JP4951457B2 - Raw material for production of methacrylic acid catalyst, production method thereof, production method of methacrylic acid synthesis catalyst, and production method of methacrylic acid - Google Patents

Raw material for production of methacrylic acid catalyst, production method thereof, production method of methacrylic acid synthesis catalyst, and production method of methacrylic acid Download PDF

Info

Publication number
JP4951457B2
JP4951457B2 JP2007261998A JP2007261998A JP4951457B2 JP 4951457 B2 JP4951457 B2 JP 4951457B2 JP 2007261998 A JP2007261998 A JP 2007261998A JP 2007261998 A JP2007261998 A JP 2007261998A JP 4951457 B2 JP4951457 B2 JP 4951457B2
Authority
JP
Japan
Prior art keywords
catalyst
parts
methacrylic acid
raw material
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007261998A
Other languages
Japanese (ja)
Other versions
JP2009022945A (en
Inventor
奉正 辰已
祐治 藤森
啓幸 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2007261998A priority Critical patent/JP4951457B2/en
Publication of JP2009022945A publication Critical patent/JP2009022945A/en
Application granted granted Critical
Publication of JP4951457B2 publication Critical patent/JP4951457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、触媒製造用原料、特にメタクリル酸合成に用いた後の触媒より触媒構成元素を回収して得られる触媒製造用原料、その製造方法、これを用いた触媒、メタクリル酸の製造方法に関する。   The present invention relates to a raw material for producing a catalyst, particularly a raw material for producing a catalyst obtained by recovering a catalyst constituent element from a catalyst used for synthesis of methacrylic acid, a production method thereof, a catalyst using the same, and a production method of methacrylic acid .

モリブデン、A元素(Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素を示す。)及びX元素(カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種の元素を示す。)を含む固体触媒は、例えば、イソ酪酸の酸化脱水素によるメタクリル酸の製造、メタクロレインの気相接触酸化によるメタクリル酸の製造等で用いるヘテロポリ酸系触媒として有効であることが広く知られ、イソブチレンの直接気相酸化法によるメタクリル酸製造プロセスに使用されているものもある。   Mo, A element (A represents at least one element selected from the group consisting of phosphorus and arsenic) and X element (at least one element selected from the group consisting of potassium, rubidium, cesium and thallium). ) Is widely known to be effective as a heteropolyacid catalyst used in the production of methacrylic acid by oxidative dehydrogenation of isobutyric acid, the production of methacrylic acid by gas-phase catalytic oxidation of methacrolein, and the like. Some are used in the process of producing methacrylic acid by the direct vapor phase oxidation of isobutylene.

一般に、工業的気相酸化反応では触媒は一定期間使用され、使用後、触媒効率が低下した使用済み触媒は反応器より取り出され、新しい触媒と交換される。この際に取り出された使用済み触媒は、例えば、モリブデン、リン、カリウム、ルビジウム、セシウム等の触媒製造用原料として有用な元素が多く含まれている。これらの元素を回収する技術の開発あるいは使用済み触媒を再生して使用する技術の開発は経済的にも、また、環境への負荷を低減する上でも非常に重要な課題となっている。   In general, in an industrial gas phase oxidation reaction, a catalyst is used for a certain period of time, and after use, a spent catalyst with reduced catalyst efficiency is taken out of the reactor and replaced with a new catalyst. The spent catalyst taken out at this time contains many elements useful as raw materials for catalyst production, such as molybdenum, phosphorus, potassium, rubidium, and cesium. Development of a technique for recovering these elements or a technique for regenerating and using a used catalyst has become a very important issue both economically and in reducing the burden on the environment.

