acrolein selectivity was 90.8%. The selectivity for acrylic acid was 6.8%, the yield of acrolein was 90.4%, and the yield of acrylic acid was 6.8%. .
[0072] 〔比較例 2〕 [Comparative Example 2]
(モリブデンの回収 B2)  (Molybdenum recovery B2)
実施例 2のモリブデンの回収 B1において、焙焼温度を 1200°Cに変更した以外は 実施例 2のモリブデンの回収 Blと同様にして「回収モリブデン含有物 B2」を得た。回 収モリブデン含有物 B2はモリブデン 178. 9部、タングステン 4. 2部、カリウム 0. 06 部を含んでいた。また、このときのモリブデンの回収率は 63. 3%であり、回収率が大 幅に低下した。 Recovery of molybdenum in Example 2 In B1, except that the roasting temperature was changed to 1200 ° C Recovery of molybdenum in Example 2 “Recovered molybdenum-containing material B2” was obtained in the same manner as in the recovery Bl. The recovered molybdenum-containing material B2 contained 178.9 parts of molybdenum, 4.2 parts of tungsten, and 0.06 parts of potassium. At this time, the recovery rate of molybdenum was 63.3%, and the recovery rate was greatly reduced.
[0073] 〔比較例 3〕 [Comparative Example 3]
(モリブデンの回収 B3)  (Molybdenum recovery B3)
実施例 2のモリブデンの回収 B1において、焙焼温度を 400°Cに変更した以外は実 施例 2のモリブデンの回収 B1と同様にして「回収モリブデン含有物 B3」を得た。回収 モリブデン含有物 B3はモリブデン 115. 9部、タングステン 2. 4部、カリウム 0. 18部 を含んでいた。また、このときのモリブデンの回収率は 41. 0%であり、回収率が大幅 に低下した。  In the molybdenum recovery B1 of Example 2, “recovered molybdenum-containing material B3” was obtained in the same manner as the molybdenum recovery B1 of Example 2, except that the roasting temperature was changed to 400 ° C. The recovered molybdenum-containing material B3 contained 115.9 parts molybdenum, 2.4 parts tungsten, and 0.18 parts potassium. At this time, the recovery rate of molybdenum was 41.0%, and the recovery rate dropped significantly.
[0074] 〔参考例 3〕 [0074] [Reference Example 3]
(メタクロレイン製造用触媒 Cの製造)  (Production of methacrolein production catalyst C)
純水 1000部に、パラモリブデン酸アンモ-ゥム 500部、ノ ラタングステン酸アンモ -ゥム 6. 2部、及び硝酸セシウム 27. 6部をカ卩え、 60°Cで溶解した (A液)。これとは 別に純水 1000部に 60質量%硝酸水溶液 41. 9部をカ卩え、均一にした後、硝酸ビス マス 80. 1部をカ卩ぇ溶解した。これに硝酸鉄 200. 2部、硝酸コノルト 295. 3部、硝 酸ニッケル 85. 8部、及び硝酸亜鉛 14. 0部を順次加えて溶解した (B液)。前記 A液 に B液を加え水性スラリーとした後、三酸ィ匕アンチモン 38. 5部をカ卩ぇ 80°Cで 1時間 熟成した後に蒸発乾固した。このようにして得られたケーキ状物質を 120°Cで乾燥さ せ、 300°Cで 1時間仮焼した後粉砕した。その後、直径及び高さが共に 3mmの円柱 状に加圧成形し、 500°Cで 6時間焼成してメタクロレイン製造用触媒 C (酸素原子を 除ぐ袓成: Mo Bi Fe Ni Co Zn W Sb Cs )を得た。  In 500 parts of pure water, 500 parts of ammonium paramolybdate, 6.2 parts of ammonium tungstate, and 27.6 parts of cesium nitrate were added and dissolved at 60 ° C (solution A). ). Separately, 49.9 parts of a 60% by weight nitric acid aqueous solution was added to 1000 parts of pure water, and after homogenizing, 80.1 parts of bismuth nitrate was dissolved. To this, 200.2 parts of iron nitrate, 295.3 parts of Konol nitrate, 85.8 parts of nickel nitrate, and 14.0 parts of zinc nitrate were sequentially added and dissolved (solution B). Liquid B was added to the liquid A to form an aqueous slurry, and then 38.5 parts of antimony trimonate was aged at 80 ° C. for 1 hour, and then evaporated to dryness. The cake-like material thus obtained was dried at 120 ° C, calcined at 300 ° C for 1 hour, and then pulverized. After that, it was pressure-molded into a cylindrical shape with a diameter and height of 3 mm, and calcined at 500 ° C for 6 hours to produce catalyst C for methacrolein C (formation to remove oxygen atoms: Mo Bi Fe Ni Co Zn W Sb Cs).
12 0. 7 2. 1 2. 5 4. 9 0. 2 0. 1 0. 7 0. 6  12 0. 7 2. 1 2. 5 4. 9 0. 2 0. 1 0. 7 0. 6
[0075] (メタクロレインの製造テスト C)  [0075] (Production test C of methacrolein)
このメタクロレイン製造用触媒 Cを反応管に充填し、イソブチレン 5容量%、酸素 12 容量%、水蒸気 10容量%、及び窒素 73容量%の混合ガスを反応温度 340°C、接触 時間 3. 6秒で通じたところ、イソブチレンの転ィ匕率 97. 7%、メタクロレインの選択率 8 9. 1%、メタクリル酸の選択率 3. 0%、メタクロレインの収率 87. 1%、メタクリル酸の 収率 2. 9%であった。 The catalyst C for producing methacrolein is charged into a reaction tube, and a mixed gas of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor, and 73% by volume of nitrogen is reacted at 340 ° C and contact time is 3.6 seconds. The conversion rate of isobutylene was 97.7%, the selectivity of methacrolein was 89.1%, the selectivity of methacrylic acid was 3.0%, the yield of methacrolein was 87.1%, Yield 2.9%.
[0076] 〔実施例 3〕 [Example 3]
(モリブデンの回収 C1)  (Molybdenum recovery C1)
参考例 3のメタクロレインの製造を 2000時間行った後の触媒を回収した。この回収 した触媒 100部にはモリブデン 40. 4部、タングステン 0. 6部、ビスマス 5. 1部、鉄 4 . 1部、アンチモン 3. 0部、ニッケル 5. 1部、コノル卜 10. 1部、亜鉛 0. 5部、及びセ シゥム 2. 8部が含まれていた。なお、酸素原子を除く元素の糸且成は Mo Bi Fe  The catalyst after the production of methacrolein of Reference Example 3 for 2000 hours was recovered. 100 parts of this recovered catalyst contained 40.4 parts of molybdenum, 0.6 part of tungsten, 5.1 parts of bismuth, 4.1 parts of iron, 3.0 parts of antimony, 5.1 parts of nickel, and 10.1 parts of Conor. , 0.5 parts of zinc, and 2.8 parts of cesium. It should be noted that the elements of elements other than oxygen atoms are Mo Bi Fe
12 0. 7 2. 1 12 0. 7 2. 1
Ni Co Zn W Sb Cs である。この回収した触媒 600部を純水 2400部にNi Co Zn W Sb Cs. 600 parts of the recovered catalyst is converted to 2400 parts of pure water.
2. 5 4. 9 0. 2 0. 1 0. 7 0. 6 2. 5 4. 9 0. 2 0. 1 0. 7 0. 6
分散させた。これに 45質量%水酸ィ匕ナトリウム水溶液 800部をカ卩えて 60°Cで 3時間 攪拌した (このときの pHは 12. 8であった)後に、不溶部を濾別してモリブデン含有水 溶液を得た。このようにして得られたモリブデン含有水溶液から、実施例 1のモリブデ ン回収 A1と同様の手順で、モリブデン含有沈殿物(回収モリブデン含有物 C1)を得 た。回収モリブデン含有物 C1は、モリブデン 235. 8部、タングステン 3. 0部、及びセ シゥム 6. 6部を含んでいた。また、このときのモリブデンの回収率は 97. 2%であった  Dispersed. To this was added 800 parts of 45% by weight sodium hydroxide aqueous solution and stirred at 60 ° C for 3 hours (the pH was 12.8 at this time), and then the insoluble part was filtered off to obtain a molybdenum-containing aqueous solution. Obtained. From the molybdenum-containing aqueous solution thus obtained, a molybdenum-containing precipitate (recovered molybdenum-containing material C1) was obtained in the same manner as the molybdenum recovery A1 of Example 1. The recovered molybdenum content C1 contained 235.8 parts molybdenum, 3.0 parts tungsten, and 6.6 parts cesium. At this time, the recovery rate of molybdenum was 97.2%.