使用済み触媒からの成分の回収方法について、反応に使用したヘテロポリ酸塩系触媒を水酸化ナトリウムで加熱分解した後、ナトリウム型強酸性樹脂と接触させてセシウム、ルビジウム、タリウム又はカリウムを選択的に吸着分離し、吸着した元素を硫酸で溶離してそれぞれの硫酸塩として回収する工程と、前記工程で分離したヘテロポリ酸のナトリウム塩溶液をプロトン型強酸性イオン交換樹脂で処理してヘテロポリ酸を回収する工程からなる方法が報告されている(特許文献1)。   Regarding the method for recovering components from the spent catalyst, the heteropolyacid salt catalyst used in the reaction was thermally decomposed with sodium hydroxide, and then contacted with a sodium-type strongly acidic resin to selectively select cesium, rubidium, thallium or potassium. The process of adsorbing and separating the adsorbed elements with sulfuric acid to recover each sulfate as a sulfate, and the heteropolyacid sodium salt solution separated in the previous process is treated with a proton-type strongly acidic ion exchange resin to recover the heteropolyacid. There has been reported a method comprising the steps of (Patent Document 1).

また、触媒の再生については、メタクリル酸の製造に使用した使用済み触媒を塩酸で処理する再生方法(特許文献2)、含窒素ヘテロ環化合物で処理する再生方法(特許文献3)、失活触媒に対してアンモニウム根及び硝酸根を添加する再生方法(例えば、特開昭61−283352号公報(特許文献4)参照)、結晶性アンチモン酸などの無機系イオン交換体で処理する再生方法(特許文献5)等が知られている。   As for regeneration of the catalyst, a regeneration method for treating the used catalyst used in the production of methacrylic acid with hydrochloric acid (Patent Document 2), a regeneration method for treating with a nitrogen-containing heterocyclic compound (Patent Document 3), a deactivated catalyst Regeneration method of adding ammonium root and nitrate root to the surface (for example, see JP-A-61-283352 (Patent Document 4)), Regeneration method of treating with an inorganic ion exchanger such as crystalline antimonic acid (patent Document 5) is known.

しかしながら、特許文献1に開示された回収方法は2つの工程でイオン交換樹脂を用いている。イオン交換樹脂を用いる回収方法では回収処理される溶液中の被回収元素の濃度を低くしなければならず、このように2つの工程でイオン交換樹脂を用いることは結果として設備面積の増大、イオン交換樹脂使用量の増加を伴い不経済であるという問題等がある。また、特許文献2〜5等に記載されている触媒の再生方法について、触媒はある程度のレベルまでは再生されるが、通常の方法で製造された触媒よりもメタクリル酸の収率が低いという問題等がある。   However, the recovery method disclosed in Patent Document 1 uses an ion exchange resin in two steps. In the recovery method using the ion exchange resin, the concentration of the element to be recovered in the solution to be recovered must be lowered. Thus, the use of the ion exchange resin in two steps results in an increase in equipment area, There is a problem that it is uneconomical with an increase in the amount of exchange resin used. In addition, with respect to the catalyst regeneration methods described in Patent Documents 2 to 5, etc., the catalyst is regenerated to a certain level, but the yield of methacrylic acid is lower than that of a catalyst produced by a normal method. Etc.

これら問題を解決した方法として、使用済み回収触媒を水に分散した後、アルカリ金属化合物やアンモニア水を加え、ついで該混合液をpH6.5以下にしてモリブデンをA元素(Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素)と共に沈殿させ、触媒の製造に使用可能な回収原料として回収する方法がある(特許文献6)。しかしながら、特許文献6に記載された回収方法により得られた回収物は、三酸化モリブデン等のモリブデン酸化物を原料として使用する触媒の製造に適用するために熱処理をし、酸化物の状態にして触媒を製造した際に、通常の三酸化モリブデン等のモリブデン酸化物を用いて製造した新品触媒よりも反応成績が低いという問題がある。
特開平07−213922号公報 特開昭54−002293号公報 特開昭60−232247号公報 特開昭61−283352号公報 特開平06−285373号公報 特開2001−29799号公報
As a method for solving these problems, after dispersing the used recovered catalyst in water, an alkali metal compound or ammonia water is added, and then the mixture is adjusted to pH 6.5 or less to replace molybdenum with element A (A is derived from phosphorus and arsenic). And at least one element selected from the group described above, and then recovered as a recovered raw material that can be used for the production of a catalyst (Patent Document 6). However, the recovered material obtained by the recovery method described in Patent Document 6 is heat-treated to be applied to the production of a catalyst using molybdenum oxide such as molybdenum trioxide as a raw material, and is converted into an oxide state. When the catalyst is produced, there is a problem that the reaction result is lower than that of a new catalyst produced using a normal molybdenum oxide such as molybdenum trioxide.
JP 07-213992 A JP-A-54-002293 JP 60-232247 A JP-A-61-283352 Japanese Patent Laid-Open No. 06-285373 JP 2001-29799 A

本発明の課題は、反応に使用した少なくともモリブデン、A元素(Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素を示す。)を含む触媒から回収したモリブデン、A元素を含む化合物であり、三酸化モリブデン等のモリブデン酸化物を原料として使用する触媒の製造に適用でき、資源の有効活用を図ることができる触媒製造用原料、その製造方法、これを用いた触媒、メタクリル酸の製造方法を提供することにある。   An object of the present invention is a compound containing at least molybdenum and A element (A represents at least one element selected from the group consisting of phosphorus and arsenic) used in the reaction, and a compound containing A element. Yes, it can be applied to the production of catalysts that use molybdenum oxides such as molybdenum trioxide as a raw material, and the raw materials for catalyst production that can make effective use of resources, its production method, catalyst using the same, production of methacrylic acid It is to provide a method.

本発明者らは、上記課題を解決するために鋭意検討し、モリブデンと、A元素とを含む使用後の触媒を水に分散した混合液のpHを調整し、得られた沈殿を特定の温度領域で熱処理を行うことにより、特定の結晶構造を有する化合物として回収した触媒製造用原料を用いて、新品触媒と同等の触媒効率を有する触媒を得ことができることの知見を得て、かかる知見に基づき本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors have intensively studied, adjusted the pH of a mixed liquid in which a used catalyst containing molybdenum and an A element is dispersed in water, and obtained precipitates at a specific temperature. by performing the heat treatment in the region, by using the recovered catalyst material for manufacturing a compound having a specific crystal structure, with the knowledge that it is possible to Ru to obtain a catalyst having the same catalytic efficiency and fresh catalyst, such findings Based on this, the present invention has been completed.

即ち、本発明は、モリブデン及びA元素(Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素を示す。)を含み、触媒として使用後の使用済触媒を水に分散したものである混合液のpHを8以上に調整した後、6.5以下に調整して得られた沈殿を250〜350℃で熱処理して得られるメタクリル酸合成用触媒製造用原料であって、
触媒が式(1)
Mo a b c d e (1)
(式中、Mo、Oはそれぞれモリブデン、酸素を表し、Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素を示し、Xはカリウム、ルビシウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種の元素を示し、Yは鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン及びセリウムからなる群より選ばれる少なくとも1種の元素を示し、a〜eは各元素の原子比を示し、aが12のとき、bは0.1以上3以下、cは0.01以上3以下、dは0以上3以下を示し、eは前記各成分の原子比を満足するのに必要な酸素の原子比を示す。)で表されるメタクリル酸合成用触媒であり、
X線回折測定でケギン構造を有するヘテロポリ酸又はヘテロポリ酸塩に帰属する回折ピークを有し、かつ、モリブデン酸化物に帰属する回折ピークを有さないメタクリル酸合成用触媒製造用原料に関する。
That is, the present invention is molybdenum and the A element (A is. Indicating at least one element selected from the group consisting of phosphorus and arsenic) as viewed contains a spent catalyst after used as a catalyst dispersing in water A raw material for producing a catalyst for synthesizing methacrylic acid obtained by adjusting the pH of a certain liquid mixture to 8 or higher and then heat-treating the precipitate obtained by adjusting the pH to 6.5 or lower at 250 to 350 ° C.,
The catalyst is of formula (1)
Mo a A b X c Y d O e (1)
(Wherein Mo and O represent molybdenum and oxygen, respectively, A represents at least one element selected from the group consisting of phosphorus and arsenic, and X represents at least selected from the group consisting of potassium, rubidium, cesium and thallium. Y represents iron, cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin And at least one element selected from the group consisting of lead, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, a to e indicate the atomic ratio of each element, When a is 12, b is 0.1 or more and 3 or less, c is 0.01 or more Hereinafter, d represents 0 to 3, e is methacrylic acid synthesis catalyst represented by.) Indicating the atomic ratio of oxygen required to satisfy the atomic ratio of the respective components,
The present invention relates to a raw material for producing a catalyst for synthesizing methacrylic acid having a diffraction peak attributed to a heteropolyacid or heteropolyacid salt having a Keggin structure by X-ray diffraction measurement and having no diffraction peak attributed to molybdenum oxide.