[0077] (メタクロレイン製造用触媒 C1の製造) [0077] (Production of catalyst for production of methacrolein C1)
純水 870部に上記で得られた回収モリブデン含有物 C1の全量を分散した後、 29 質量0 /0アンモニア水 123. 5部を加えて加熱攪拌した。これにパラタングステン酸アン モ -ゥム 1. 1部、及び硝酸セシウム 14. 3部をカ卩え、 60°Cで溶解した (A液)。これと は別に純水 870部に 60質量%硝酸水溶液 36. 4部をカ卩え、均一にした後、硝酸ビス マス 69. 5部をカ卩ぇ溶解した。これに硝酸鉄 173. 7部、硝酸コノ レト 256. 3部、硝 酸ニッケル 74. 5部、及び硝酸亜鉛 12. 2部を順次カ卩えて溶解した (B液)。前記 A液 に B液を加え水性スラリーとした後、三酸ィ匕アンチモン 33. 4部をカ卩ぇ 80°Cで 1時間 熟成した後に蒸発乾固した。このようにして得られたケーキ状物質を 120°Cで乾燥さ せ、 300°Cで 1時間仮焼した後粉砕した。その後、直径及び高さが共に 3mmの円柱 状に加圧成形し、 500°Cで 6時間焼成してメタクロレイン製造用触媒 C1を得た。この メタクロレイン製造用触媒 C1の酸素原子を除く組成は、参考例 3において製造したメ タクロレイン製造用触媒 Cと同じ Mo Bi Fe Ni Co Zn W Sb Cs で あった。 After dispersing the whole amount of the resulting recovered molybdenum-containing material C1 in the pure water 870 parts, it was heated and stirred with 29 mass 0/0 aqueous ammonia 123.5 parts. To this, 1.1 parts of ammonium paratungstate and 14.3 parts of cesium nitrate were added and dissolved at 60 ° C (solution A). Separately, 36.4 parts of 60% by weight nitric acid aqueous solution was added to 870 parts of pure water, and after homogenizing, 69.5 parts of bismuth nitrate was dissolved. In this solution, 173.7 parts of iron nitrate, 256.3 parts of nitrate nitrate, 74.5 parts of nickel nitrate, and 12.2 parts of zinc nitrate were sequentially added and dissolved (solution B). Liquid B was added to liquid A to form an aqueous slurry, and then 33.4 parts of antimony trioxide was aged at 80 ° C for 1 hour, and then evaporated to dryness. The cake-like material thus obtained was dried at 120 ° C, calcined at 300 ° C for 1 hour, and then pulverized. Thereafter, it was pressure-formed into a cylindrical shape having a diameter and height of 3 mm, and calcined at 500 ° C. for 6 hours to obtain catalyst C1 for producing methacrolein. The composition of this catalyst for producing methacrolein C1 excluding oxygen atoms is Mo Bi Fe Ni Co Zn W Sb Cs which is the same as the catalyst C for producing methacrolein prepared in Reference Example 3. there were.
[0078] (メタクロレイン製造テスト CI)  [0078] (methacrolein production test CI)
このメタクロレイン製造用触媒 C1を用いて参考例 3のメタクロレイン製造テスト Cと同 じ反応条件でメタクロレインの製造を行った結果、イソブチレンの転ィ匕率 97. 8%、メ タクロレインの選択率 88. 9%、メタクリル酸の選択率 3. 2%、メタクロレインの収率 86 . 9%、メタクリル酸の収率 3. 1%であり、参考例 3のメタクロレイン製造用触媒 Cと同 等の性能であった。  As a result of producing methacrolein under the same reaction conditions as in the methacrolein production test C of Reference Example 3 using this catalyst C1 for producing methacrolein, the conversion rate of isobutylene was 99.8% and the selectivity of methacrolein. 88.9%, selectivity of methacrylic acid 3.2%, yield of methacrolein 86.9%, yield of methacrylic acid 3.1%, same as catalyst C for production of methacrolein in Reference Example 3 It was performance of.
[0079] 〔実施例 4〕 [Example 4]
(メタクロレイン製造用触媒 C2の製造)  (Production of methacrolein production catalyst C2)
純水 1000部に実施例 3のモリブデンの回収 C 1と同様の方法で得られた回収モリ ブデン含有物 C2の全量を分散した後、 29質量%アンモニア水 123. 5部をカ卩えてカロ 熱攪拌した後、ノ ラモリブデン酸アンモ-ゥム 65部を加えて更に加熱攪拌した。これ にパラタングステン酸アンモ-ゥム 1. 9部、硝酸セシウム 17. 9部をカ卩え、 60°Cで溶 解した (A液)。これとは別に純水 1000部に 60質量%硝酸水溶液 41. 8部を加え、 均一にした後、硝酸ビスマス 79. 9部を加え溶解した。これに硝酸鉄 199. 7部、硝酸 コノ レト 294. 7部、硝酸ニッケル 85. 7部、及び硝酸亜鉛 14. 0部を順次加えて溶 解した (B液)。前記 A液に B液を加え水性スラリーとした後、三酸ィ匕アンチモン 38. 4 部をカ卩ぇ 80°Cで 1時間熟成した後に蒸発乾固した。このようにして得られたケーキ状 物質を 120°Cで乾燥させ、 300°Cで 1時間仮焼した後粉砕した。その後、直径及び 高さが共に 3mmの円柱状に加圧成形し、 500°Cで 6時間焼成してメタクロレイン製造 用触媒 C2を得た。このメタクロレイン製造用触媒 C2の酸素原子を除く組成は、参考 例 3において製造したメタクロレイン製造用触媒 Cと同じ Mo Bi Fe Ni Co Z  Recovery of molybdenum in Example 3 in 1000 parts of pure water After the total amount of the recovered molybdenum-containing material C2 obtained in the same manner as in C1 was dispersed, 123.5 parts of 29% by mass ammonia water was added and calorie heat was added. After stirring, 65 parts of ammonium molybdate was added and further heated and stirred. Ammonium paratungstate (1.9 parts) and cesium nitrate (17.9 parts) were added thereto and dissolved at 60 ° C (solution A). Separately, 41.8 parts of 60% by weight nitric acid aqueous solution was added to 1000 parts of pure water, and the mixture was homogenized, and then 79.9 parts of bismuth nitrate was added and dissolved. In this solution, 199.7 parts of iron nitrate, 294.7 parts of nitric nitrate, 85.7 parts of nickel nitrate, and 14.0 parts of zinc nitrate were sequentially added to dissolve (solution B). Liquid B was added to liquid A to form an aqueous slurry, and then 38.4 parts of antimony trioxide was aged at 80 ° C. for 1 hour, and then evaporated to dryness. The cake-like material thus obtained was dried at 120 ° C, calcined at 300 ° C for 1 hour, and then pulverized. Thereafter, it was pressure-molded into a cylinder with a diameter and height of 3 mm, and calcined at 500 ° C. for 6 hours to obtain catalyst C2 for producing methacrolein. The composition of this catalyst for producing methacrolein C2 excluding oxygen atoms is the same as that of the catalyst for producing methacrolein C prepared in Reference Example 3 Mo Bi Fe Ni Co Z
12 0. 7 2. 1 2. 5 4. 9 n W Sb Cs であった。  12 0. 7 2. 1 2. 5 4.9 n W Sb Cs.
0. 2 0. 1 0. 7 0. 6  0. 2 0. 1 0. 7 0. 6
[0080] (メタクロレイン製造テスト C2)  [0080] (methacrolein production test C2)
このメタクロレイン製造用触媒 C2を用いて参考例 3のメタクロレイン製造テスト Cと同 じ反応条件でメタクロレインの製造を行った結果、イソブチレンの転ィ匕率 97. 7%、メ タクロレインの選択率 89. 2%、メタクリル酸の選択率 2. 8%、メタクロレインの収率 87 . 1%、メタクリル酸の収率 2. 7%であり、参考例 3のメタクロレイン製造用触媒 Cと同 等の性能であった。 As a result of producing methacrolein under the same reaction conditions as the methacrolein production test C of Reference Example 3 using this catalyst for producing methacrolein C2, the conversion rate of isobutylene was 97.7% and the selectivity of methacrolein. 89.2%, methacrylic acid selectivity 2.8%, methacrolein yield 87.1%, methacrylic acid yield 2.7%, same as catalyst C for production of methacrolein in Reference Example 3. Etc.