本発明は、モリブデン及びA元素(Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素を示す。)を含み、触媒として使用後の使用済触媒を水に分散したものである混合液のpHを8以上に調整した後、6.5以下に調整して得られた沈殿を250〜350℃で熱処理して得られるメタクリル酸合成用触媒製造用原料の製造方法であって、
触媒が式(1)
Mo a b c d e (1)
(式中、Mo、Oはそれぞれモリブデン、酸素を表し、Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素を示し、Xはカリウム、ルビシウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種の元素を示し、Yは鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン及びセリウムからなる群より選ばれる少なくとも1種の元素を示し、a〜eは各元素の原子比を示し、aが12のとき、bは0.1以上3以下、cは0.01以上3以下、dは0以上3以下を示し、eは前記各成分の原子比を満足するのに必要な酸素の原子比を示す。)で表されるメタクリル酸合成用触媒であり、
メタクリル酸合成用触媒製造用原料が、X線回折測定でケギン構造を有するヘテロポリ酸又はヘテロポリ酸塩に帰属する回折ピークを有し、かつ、モリブデン酸化物に帰属する回折ピークを有さないことを特徴とするメタクリル酸合成用触媒製造用原料の製造方法に関する。
The present invention (the A. Indicating at least one element selected from the group consisting of phosphorus and arsenic) molybdenum and A element is intended viewed contains a spent catalyst used as a catalyst Yogo dispersed in water A method for producing a raw material for producing a catalyst for methacrylic acid synthesis obtained by adjusting the pH of a mixed solution to 8 or more and then heat-treating a precipitate obtained by adjusting the pH to 6.5 or less at 250 to 350 ° C.,
The catalyst is of formula (1)
Mo a A b X c Y d O e (1)
(Wherein Mo and O represent molybdenum and oxygen, respectively, A represents at least one element selected from the group consisting of phosphorus and arsenic, and X represents at least selected from the group consisting of potassium, rubidium, cesium and thallium. Y represents iron, cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin , Lead, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium indicate at least one element, a to e indicate the atomic ratio of each element, When a is 12, b is 0.1 or more and 3 or less, c is 0.01 or more Hereinafter, d represents 0 to 3, e is methacrylic acid synthesis catalyst represented by.) Indicating the atomic ratio of oxygen required to satisfy the atomic ratio of the respective components,
The raw material for catalyst production for methacrylic acid synthesis has a diffraction peak attributed to a heteropolyacid or heteropolyacid salt having a Keggin structure by X-ray diffraction measurement, and does not have a diffraction peak attributed to molybdenum oxide. The present invention relates to a method for producing a raw material for producing a catalyst for synthesizing methacrylic acid .

本発明は、上記メタクリル酸合成用触媒製造用原料を用いるメタクリル酸合成用触媒の製造方法や、メタクリル酸合成用触媒に関する。 The present invention relates to a method for producing a catalyst for synthesizing methacrylic acid using the raw material for producing a catalyst for synthesizing methacrylic acid, and a catalyst for synthesizing methacrylic acid .

本発明は、上記メタクリル酸合成用触媒の存在下で、メタクロレインを分子状酸素により気相酸化するメタクリル酸の製造方法に関する。 The present invention relates to a method for producing methacrylic acid, in which methacrolein is vapor-phase oxidized with molecular oxygen in the presence of the methacrylic acid synthesis catalyst.

本発明の触媒製造用原料は、モリブデン及びA元素を含む触媒から触媒構成元素を高い収率で回収することができる。また、三酸化モリブデン等のモリブデン酸化物を原料とする触媒の製造に適用することができ、資源の有効活用を図ることができる。   The raw material for producing a catalyst of the present invention can recover a catalyst constituent element in a high yield from a catalyst containing molybdenum and an A element. In addition, the present invention can be applied to the production of a catalyst using molybdenum oxide such as molybdenum trioxide as a raw material, and resources can be effectively used.

[触媒製造用原料]
本発明の触媒製造用原料は、モリブデン及びA元素(Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素を示す。)を含む混合液のpHを調整して得られた沈殿を250〜350℃で熱処理して得られる触媒製造用原料であって、X線回折測定でケギン構造を有するヘテロポリ酸又はヘテロポリ酸塩に帰属する回折ピークを有し、かつ、モリブデン酸化物に帰属する回折ピークを有さないことを特徴とする。
[Raw material for catalyst production]
The catalyst production raw material of the present invention is a precipitate obtained by adjusting the pH of a mixed solution containing molybdenum and element A (A represents at least one element selected from the group consisting of phosphorus and arsenic). A raw material for producing a catalyst obtained by heat treatment at ˜350 ° C., having a diffraction peak attributed to a heteropolyacid or heteropolyacid salt having a Keggin structure by X-ray diffraction measurement, and diffraction attributed to molybdenum oxide It has no peak.

本発明の触媒製造用原料におけるモリブデン及びA元素(Aはリン及びヒ素の群より選ばれる少なくとも1種の元素を示す。)を含む混合液としては、少なくともモリブデンと、A元素を含む混合液が好ましく、特に、触媒として使用後の使用済み触媒を好適に用いることができる。   As a mixed solution containing molybdenum and element A (A represents at least one element selected from the group of phosphorus and arsenic) in the catalyst production raw material of the present invention, a mixed solution containing at least molybdenum and element A is used. In particular, a used catalyst after use can be suitably used as the catalyst.

かかる触媒として、具体的には、式(1)で表される組成を有するメタクリル酸合成用触媒を好ましいものとして挙げることができる。   As such a catalyst, specifically, a catalyst for synthesizing methacrylic acid having a composition represented by the formula (1) can be mentioned as a preferable one.

Moabcde (1)
(式中、Mo、Oはそれぞれモリブデン、酸素を表し、Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素を示し、Xはカリウム、ルビシウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種の元素を示し、Yは鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン及びセリウムからなる群より選ばれる少なくとも1種の元素を示し、a〜eは各元素の原子比を示し、aが12のとき、bは0.1以上3以下、cは0.01以上3以下、dは0以上3以下を示し、eは前記各成分の原子比を満足するのに必要な酸素の原子比を示す。)
更に好ましくは、式(2)で表される組成を有する触媒を挙げることができる。
Mo a A b X c Y d O e (1)
(Wherein Mo and O represent molybdenum and oxygen, respectively, A represents at least one element selected from the group consisting of phosphorus and arsenic, and X represents at least selected from the group consisting of potassium, rubidium, cesium and thallium. Y represents iron, cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin And at least one element selected from the group consisting of lead, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, a to e indicate the atomic ratio of each element, when a is 12, b is from 0.1 to 3, and c is from 0.01 to 3 In the following, d represents 0 or more and 3 or less, and e represents the atomic ratio of oxygen necessary for satisfying the atomic ratio of each component.
More preferably, the catalyst which has a composition represented by Formula (2) can be mentioned.