[0081] 〔参考例 4〕  [0081] [Reference Example 4]
(メタクロレイン製造用触媒 Dの製造)  (Production of catalyst D for production of methacrolein)
純水 1000部に、パラモリブデン酸アンモ-ゥム 500部、ノ ラタングステン酸アンモ -ゥム 6. 2部、硝酸セシウム 23. 0部、三酸化アンチモン 27. 5部、及び三酸化ビス マス 33. 0部をカ卩え、加熱攪拌した (A液)。これとは別に純水 1000部に、硝酸鉄 19 0. 7部、硝酸ニッケル 68. 6部、硝酸コバルト 446. 4部、硝酸鉛 23. 5部、及び 85重 量%リン酸水溶液 1. 4部を順次カ卩え、溶解した (B液)。前記 A液に B液をカ卩ぇ水性ス ラリーとした後、この水性スラリーをスプレー乾燥機で乾燥した (乾燥機入口温度: 30 0°C) oこのようにして得られた乾燥粉を 300°Cにて 1時間仮焼した後、直径及び高さ が共に 3mmの円柱状に成形し、 510°Cで 3時間焼成してメタクロレイン製造用触媒 D (酸素原子を除く組成: Mo Bi Fe Ni Co Pb P W Sb Cs )を得た  1000 parts of pure water, 500 parts of ammonium paramolybdate, 6.2 parts of ammonium tungstate, 23.0 parts of cesium nitrate, 27.5 parts of antimony trioxide, and bismuth trioxide 33 0 parts was added and stirred with heating (Liquid A). Separately, 1000 parts of pure water, 190.7 parts of iron nitrate, 68.6 parts of nickel nitrate, 446.4 parts of cobalt nitrate, 23.5 parts of lead nitrate, and 85% by weight aqueous phosphoric acid solution 1.4 The parts were sequentially held and dissolved (B solution). After the B liquid was made into an aqueous slurry in the A liquid, the aqueous slurry was dried with a spray dryer (dryer inlet temperature: 300 ° C.). After calcining at ° C for 1 hour, it was formed into a cylinder with a diameter and height of 3 mm, and calcined at 510 ° C for 3 hours to produce methacrolein production catalyst D (composition excluding oxygen atoms: Mo Bi Fe Ni Co Pb PW Sb Cs)
12 0. 6 2 1 6. 5 0. 3 0. 05 0. 1 0. 2 0. 5  12 0. 6 2 1 6. 5 0. 3 0. 05 0. 1 0. 2 0. 5
[0082] (メタクロレインの製造テスト D) [0082] (Production test D of methacrolein D)
このメタクロレイン製造用触媒 Dを用いて参考例 3のメタクロレイン製造テスト Cと同じ 反応条件でメタクロレインの製造を行った結果、イソブチレンの転ィ匕率 97. 4%、メタ クロレインの選択率 89. 8%、メタクリル酸の選択率 3. 8%、メタクロレインの収率 87. 5%、メタクリル酸の収率 3. 7%であった。  As a result of producing methacrolein under the same reaction conditions as in the methacrolein production test C of Reference Example 3 using this catalyst D for producing methacrolein, the conversion rate of isobutylene was 97.4% and the selectivity of methacrolein was 89. The selectivity of methacrylic acid was 3.8%, the yield of methacrolein was 87.5%, and the yield of methacrylic acid was 3.7%.
[0083] 〔実施例 5〕 [0083] [Example 5]
(モリブデンの回収 D1)  (Molybdenum recovery D1)
参考例 4のメタクロレインの製造を 2000時間行った後の触媒を回収した。この回収 した触媒 100部にはモリブデン 41. 3部、タングステン 0. 7部、ビスマス 4. 5部、鉄 4 . 0部、アンチモン 0. 9部、ニッケル 2. 1部、コノ ル卜 13. 8部、鉛 2. 2部、リン 0. 1部 、及びセシウム 2. 3部が含まれていた。なお、この回収触媒の酸素を除く元素の糸且成 は Mo Bi Fe Ni Co Pb P W Sb Cs であった。この回収した触媒 6 The catalyst after the production of methacrolein of Reference Example 4 for 2000 hours was recovered. The recovered catalyst (100 parts) contains 41.3 parts of molybdenum, 0.7 parts of tungsten, 4.5 parts of bismuth, 4.0 parts of iron, 0.9 parts of antimony, 2.1 parts of nickel, and 13.8 parts of nickel. Part, 2.2 parts lead, 0.1 part phosphorus, and 2.3 parts cesium. In this recovery catalyst, the elemental yarn excluding oxygen was Mo Bi Fe Ni Co Pb P W Sb Cs. This recovered catalyst 6
12 0. 6 2 1 6. 5 0. 3 0. 05 0. 1 0. 2 0. 5 12 0. 6 2 1 6. 5 0. 3 0. 05 0. 1 0. 2 0. 5
00部を純水 2400部に分散させた。これに 45質量%水酸ィ匕ナトリウム水溶液 800部 をカロえて 60°Cで 3時間攪拌した (このときの pHは 12. 3であった)後に、不溶部を濾 別した。得られた溶液を 36質量%塩酸で中和した後に、塩化マグネシウム 6水和物 を純水 5. 1部に溶解させた溶液を加え、さらに 29質量%アンモニア水をカ卩えて pHを 9に調整した後、攪拌しながら 30°Cで 3時間保持し、沈殿物を濾別してモリブデン含 有水溶液を得た。このようにして得られたモリブデン含有水溶液から、実施例 1のモリ ブデン回収 A1と同様の手順で、回収モリブデン含有沈殿物(回収モリブデン含有物 D1)を得た。回収モリブデン含有物 D1は、モリブデン 241. 8部、タングステン 3. 6 部、及びセシウム 5. 4部を含んでいた。また、このときのモリブデンの回収率は 97. 6 %であった。 00 parts were dispersed in 2400 parts of pure water. To this was added 800 parts of 45% by weight aqueous sodium hydroxide solution and stirred at 60 ° C. for 3 hours (the pH was 12.3 at this time), and the insoluble part was filtered off. The resulting solution was neutralized with 36 mass% hydrochloric acid, and then magnesium chloride hexahydrate After adding a solution of 5 parts of pure water in 1 part and adding 29% by mass of ammonia water to adjust the pH to 9, hold at 30 ° C for 3 hours with stirring, and filter the precipitate. An aqueous solution containing molybdenum was obtained. From the molybdenum-containing aqueous solution thus obtained, a recovered molybdenum-containing precipitate (recovered molybdenum-containing material D1) was obtained in the same manner as the molybdenum recovered A1 of Example 1. The recovered molybdenum-containing material D1 contained 241.8 parts of molybdenum, 3.6 parts of tungsten, and 5.4 parts of cesium. At this time, the recovery rate of molybdenum was 97.6%.
[0084] (メタクロレイン製造用触媒 D1の製造)  [0084] (Production of methacrolein production catalyst D1)
純水 900部に上記で得られた回収モリブデン含有物 D 1の全量を分散した後、 29 質量0 /0アンモニア水 126. 6部を加えて加熱攪拌した。これにパラタングステン酸アン モ -ゥム 0. 4部、硝酸セシウム 16. 6部をカ卩え、 60°Cで溶解した (A液)。これとは別 に純水 900部に 60質量%硝酸水溶液 37. 3部をカ卩え、均一にした後、硝酸ビスマス 71. 3部をカ卩ぇ溶解した。これに硝酸鉄 178. 2部、硝酸コノ レト 262. 8部、硝酸-ッ ケル 76. 4部、及び硝酸亜鉛 12. 5部を順次加えて溶解した (B液)。前記 A液に B液 をカロえ水性スラリーとした後、三酸ィ匕アンチモン 34. 3部をカ卩ぇ 80°Cで 1時間熟成し た後に蒸発乾固した。このようにして得られたケーキ状物質を 120°Cで乾燥させ、 30 0°Cで 1時間仮焼した後粉砕した。その後、直径及び高さが共に 3mmの円柱状にカロ 圧成形し、 500°Cで 6時間焼成してメタクロレイン製造用触媒 D1を得た。このメタクロ レイン製造用触媒 D1の酸素原子を除く組成は、参考例 3において製造したメタクロレ イン製造用触媒 Cと同じ Mo Bi Fe Ni Co Zn W Sb Cs であった。 After dispersing the whole amount of the resulting recovered molybdenum-containing compound D 1 above the pure water 900 parts, was heated and stirred with 29 mass 0/0 aqueous ammonia 126.6 parts. To this, 0.4 parts of ammonium paratungstate and 16.6 parts of cesium nitrate were added and dissolved at 60 ° C (solution A). Separately, 37.3 parts of a 60% by weight nitric acid aqueous solution was added to 900 parts of pure water, and after homogenizing, 71.3 parts of bismuth nitrate was dissolved. To this, 178.2 parts of iron nitrate, 262.8 parts of nitrate nitrate, 76.4 parts of nitrate-nickel and 12.5 parts of zinc nitrate were sequentially added and dissolved (solution B). After liquid B was mixed with liquid A to form an aqueous slurry, 34.3 parts of antimony trioxide was aged at 80 ° C for 1 hour, and then evaporated to dryness. The cake-like material thus obtained was dried at 120 ° C., calcined at 300 ° C. for 1 hour, and then pulverized. Thereafter, calo-pressure was formed into a cylindrical shape having a diameter and height of 3 mm, and calcined at 500 ° C. for 6 hours to obtain catalyst D1 for producing methacrolein. The composition excluding oxygen atoms of the catalyst D1 for producing methacrolein was the same Mo Bi Fe Ni Co Zn W Sb Cs as the catalyst C for producing methacrolein produced in Reference Example 3.