MoabcY´Cufge (2)
式(2)中、A、X、a〜c、eは式(1)におけるMo、O、A、X、a〜c、eと同じものを示し、Y´は鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン又はセリウムのいずれか1種または2種以上を示し、d´は0以上2.98、f、gは独立して0.01以上2.99以下、好ましくは0.01以上2以下を示し、d´+f+gが0.02以上3以下である。
Mo a A b X c Y'd' Cu f V g O e (2)
In the formula (2), A, X, a to c and e are the same as Mo, O, A, X, a to c and e in the formula (1), and Y ′ is iron, cobalt, nickel and zinc. , Magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium Any one or more of lanthanum and cerium, d ′ is 0 or more and 2.98, f and g are independently 0.01 or more and 2.99 or less, preferably 0.01 or more and 2 or less. D ′ + f + g is 0.02 or more and 3 or less.

使用後の使用済触媒としては、通常、メタクリル酸の製造反応等に使用されたものを用いるが、都合で反応に使用されなくなったもの、使用途中で反応容器から抜き出されたもの等を含んでいてもよい。   As used catalysts after use, those usually used in the production reaction of methacrylic acid, etc. are used, but those that are no longer used in the reaction for convenience or those that have been withdrawn from the reaction vessel during use are included. You may go out.

本発明の触媒製造用原料の製造に用いるモリブデン、A元素を含む混合液は、使用済み触媒、又は、少なくともモリブデン、A元素を含む化合物、又は、少なくともモリブデンを含む化合物と少なくともA元素を含む化合物を液体と混合して混合液とする。この際、混合液の調製には使用済み触媒を用いることが好ましい。また、混合液に用いる液体としては水が好ましい。   The mixed liquid containing molybdenum and element A used in the production of the raw material for catalyst production of the present invention is a used catalyst, or a compound containing at least molybdenum and element A, or a compound containing at least molybdenum and a compound containing at least element A. Is mixed with a liquid to obtain a mixed solution. At this time, it is preferable to use a used catalyst for preparing the mixed solution. Moreover, water is preferable as the liquid used for the mixed liquid.

次に、この混合液のpH調整を行う。まず、アルカリを加え、好ましくはpH8以上、より好ましくはpH8.5〜13とする。pH8以上に調整すると、モリブデン、A元素等を混合液中に溶解することができる。pH調整に使用するアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、炭酸水素ナトリウム等のアルカリ金属の水酸化物やアンモニア水を挙げることができ、これらのうち水酸化ナトリウムを好ましいものとして挙げることができる。また、使用済触媒等がその全部あるいは一部が還元状態にあるときは、液体と混合する前に空気焼成等で酸化する、あるいは触媒含有液にアルカリを添加する前又は添加した後、塩素処理、過酸化水素処理等で酸化しておくことが好ましい。   Next, pH adjustment of this liquid mixture is performed. First, alkali is added, preferably pH 8 or more, more preferably pH 8.5-13. When the pH is adjusted to 8 or more, molybdenum, element A and the like can be dissolved in the mixed solution. Examples of the alkali used for pH adjustment include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, cesium hydroxide, sodium hydrogen carbonate, and aqueous ammonia. Among these, sodium hydroxide is preferred. Can be mentioned. In addition, when all or part of the used catalyst is in a reduced state, it is oxidized by air calcination before mixing with the liquid, or before or after adding alkali to the catalyst-containing liquid, chlorination It is preferable to oxidize by hydrogen peroxide treatment or the like.

次いで、混合液のpHを6.5以下に調整し、沈殿を得ることができる。pH調整の前に、液に含まれる残さを濾過等によって取り除いておくことが好ましい。pH調整のために添加する酸としては、例えば、塩酸、硝酸および硫酸等が挙げられるが、特に塩酸および硝酸が好ましい。   Next, the pH of the mixed solution can be adjusted to 6.5 or less to obtain a precipitate. It is preferable to remove the residue contained in the liquid by filtration or the like before pH adjustment. Examples of the acid added for adjusting the pH include hydrochloric acid, nitric acid and sulfuric acid, and hydrochloric acid and nitric acid are particularly preferable.