12 0. 7 2. 1 2. 5 4. 9 0. 2 0. 1 0. 7 0. 6  12 0. 7 2. 1 2. 5 4. 9 0. 2 0. 1 0. 7 0. 6
[0085] (メタクロレイン製造テスト Dl)  [0085] (methacrolein production test Dl)
このメタクロレイン製造用触媒 Dlを用いて参考例 3のメタクロレイン製造テスト Cと同 じ反応条件でメタクロレインの製造を行った結果、イソブチレンの転ィ匕率 97. 6%、メ タクロレインの選択率 89. 2%、メタクリル酸の選択率 3. 0%、メタクロレインの収率 87 . 1%、メタクリル酸の収率 2. 9%であり、参考例 3のメタクロレイン製造用触媒 Cと同 等の性能であった。  As a result of producing methacrolein under the same reaction conditions as the methacrolein production test C of Reference Example 3 using this catalyst for producing methacrolein Dl, the conversion of isobutylene was 97.6% and the selectivity of methacrolein. 89. 2%, selectivity of methacrylic acid 3.0%, yield of methacrolein 87.1%, yield of methacrylic acid 2.9%, same as catalyst C for production of methacrolein in Reference Example 3 It was performance of.
[0086] 〔参考例 5〕 [0086] [Reference Example 5]
(アクリル酸製造用触媒 Eの製造) 純水 1000部に、パラモリブデン酸アンモ-ゥム 100部、ノ ラタングステン酸アンモ -ゥム 5. 0部、及びメタバナジン酸アンモ-ゥム 16. 6部を溶解した。これに硝酸鉄 9 . 5部を純水 200部に溶解した溶液をカ卩え、さらに、硝酸コバルト 5. 5部を純水 200 部に溶解した溶液、硝酸マンガン 4. 1部を純水 200部に溶解した溶液を順次加えた 。次に一般式 Na 0 · 2. 2SiO · 2. 2Η Οで表される水ガラス 3. 9部を純水 30部に (Manufacture of catalyst for acrylic acid production E) In 1000 parts of pure water, 100 parts of ammonium paramolybdate, 5.0 parts of ammonium tungstate, and 16.6 parts of ammonium metavanadate were dissolved. To this was added a solution of 9.5 parts of iron nitrate in 200 parts of pure water, and further, a solution of 5.5 parts of cobalt nitrate in 200 parts of pure water, and 4.1 parts of manganese nitrate in 200 parts of pure water. The solution dissolved in the part was sequentially added. Next, water glass represented by the general formula Na 0 · 2.2SiO · 2.2Η Η 3. 9 parts pure water 30 parts
2 2 2  2 2 2
溶解した溶液を加え、更に 20質量%シリカゾル (分散媒:水) 49. 6部を加えた。この 混合液を加熱攪拌しながら蒸発乾固した。得られた固形物を 130°Cで 16時間乾燥し た後、直径及び高さが共に 5mmの円柱状に成形し、 380°Cで 5時間焼成してアタリ ル酸製造用触媒 E (酸素原子を除く組成: Mo V Fe Co Si Na Mn W  The dissolved solution was added, and 49.6 parts of 20 mass% silica sol (dispersion medium: water) was further added. The mixture was evaporated to dryness while stirring with heating. The obtained solid was dried at 130 ° C for 16 hours, then formed into a cylindrical shape with a diameter and height of 5 mm, and calcined at 380 ° C for 5 hours to produce catalyst E (oxygen atoms) Except for: Mo V Fe Co Si Na Mn W
12 3 0. 5 0. 4 4. 3 0. 7 0. 3 0. 4 12 3 0. 5 0. 4 4. 3 0. 7 0. 3 0. 4
)を得た。 )
[0087] (アクリル酸の製造テスト E)  [0087] (Acrylic acid production test E)
このアクリル酸製造用触媒 Eを反応管に充填し、ァクロレイン 5容量%、酸素 10容 量%、水蒸気 30容量%、及び窒素 55容量%の混合ガスを反応温度 270°C、接触時 間 3. 6秒で通じたところ、ァクロレインの転化率 98. 6%、アクリル酸の選択率 95. 0 %、アクリル酸の収率 93. 7%であった。  The catalyst E for acrylic acid production is filled into a reaction tube, and a mixed gas of 5% by volume of acrolein, 10% by volume of oxygen, 30% by volume of steam, and 55% by volume of nitrogen is reacted at 270 ° C and contact time 3. As a result, the conversion of acrolein was 98.6%, the selectivity of acrylic acid was 95.0%, and the yield of acrylic acid was 93.7%.
[0088] 〔実施例 6〕 [Example 6]
(モリブデンの回収 E1)  (Molybdenum recovery E1)
参考例 5のアクリル酸の製造を 2000時間行った後の触媒を回収した。この回収し た触媒 100部にはモリブデン 47. 0部、バナジウム 6. 2部、鉄 0. 7部、ケィ素 4. 9部 、ナトリウム 0. 7部、コバルト 1. 0部、マンガン 0. 7部、及びタングステン 3. 0部が含ま れていた。なお、この回収触媒の酸素を除く元素の糸且成は Mo V Fe Co Si  The catalyst after the acrylic acid of Reference Example 5 was produced for 2000 hours was recovered. 100 parts of this recovered catalyst contained 47.0 parts of molybdenum, 6.2 parts of vanadium, 0.7 parts of iron, 4.9 parts of silicon, 0.7 parts of sodium, 1.0 part of cobalt, and 0.7 parts of manganese. Part, and 3.0 parts tungsten. Note that the elements of the recovered catalyst except for oxygen are composed of Mo V Fe Co Si.
12 3 0. 5 0. 4 4. 3 12 3 0. 5 0. 4 4. 3
Na Mn W であった。この回収した触媒 100部を純水 400部に分散させた。こNa Mn W. 100 parts of the recovered catalyst was dispersed in 400 parts of pure water. This
0. 7 0. 3 0. 4 0. 7 0. 3 0. 4
れに 45質量%水酸ィ匕ナトリウム水溶液 130部をカ卩えて 60°Cで 3時間攪拌した (このと きの pHは 12. 4であった)後に、不溶部を濾別して溶液を得た。次いで 36質量%塩 酸を加えて pHを 6. 0に調整した後、 60°Cで 3時間攪拌し、不溶部を濾別してモリブ デン含有水溶液を得た。このようにして得られたモリブデン含有水溶液を、弱塩基性 イオン交換榭脂 (オルガノネ土製、商品名:XE— 583)カラムに通液した。この通液後 のモリブデン含有水溶液から、実施例 1のモリブデン回収 A1と同様の手順で、回収 モリブデン含有沈殿物(回収モリブデン含有物 E1)を得た。回収モリブデン含有物 E 1は、モリブデン 45. 8部を含んでいた。また、このときのモリブデンの回収率は 97. 4 %であった。 To this was added 130 parts of 45% by weight sodium hydroxide / sodium hydroxide solution and stirred at 60 ° C for 3 hours (the pH was 12.4 at this time), and then the insoluble part was filtered off to obtain a solution. . Subsequently, 36% by mass hydrochloric acid was added to adjust the pH to 6.0, followed by stirring at 60 ° C. for 3 hours. The insoluble part was filtered off to obtain a molybdenum-containing aqueous solution. The molybdenum-containing aqueous solution thus obtained was passed through a weakly basic ion exchange resin (manufactured by Organone, trade name: XE-583) column. From this molybdenum-containing aqueous solution after the liquid flow, the same procedure as in Molybdenum recovery A1 in Example 1 was used for recovery. A molybdenum-containing precipitate (recovered molybdenum-containing material E1) was obtained. The recovered molybdenum-containing material E 1 contained 45.8 parts of molybdenum. At this time, the recovery rate of molybdenum was 97.4%.
[0089] (アクリル酸製造用触媒 E1の製造) [0089] (Production of acrylic acid production catalyst E1)
純水 850部に上記で得られた回収モリブデン含有物 E1の全量を分散した後、 29 質量0 /0アンモニア水 24. 0部を加えて加熱攪拌した。これにパラタングステン酸アン モ -ゥム 4. 2部及びメタバナジン酸アンモ-ゥム 14. 0部を溶解した。これに硝酸鉄 8 . 0部を純水 170部に溶解した溶液をカ卩え、さらに、硝酸コバルト 4. 6部を純水 170 部に溶解した溶液、硝酸マンガン 3. 5部を純水 170部に溶解した溶液を順次加えた 。次に一般式 Na 0 · 2. 2SiO · 2. 2Η Οで表される水ガラス 3. 3部を純水 25部に After dispersing the whole amount of the recovered molybdenum-containing material E1 obtained above in pure water 850 parts, was heated and stirred with 29 mass 0/0 aqueous ammonia 24.0 parts. In this, 4.2 parts of ammonium paratungstate and 14.0 parts of ammonium metavanadate were dissolved. To this, a solution of 8.0 parts of iron nitrate dissolved in 170 parts of pure water was added. Further, a solution of 4.6 parts of cobalt nitrate dissolved in 170 parts of pure water, and 3.5 parts of manganese nitrate were added to 170 parts of pure water. The solution dissolved in the part was sequentially added. Next, water glass represented by the general formula Na 0 · 2.2SiO · 2.2Η 3. 3. 3 parts into 25 parts pure water
2 2 2  2 2 2
溶解した溶液を加え、更に 20質量%シリカゾル (分散媒:水) 41. 8部を加えた。この 混合液を参考例 5のアクリル酸製造用触媒 Εの製造と同様に蒸発乾固、乾燥、成形 及び焼成を実施してアクリル酸製造用触媒 E1を得た。このアクリル酸製造用触媒 E1 の酸素原子を除く組成は、参考例 5において製造したアクリル酸製造用触媒 Εと同様 の Mo V Fe Co Si Na Mn W であった。  The dissolved solution was added, and 41.8 parts of 20 mass% silica sol (dispersion medium: water) was further added. The mixture was evaporated to dryness, dried, molded and calcined in the same manner as in the production of the acrylic acid production catalyst soot in Reference Example 5 to obtain an acrylic acid production catalyst E1. The composition excluding oxygen atoms of this acrylic acid production catalyst E1 was Mo V Fe Co Si Na Mn W similar to the acrylic acid production catalyst し た produced in Reference Example 5.
12 3 0. 5 0. 4 4. 3 0. 7 0. 3 0. 4  12 3 0. 5 0. 4 4. 3 0. 7 0. 3 0. 4
[0090] (アクリル酸製造テスト El)  [0090] (Acrylic acid production test El)
このアクリル酸製造用触媒 Elを用いて参考例 5のアクリル酸の製造テスト Eと同じ反 応条件でアクリル酸の製造を行った結果、ァクロレインの転ィヒ率 98. 4%、アクリル酸 の選択率 95. 3%、アクリル酸の収率 93. 8%であり、参考例 5のアクリル酸製造用触 媒 Eと同等の性能であった。  This acrylic acid production catalyst El was used to produce acrylic acid under the same reaction conditions as in acrylic acid production test E in Reference Example 5. As a result, acrolein conversion was 98.4% and acrylic acid was selected. The rate was 95.3% and the yield of acrylic acid was 93.8%, which was the same performance as the catalyst E for acrylic acid production in Reference Example 5.
[0091] 〔参考例 6〕 [0091] [Reference Example 6]
(メタクリル酸製造用触媒 Fの製造)  (Production of methacrylic acid production catalyst F)
純水 750部にパラモリブデン酸アンモ-ゥム 500部およびパラタングステン酸アン モ -ゥム 6. 2部を 60°Cで溶解し、さらに二酸ィ匕ゲルマニウム 9. 9部を分散させた (A 液)。これとは別に純水 200部に、 85質量%リン酸水溶液 27. 2部、硝酸銅 11. 4部 、硝酸ニッケル 20. 6部、硝酸セシウム 23. 0部、および硝酸カリウム 11. 9部を順次 加えて溶解した (B液)。前記 A液に B液を加え水性スラリーとした後、メタバナジン酸 アンモ-ゥム 16. 6部をカロえ 85°Cで 2時間熟成した後に蒸発乾固した。このようにし て得られたケーキ状物質を 120°Cで乾燥させて粉砕した後に、直径および高さがとも に 3mmの円柱状に成形し、 380°Cで 4時間焼成してメタクリル酸製造用触媒 F (酸素 原子を除く組成: Mo P Cs K V Cu Ge Ni W )を得た。 500 parts of ammonium paramolybdate and 6.2 parts of ammonium paratungstate were dissolved at 60 ° C in 750 parts of pure water, and 9.9 parts of germanium diacid germanium were further dispersed ( A liquid). Separately, 200 parts of pure water, 27.2 parts of 85% by weight aqueous phosphoric acid solution, 11.4 parts of copper nitrate, 20.6 parts of nickel nitrate, 23.0 parts of cesium nitrate, and 19.9 parts of potassium nitrate were sequentially added. In addition, dissolved (solution B). Liquid B was added to the liquid A to form an aqueous slurry, and 16.6 parts of ammonium metavanadate were aged at 85 ° C. for 2 hours and then evaporated to dryness. Like this The cake-like material obtained in this way was dried at 120 ° C and pulverized, then formed into a cylindrical shape with a diameter and height of 3 mm, and calcined at 380 ° C for 4 hours. The composition excluding oxygen atoms: Mo P Cs KV Cu Ge Ni W) was obtained.
12 1 0. 5 0. 5 0. 6 0. 2 0. 4 0. 3 0. 1  12 1 0. 5 0. 5 0. 6 0. 2 0. 4 0. 3 0. 1
[0092] (メタクリル酸の製造テスト F)  [0092] (Production test F of methacrylic acid)
このメタクリル酸製造用触媒 Fを反応管に充填し、メタクロレイン 5容量%、酸素 10 容量%、水蒸気 30容量%及び窒素 55容量%の混合ガスを反応温度 290°C、接触 時間 3. 6秒で通じたところメタクロレインの転ィ匕率 87. 5%、メタクリル酸の選択率 85 . 6%、メタクリル酸の収率 74. 9%であった。  This catalyst F for producing methacrylic acid is filled in a reaction tube, and a mixed gas of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor and 55% by volume of nitrogen is reacted at 290 ° C and contact time is 3.6 seconds. The conversion of methacrolein was 87.5%, the selectivity of methacrylic acid was 85.6%, and the yield of methacrylic acid was 74.9%.
[0093] 〔実施例 7〕 [Example 7]
(メタクリル酸製造用触媒 F1の製造)  (Production of methacrylic acid production catalyst F1)
純水 710部に実施例 1のモリブデンの回収 A1と同様の方法で得られた回収モリブ デン含有物 F1の全量を分散させた後、 29質量%アンモニア水 135部を加えて 60°C で溶解した。これにパラタングステン酸アンモ-ゥム 0. 8部を溶解し、さらに二酸化ゲ ルマニウム 9. 4部を分散させた (A液)。これとは別に純水 190部に、 85質量%リン酸 水溶液 25. 8部、硝酸銅 10. 8部、硝酸ニッケル 19. 5部、硝酸セシウム 21. 8部およ び硝酸カリウム 11. 0部を順次加えて溶解した (B液)。前記 A液に B液をカ卩ぇ水性ス ラリーとした後、メタバナジン酸アンモ-ゥム 15. 7部をカ卩ぇ 85°Cで 2時間熟成した後 に蒸発乾固した。このようにして得られたケーキ状物質を参考例 6のメタクリル酸製造 用触媒 Fの製造と同様に乾燥、成形及び焼成を実施してメタクリル酸製造用触媒 F1 を得た。このメタクリル酸製造用触媒 F1の酸素原子を除ぐ袓成は、参考例 6において 製造したメタクリル酸製造用触媒 Fと同じ Mo P Cs K V Cu Ge Ni W  Recovery of molybdenum in Example 1 in 710 parts of pure water Disperse the entire amount of the recovered molybdenum-containing material F1 obtained in the same manner as in A1, then add 135 parts of 29 mass% aqueous ammonia and dissolve at 60 ° C. did. In this, 0.8 parts of ammonium paratungstate was dissolved, and 9.4 parts of germanium dioxide was further dispersed (liquid A). Separately, 190 parts of pure water, 25.8 parts of 85% by weight aqueous phosphoric acid, 10.8 parts of copper nitrate, 19.5 parts of nickel nitrate, 21.8 parts of cesium nitrate and 11.0 parts of potassium nitrate Sequentially added and dissolved (solution B). A liquid B was added to the liquid A to form an aqueous slurry, and 15.7 parts of ammonium metavanadate were aged at 85 ° C. for 2 hours, and then evaporated to dryness. The cake-like material thus obtained was dried, shaped and calcined in the same manner as in the production of the methacrylic acid production catalyst F in Reference Example 6 to obtain a methacrylic acid production catalyst F1. The formation of this methacrylic acid production catalyst F1 by removing oxygen atoms is the same as the methacrylic acid production catalyst F produced in Reference Example 6 Mo P Cs K V Cu Ge Ni W
12 1 0. 5 0. 5 0. 6 0. 2 0. 4 0. 3 0 であった。  12 1 0. 5 0. 5 0. 6 0. 2 0. 4 0. 3 0.
[0094] (メタクリル酸製造テスト Fl)  [0094] (Methacrylic acid production test Fl)
このメタクリル酸製造用触媒 F1を用いて参考例 6のメタクリル酸製造テスト Fと同じ 反応条件でメタクリル酸の製造を行った結果、メタクロレインの転ィ匕率 87. 3%、メタク リル酸の選択率 85. 7%、メタクリル酸の収率 74. 8%であり、参考例 6のメタクリル酸 製造用触媒 Fと同等の性能であった。  This methacrylic acid production catalyst F1 was used to produce methacrylic acid under the same reaction conditions as methacrylic acid production test F of Reference Example 6. As a result, the methacrolein conversion rate was 87.3% and the selection of methacrylic acid. The ratio was 85.7% and the yield of methacrylic acid was 74.8%, which was the same performance as the catalyst F for producing methacrylic acid of Reference Example 6.
[0095] 〔実施例 8〕 (モリブデンの回収 F2) [Example 8] (Molybdenum recovery F2)
参考例 6のメタクリル酸の製造を 2000時間行った後の触媒を回収した。この回収し た触媒 100部にはモリブデン 56. 2部、リン 1. 5部、セシウム 3. 2部、カリウム 1. 0部 、ノナジゥム 1. 5部、銅 0. 6部、ゲルマニウム 1. 4部、ニッケル 0. 9部、及びタングス テン 0. 9部が含まれていた。なお、この回収触媒の酸素を除く元素の糸且成は Mo P  The catalyst after the methacrylic acid of Reference Example 6 was produced for 2000 hours was recovered. 100 parts of this recovered catalyst were 56.2 parts molybdenum, 1.5 parts phosphorus, 3.2 parts cesium, 1.0 part potassium, 1.5 parts nonadium, 0.6 parts copper, 1.4 parts germanium. , 0.9 parts of nickel and 0.9 parts of tungsten. Note that the elements of this recovered catalyst excluding oxygen are composed of Mo P
12 1 12 1
Cs K V Cu Ge Ni W であった。この回収した触媒 500部を炭酸ナトリCs K V Cu Ge Ni W. 500 parts of this recovered catalyst
0. 5 0. 5 0. 6 0. 2 0. 4 0. 3 0. 1 0. 5 0. 5 0. 6 0. 2 0. 4 0. 3 0. 1
ゥム 350部と混合し、実施例 2のモリブデンの回収 B1と同様の手順でモリブデン含有 水溶液を得た。この溶液を 36質量%塩酸で pH7に中和した後に、塩化マグネシウム 6水和物 64. 5部を純水 200部に溶解させた溶液と 29質量%アンモニア水 14. 5部 を加え、さらに 29質量%アンモニア水を加えて pHを 9に調整した後、攪拌しながら 3 0°Cで 3時間保持し、生成した沈殿物と溶液 (モリブデン含有水溶液)を濾別した。こ のようにして得られたモリブデン含有水溶液から、実施例 2のモリブデンの回収 B1と 同様の手順で、モリブデン含有沈殿物(回収モリブデン含有物 F2)を得た。回収モリ ブデン含有物 F2は、モリブデン 272. 0部、バナジウム 6. 5部、タングステン 3. 8部、 カリウム 1. 1部及びセシウム 6. 5部を含んでいた。また、このときのモリブデンの回収 率は 96. 8%であった。 A molybdenum-containing aqueous solution was obtained in the same manner as in the recovery of molybdenum in Example 2 B1. After neutralizing this solution to pH 7 with 36% by mass hydrochloric acid, a solution prepared by dissolving 64.5 parts of magnesium chloride hexahydrate in 200 parts of pure water and 14.5 parts of 29% by mass ammonia water were added, and 29 Mass% aqueous ammonia was added to adjust the pH to 9, and the mixture was kept at 30 ° C. for 3 hours with stirring, and the produced precipitate and the solution (molybdenum-containing aqueous solution) were separated by filtration. From the molybdenum-containing aqueous solution thus obtained, a molybdenum-containing precipitate (recovered molybdenum-containing material F2) was obtained in the same manner as in the molybdenum recovery B1 of Example 2. The recovered molybdenum-containing material F2 contained 272.0 parts molybdenum, 6.5 parts vanadium, 3.8 parts tungsten, 1.1 parts potassium and 6.5 parts cesium. The molybdenum recovery rate at this time was 96.8%.
(メタクリル酸製造用触媒 F2の製造)  (Production of methacrylic acid production catalyst F2)
純水 750部に実施例 8で得られた回収モリブデン含有物 F2の全量を分散させた後 、 29質量0 /0アンモニア水 142. 7部をカ卩えて 60°Cで溶解した。これにパラタンダステ ン酸アンモ-ゥム 0. 8部を溶解し、さらに二酸ィ匕ゲルマニウム 9. 9部を分散させた (A 液)。これとは別に純水 200部に、 85質量%リン酸水溶液 27. 2部、硝酸銅 11. 4部 、硝酸ニッケル 20. 6部、硝酸セシウム 13. 5部および硝酸カリウム 9. 1部を順次カロ えて溶解した (B液)。前記 A液に B液を加え水性スラリーとした後、メタバナジン酸ァ ンモ -ゥム 1. 7部を加え 85°Cで 2時間熟成した後に蒸発乾固した。このようにして得 られたケーキ状物質を参考例 6のメタクリル酸製造用触媒 Fの製造と同様に乾燥、成 形及び焼成を実施してメタクリル酸製造用触媒 F2を得た。このメタクリル酸製造用触 媒 F2の酸素原子を除く組成は、参考例 6において製造したメタクリル酸製造用触媒 Fと同じ Mo P Cs K V Cu Ge Ni W であった。 [0097] (メタクリル酸製造テスト F2) After the entire amount of the recovered molybdenum-containing material F2 obtained in Example 8 in pure water 750 parts were dispersed, were dissolved 29 weight 0/0 aqueous ammonia 142.7 parts by mosquitoes卩Ete 60 ° C. To this, 0.8 part of ammonium pantandasterate was dissolved, and 9.9 parts of germanium diacid germanium was further dispersed (solution A). Separately, 200 parts of pure water, 27.2 parts of 85 mass% phosphoric acid aqueous solution, 11.4 parts of copper nitrate, 20.6 parts of nickel nitrate, 13.5 parts of cesium nitrate, and 9.1 parts of potassium nitrate were sequentially added. It dissolved (liquid B). Liquid B was added to the liquid A to make an aqueous slurry, 1.7 parts of ammonium metavanadate was added and aged at 85 ° C for 2 hours, and then evaporated to dryness. The cake-like material thus obtained was dried, shaped and calcined in the same manner as in the production of methacrylic acid production catalyst F in Reference Example 6 to obtain methacrylic acid production catalyst F2. The composition of this catalyst F2 for producing methacrylic acid, excluding oxygen atoms, was the same Mo P Cs KV Cu Ge Ni W as the catalyst F for producing methacrylic acid produced in Reference Example 6. [0097] (Methacrylic acid production test F2)
このメタクリル酸製造用触媒 F2を用いて参考例 6のメタクリル酸製造テスト Fと同じ 反応条件でメタクリル酸の製造を行った結果、メタクロレインの転ィ匕率 87. 4%、メタク リル酸の選択率 85. 7%、メタクリル酸の収率 74. 9%であり、参考例 6のメタクリル酸 製造用触媒 Fと同等の性能であった。  This methacrylic acid production catalyst F2 was used to produce methacrylic acid under the same reaction conditions as in methacrylic acid production test F of Reference Example 6. As a result, the methacrolein conversion rate was 87.4% and the selection of methacrylic acid. The ratio was 85.7% and the yield of methacrylic acid was 74.9%, which was the same performance as Catalyst F for producing methacrylic acid in Reference Example 6.
産業上の利用可能性  Industrial applicability
[0098] 本発明によれば、少なくともモリブデンを含むモリブデン含有物よりモリブデンを高 収率で回収することができるので、使用後のモリブデン含有物を有効に利用できる。 また、本発明を用いることにより少なくともモリブデンを含むモリブデン含有物より回収 した回収モリブデン含有物を原料として触媒を製造することができ、少なくともモリブ デンを含むモリブデン含有物、特にァクロレイン製造用触媒、メタクロレイン製造用触 媒、アクリル酸製造用触媒、及びメタクリル酸製造用触媒を使用後も有効に活用する ことができる。 [0098] According to the present invention, molybdenum can be recovered in a higher yield than a molybdenum-containing material containing at least molybdenum, so that the molybdenum-containing material after use can be used effectively. Further, by using the present invention, a catalyst can be produced from a recovered molybdenum-containing material recovered from a molybdenum-containing material containing at least molybdenum, and a molybdenum-containing material containing at least molybdenum, particularly a catalyst for acrolein production, methacrolein. The catalyst for production, the catalyst for producing acrylic acid, and the catalyst for producing methacrylic acid can be effectively utilized even after use.

Claims

請求の範囲 The scope of the claims
[1] 少なくともモリブデンを含み、かつビスマス又はバナジウムを含むモリブデン含有物 と、アルカリと、水とを用いて、少なくともモリブデンが水に溶解したモリブデン含有水 溶液を得る工程を有することを特徴とするモリブデンの回収方法。  [1] Molybdenum comprising a step of obtaining a molybdenum-containing aqueous solution in which at least molybdenum is dissolved in water by using a molybdenum-containing material containing at least molybdenum and containing bismuth or vanadium, an alkali, and water. Recovery method.
[2] (a)前記モリブデン含有物を水に分散させた分散液を調製する工程と、  [2] (a) preparing a dispersion in which the molybdenum-containing material is dispersed in water;
(b)前記分散液にアルカリを添加して該分散液の pHを 8以上に調整する工程と、 (b) adding alkali to the dispersion to adjust the pH of the dispersion to 8 or higher;
(c)前記 pHが 8以上に調整された該分散液力 不溶物を除去して、少なくともモリブ デンが水に溶解したモリブデン含有水溶液を得る工程と (c) removing the dispersion liquid insoluble matter whose pH has been adjusted to 8 or more to obtain a molybdenum-containing aqueous solution in which at least molybdenum is dissolved in water;
を有することを特徴とする請求項 1に記載のモリブデンの回収方法。  The method for recovering molybdenum according to claim 1, comprising:
[3] (d)少なくともモリブデンを含むモリブデン含有物と、アルカリとを混合する工程と、 [3] (d) mixing a molybdenum-containing material containing at least molybdenum and an alkali;
(e)得られた混合物を 600〜: LOOO°Cで焙焼する工程と、  (e) the obtained mixture is roasted at 600-: LOOO ° C;
(f)得られた焙焼物に含まれるモリブデンを水で抽出して、少なくともモリブデンが水 に溶解したモリブデン含有水溶液を得る工程と  (f) extracting molybdenum contained in the obtained roasted product with water to obtain a molybdenum-containing aqueous solution in which at least molybdenum is dissolved in water;
を有することを特徴とするモリブデンの回収方法。  A method for recovering molybdenum, comprising:
[4] 前記モリブデン含有物が、下記式(1)で表される組成を有する、プロピレン、やノブ チレン、及び tert—ブチルアルコールの!/、ずれかの気相接触酸化に用いる触媒であ ることを特徴とする請求項 1〜3のいずれかに記載のモリブデンの回収方法。 [4] The molybdenum-containing material is a catalyst used for gas phase catalytic oxidation of propylene, nobylene, and tert-butyl alcohol! /, Which has a composition represented by the following formula (1): The method for recovering molybdenum according to any one of claims 1 to 3.
Mo Bi Fe M1 X1 Y1 Ζ1 Si Ο (1) Mo Bi Fe M 1 X 1 Y 1 Ζ 1 Si Ο (1)
a b c d e f g h i  a b c d e f g h i
(式中、 Mo、 Bi、 Fe、 Si及び Oは、それぞれモリブデン、ビスマス、鉄、ケィ素及び酸 素を示し、 M1は、コノ レト及びニッケル力 なる群より選ばれた少なくとも 1種の元素 を示し、 X1は、クロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム 、スズ、タンタル及び亜鉛カゝらなる群より選ばれた少なくとも 1種の元素を示し、 Y1は、 リン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンか らなる群より選ばれた少なくとも 1種の元素を示し、 Z1は、リチウム、ナトリウム、カリウム 、ルビジウム、セシウム及びタリウムなる群より選ばれた少なくとも 1種の元素を示す。 a 、 b、 c、 d、 e、 f、 g、 h及び iは各元素の原子比を表し、 a= 12のとき、 b = 0. 01〜3、 c =0. 01〜5、 d= l〜12、 e = 0〜8、 f=0〜5、 g = 0. 001〜2、 h=0〜20であり、 i は前記各成分の原子価を満足するのに必要な酸素原子比である。) (In the formula, Mo, Bi, Fe, Si, and O represent molybdenum, bismuth, iron, silicon, and oxygen, respectively, and M 1 is at least one element selected from the group consisting of conoleto and nickel power. X 1 represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum, and zinc carbonate, and Y 1 represents phosphorus. Represents at least one element selected from the group consisting of boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium, and Z 1 is selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium. Indicates at least one selected element: a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element, and when a = 12, b = 0.01-3 , C = 0.01-5, d = l-12, e = 0 to 8, f = 0 to 5, g = 0.001 to 2, h = 0 to 20, and i is an oxygen atomic ratio necessary to satisfy the valence of each component.)
[5] 前記モリブデン含有物が、下記式(2)で表される組成を有する、ァクロレインの気相 接触酸ィ匕に用いる触媒であることを特徴とする請求項 1〜3のいずれかに記載のモリ ブデンの回収方法。 [5] The catalyst according to any one of claims 1 to 3, wherein the molybdenum-containing material is a catalyst for use in a gas phase catalytic acid of acrolein having a composition represented by the following formula (2). To recover the molybdenum.
Mo V A2X2 Y2 Ο (2) Mo VA 2 X 2 Y 2 Ο (2)
j k 1 m η ο  j k 1 m η ο
(式中、 Μο、 V及び Οはそれぞれモリブデン、バナジウム及び酸素を示し、 Α2は、鉄 、コバルト、クロム、アルミニウム及びストロンチウム力 なる群より選ばれた少なくとも 一種の元素を示し、 X2は、ゲルマニウム、ホウ素、ヒ素、セレン、銀、ケィ素、ナトリウム 、テルル、リチウム、アンチモン、リン、カリウム、及びバリウムカゝらなる群より選ばれた 少なくとも 1種の元素を示し、 Υ2は、マグネシウム、チタン、マンガン、銅、亜鉛、ジル コ-ゥム、ニオブ、タングステン、タンタル、カルシウム、スズ及びビスマスからなる群よ り選ばれた少なくとも 1種の元素を示す。 j、 k、 1、 m、 n及び oは各元素の原子比率を 表し、 j = 12のとき、 k=0. 01〜6、 1=0〜5、 m=0〜10、 n=0〜5であり、 oは前記 各成分の原子価を満足するのに必要な酸素原子数である。 ) (In the formula, Μο, V and Ο represent molybdenum, vanadium and oxygen, respectively, Α 2 represents at least one element selected from the group consisting of iron, cobalt, chromium, aluminum and strontium, and X 2 represents germanium, shown boron, arsenic, selenium, silver, Keimoto, sodium, tellurium, lithium, antimony, phosphorus, potassium, and at least one element selected from Bariumuka Ra group consisting, Upsilon 2 are magnesium, titanium And at least one element selected from the group consisting of manganese, copper, zinc, zirconium, niobium, tungsten, tantalum, calcium, tin and bismuth j, k, 1, m, n and o represents the atomic ratio of each element, and when j = 12, k = 0.01-6, 1 = 0-5, m = 0-10, n = 0-5, Necessary to satisfy the valence The number of oxygen atoms.
[6] (X)前記モリブデン含有水溶液に酸を添加して該モリブデン含有水溶液の pHを 3 以下に調整して、モリブデン含有沈殿物を生じさせる工程と、 [6] (X) adding an acid to the molybdenum-containing aqueous solution to adjust the pH of the molybdenum-containing aqueous solution to 3 or less to produce a molybdenum-containing precipitate;
(y)前記モリブデン含有沈殿物を分離する工程と、  (y) separating the molybdenum-containing precipitate;
をさらに有することを特徴とする請求項 1〜5のいずれかに記載のモリブデンの回収 方法。  The method for recovering molybdenum according to any one of claims 1 to 5, further comprising:
[7] 請求項 1〜5の 、ずれかに記載のモリブデンの回収方法で得られたモリブデン含有 水溶液、または請求項 6に記載のモリブデンの回収方法で得られたモリブデン含有 沈殿物を用いて、少なくともモリブデンを含有する触媒を製造することを特徴とする触 媒の製造方法。  [7] Using the molybdenum-containing aqueous solution obtained by the molybdenum recovery method according to any one of claims 1 to 5, or the molybdenum-containing precipitate obtained by the molybdenum recovery method according to claim 6, A method for producing a catalyst, comprising producing a catalyst containing at least molybdenum.
[8] さらに他のモリブデン原料を併用することを特徴とする請求項 7に記載の触媒の製 造方法。  8. The method for producing a catalyst according to claim 7, wherein another molybdenum raw material is used in combination.
PCT/JP2006/317548 2005-09-16 2006-09-05 Methods for recovery of molybdenum and process for preparation of catalysts WO2007032228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006530020A JPWO2007032228A1 (en) 2005-09-16 2006-09-05 Molybdenum recovery method and catalyst production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005270308 2005-09-16
JP2005-270308 2005-09-16

Publications (1)

Publication Number Publication Date
WO2007032228A1 true WO2007032228A1 (en) 2007-03-22

Family

ID=37864827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317548 WO2007032228A1 (en) 2005-09-16 2006-09-05 Methods for recovery of molybdenum and process for preparation of catalysts

Country Status (2)

Country Link
JP (1) JPWO2007032228A1 (en)
WO (1) WO2007032228A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102115A1 (en) * 2008-02-13 2009-08-20 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for recovering molybdenum from molybdenum etching solution
WO2010111548A2 (en) * 2009-03-25 2010-09-30 Chevron U.S.A. Inc. Process for recovering metals from coal liquefaction residue containing spent catalysts
CN101967562A (en) * 2010-11-23 2011-02-09 云南临沧鑫圆锗业股份有限公司 Method for recovering germanium from silicon-germanium alloy by wet method
JP2011031169A (en) * 2009-07-31 2011-02-17 Sumitomo Chemical Co Ltd Method for recovering molybdenum and cobalt
DE102010047136A1 (en) 2009-09-30 2011-04-28 Sumitomo Chemical Company, Ltd. Process for the preparation of a complex oxide catalyst
JP2012013617A (en) * 2010-07-02 2012-01-19 Japan Atomic Energy Agency Process for recovering molybdenum from technetium-99m generator
DE102012001801A1 (en) 2011-01-31 2012-08-02 Sumitomo Chemical Company, Ltd. Recovering molybdenum and cobalt for preparing composite oxide, by blending composite oxide comprising molybdenum and cobalt with ceramic compact and aqueous extraction solution, and extracting molybdenum and cobalt into aqueous phase
JP2012206867A (en) * 2011-03-29 2012-10-25 Sumitomo Metal Mining Co Ltd Method for producing molybdenum trioxide
JP2013007107A (en) * 2011-06-27 2013-01-10 Sumitomo Metal Mining Co Ltd Recovering method of molybdenum and extraction solvent of molybdenum
CN102912132A (en) * 2011-08-05 2013-02-06 荆门市格林美新材料有限公司 Method of recycling valuable metals from waste acrylonitrile catalyst
WO2014155547A1 (en) * 2013-03-27 2014-10-02 株式会社 日立製作所 Metal separation and recovery method
KR20160074088A (en) * 2014-12-18 2016-06-28 공주대학교 산학협력단 The method of efficient recovering molybdenum from waste water
CN108585045A (en) * 2018-05-25 2018-09-28 万华化学集团股份有限公司 The recovery method of the homogeneous molybdenum complex catalyst of epoxidation of propylene
CN109750156A (en) * 2019-03-15 2019-05-14 华北电力大学 A method of recycling vanadium, tungsten/molybdenum and titanium elements from discarded SCR denitration
CN112553469A (en) * 2021-02-26 2021-03-26 中国科学院过程工程研究所 Method for separating vanadium, tungsten and arsenic from sodium hydroxide waste liquid and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565328A (en) * 1979-06-22 1981-01-20 Dowa Mining Co Ltd Selective molybdenum extraction from waste catalyst for desulfurization
JPH05156375A (en) * 1991-12-05 1993-06-22 Taiyo Koukou Kk Method for leaching valuable metal from waste catalyst
JPH1133393A (en) * 1997-07-17 1999-02-09 Mitsubishi Rayon Co Ltd Fixed bed reactor and production of unsaturated carboxylic acid
JP2004082099A (en) * 2002-06-27 2004-03-18 Mitsubishi Rayon Co Ltd Filling method of solid catalyst
WO2005058497A1 (en) * 2003-12-18 2005-06-30 Mitsubishi Rayon Co., Ltd. Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565328A (en) * 1979-06-22 1981-01-20 Dowa Mining Co Ltd Selective molybdenum extraction from waste catalyst for desulfurization
JPH05156375A (en) * 1991-12-05 1993-06-22 Taiyo Koukou Kk Method for leaching valuable metal from waste catalyst
JPH1133393A (en) * 1997-07-17 1999-02-09 Mitsubishi Rayon Co Ltd Fixed bed reactor and production of unsaturated carboxylic acid
JP2004082099A (en) * 2002-06-27 2004-03-18 Mitsubishi Rayon Co Ltd Filling method of solid catalyst
WO2005058497A1 (en) * 2003-12-18 2005-06-30 Mitsubishi Rayon Co., Ltd. Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ONO H.: "Shiyozumi Datsuryu Shokubai kara no Kinzoku no Chushutsu", BUNRI GIJUTSU, vol. 25, no. 2, 1995, pages 33 - 36, XP003010186 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102115A1 (en) * 2008-02-13 2009-08-20 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for recovering molybdenum from molybdenum etching solution
WO2010111548A2 (en) * 2009-03-25 2010-09-30 Chevron U.S.A. Inc. Process for recovering metals from coal liquefaction residue containing spent catalysts
WO2010111548A3 (en) * 2009-03-25 2011-01-13 Chevron U.S.A. Inc. Process for recovering metals from coal liquefaction residue containing spent catalysts
US8628735B2 (en) 2009-03-25 2014-01-14 Chevron U.S.A. Inc. Process for recovering metals from coal liquefaction residue containing spent catalysts
CN102361994A (en) * 2009-03-25 2012-02-22 雪佛龙美国公司 Process for recovering metals from coal liquefaction residue containing spent catalysts
AU2010229809B2 (en) * 2009-03-25 2015-02-12 Chevron U.S.A. Inc. Process for recovering metals from coal liquefaction residue containing spent catalysts
JP2011031169A (en) * 2009-07-31 2011-02-17 Sumitomo Chemical Co Ltd Method for recovering molybdenum and cobalt
DE102010032889A1 (en) 2009-07-31 2011-03-10 Sumitomo Chemical Company, Limited Process for recovering molybdenum and cobalt
DE102010047136A1 (en) 2009-09-30 2011-04-28 Sumitomo Chemical Company, Ltd. Process for the preparation of a complex oxide catalyst
JP2012013617A (en) * 2010-07-02 2012-01-19 Japan Atomic Energy Agency Process for recovering molybdenum from technetium-99m generator
CN101967562A (en) * 2010-11-23 2011-02-09 云南临沧鑫圆锗业股份有限公司 Method for recovering germanium from silicon-germanium alloy by wet method
JP2012158482A (en) * 2011-01-31 2012-08-23 Sumitomo Chemical Co Ltd Method for recovering molybdenum and cobalt
DE102012001801A1 (en) 2011-01-31 2012-08-02 Sumitomo Chemical Company, Ltd. Recovering molybdenum and cobalt for preparing composite oxide, by blending composite oxide comprising molybdenum and cobalt with ceramic compact and aqueous extraction solution, and extracting molybdenum and cobalt into aqueous phase
JP2012206867A (en) * 2011-03-29 2012-10-25 Sumitomo Metal Mining Co Ltd Method for producing molybdenum trioxide
JP2013007107A (en) * 2011-06-27 2013-01-10 Sumitomo Metal Mining Co Ltd Recovering method of molybdenum and extraction solvent of molybdenum
CN102912132A (en) * 2011-08-05 2013-02-06 荆门市格林美新材料有限公司 Method of recycling valuable metals from waste acrylonitrile catalyst
WO2014155547A1 (en) * 2013-03-27 2014-10-02 株式会社 日立製作所 Metal separation and recovery method
JP6035617B2 (en) * 2013-03-27 2016-11-30 株式会社日立製作所 Metal separation and recovery method
KR20160074088A (en) * 2014-12-18 2016-06-28 공주대학교 산학협력단 The method of efficient recovering molybdenum from waste water
KR102319669B1 (en) * 2014-12-18 2021-11-01 공주대학교 산학협력단 The method of efficient recovering molybdenum from waste water
CN108585045A (en) * 2018-05-25 2018-09-28 万华化学集团股份有限公司 The recovery method of the homogeneous molybdenum complex catalyst of epoxidation of propylene
CN109750156A (en) * 2019-03-15 2019-05-14 华北电力大学 A method of recycling vanadium, tungsten/molybdenum and titanium elements from discarded SCR denitration
CN112553469A (en) * 2021-02-26 2021-03-26 中国科学院过程工程研究所 Method for separating vanadium, tungsten and arsenic from sodium hydroxide waste liquid and application
CN112553469B (en) * 2021-02-26 2021-05-11 中国科学院过程工程研究所 Method for separating vanadium, tungsten and arsenic from sodium hydroxide waste liquid and application

Also Published As

Publication number Publication date
JPWO2007032228A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
WO2007032228A1 (en) Methods for recovery of molybdenum and process for preparation of catalysts
JP4764338B2 (en) Molybdenum recovery method and catalyst production method
KR101431293B1 (en) Fluidized-bed catalyst for the production of acrylonitrile and process for the production of acrylonitrile
JP5919870B2 (en) Method for producing acrylonitrile production catalyst and method for producing acrylonitrile using the acrylonitrile production catalyst
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP3887511B2 (en) Catalyst production method
CN110300622B (en) Catalyst for methacrylic acid production, catalyst precursor for methacrylic acid production, processes for producing these, process for producing methacrylic acid, and process for producing methacrylic acid ester
US7229945B2 (en) Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JP5210834B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP5030438B2 (en) Method for producing catalyst and method for producing methacrylic acid
JP4951457B2 (en) Raw material for production of methacrylic acid catalyst, production method thereof, production method of methacrylic acid synthesis catalyst, and production method of methacrylic acid
JP5210835B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
TWI570062B (en) High molybdenum mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP5885019B2 (en) Method for producing a catalyst for methacrylic acid production
JP2002306970A (en) Catalyst for manufacturing methacrylic acid, method for manufacturing the catalyst and method for manufacturing methacrylic acid
JP6680367B2 (en) Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid and α, β-unsaturation Method for producing carboxylic acid ester
JP5011177B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP2008000710A (en) Manufacturing method of heteropolyacid based catalyst for manufacturing methacrylic acid
JP4098141B2 (en) Method for producing catalyst for acrylonitrile synthesis
WO2019078244A1 (en) METHOD FOR PRODUCING CATALYST FOR PRODUCTION OF α,β-UNSATURATED CARBOXYLIC ACID, METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID ESTER
JP2009226270A (en) Catalyst for producing methacrylic acid, its manufacturing method, and method for producing methacrylic acid
JPS59212445A (en) Production of unsaturated acid
JP2006081974A (en) Manufacturing method of catalyst for methacrylic acid production

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006530020

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797453

Country of ref document: EP

Kind code of ref document: A1