pH調整後は沈殿生成のために一定時間保持することが好ましい。このときの保持時間は0.5時間から24時間程度が好ましく、液の温度は常温から90℃程度が好ましい。また、保持中は静置しておいてもよいが、攪拌することが好ましい。   After pH adjustment, it is preferable to hold for a certain period of time for precipitation. The holding time at this time is preferably about 0.5 to 24 hours, and the temperature of the liquid is preferably about room temperature to 90 ° C. Moreover, although it may stand still during holding | maintenance, it is preferable to stir.

pH調整により沈殿させた少なくともモリブデンおよびA元素を含む化合物の主成分は、組成分析およびX線回折測定から、リン等の中心元素:モリブデンの比が2:18のいわゆるドーソン型のヘテロポリ酸塩か、リン等の中心元素:モリブデンの比が1:12のいわゆるケギン型のヘテロポリ酸塩とドーソン型のヘテロポリ酸の混合物と推定される。   The main component of the compound containing at least molybdenum and element A precipitated by pH adjustment is a so-called Dawson-type heteropolyacid salt having a ratio of a central element such as phosphorus: molybdenum of 2:18 from composition analysis and X-ray diffraction measurement. It is estimated that this is a mixture of a so-called Keggin-type heteropolyacid salt and a Dawson-type heteropolyacid having a ratio of central element such as phosphorus: molybdenum of 1:12.

ドーソン型ヘテロポリ酸塩の生成は、例えば、セシウム塩の場合、CuKα線を用いたX線回折測定で、2θ=9.6°、11.1°、12.4°、15.5°、19.1°、20.7°、22.7°、25.9°、27.6°などの回折ピークにより確認することができる。また、ケギン型ヘテロポリ酸塩の生成は、例えば、セシウム塩の場合、CuKα線を用いたX線回折測定で、2θ=10.6°、13.0°、15.0°、18.5°、21.4°、23.9°、26.2°、30.4°、32.3°、34.1°、35.0°などの回折ピークで、カリウム塩の場合、2θ=10.8°、13.2°、15.3°、18.7°、21.7°、24.2°、26.6°、30.8°、32.8°、34.6°などの回折ピークにより確認することができる。このとき、調整するpHが低いほどケギン型のヘテロポリ酸塩の割合が多くなる。   For example, in the case of a cesium salt, the production of the Dawson type heteropolyacid salt is 2θ = 9.6 °, 11.1 °, 12.4 °, 15.5 °, 19 by X-ray diffraction measurement using CuKα ray. It can be confirmed by diffraction peaks such as .1 °, 20.7 °, 22.7 °, 25.9 °, and 27.6 °. In addition, for example, in the case of a cesium salt, the Keggin-type heteropolyacid salt is generated by 2θ = 10.6 °, 13.0 °, 15.0 °, 18.5 ° by X-ray diffraction measurement using CuKα rays. 21.4 °, 23.9 °, 26.2 °, 30.4 °, 32.3 °, 34.1 °, 35.0 °, etc., and in the case of potassium salt, 2θ = 10. Diffraction of 8 °, 13.2 °, 15.3 °, 18.7 °, 21.7 °, 24.2 °, 26.6 °, 30.8 °, 32.8 °, 34.6 °, etc. It can be confirmed by the peak. At this time, the lower the pH to be adjusted, the greater the proportion of the Keggin type heteropolyacid salt.

また、使用後触媒に含まれる各元素の量を基準として、生成する沈殿物に含まれる各元素の割合を各元素の回収率と定義すると、各元素の回収率は使用後触媒の組成やアンモニウム根量及び調整するpHにより異なる。例えば前記式(1)のような組成の使用済触媒の場合、A元素のうちケギン型のヘテロポリ酸塩として回収されるものはほとんどがリンである。一方ドーソン型のヘテロポリ酸塩として回収されるものはリンとヒ素の両方であるが、両者が共存する場合はヒ素の方がより優先的に回収される。したがってリンとヒ素の両方を含む組成の使用済触媒の場合、リンをより選択的に回収するためにはpHを1.5以下にすることが好ましく、ヒ素をより選択的に回収するためにはpHを2〜6.5にすることが好ましい。また、調整するpHを決める際には、モリブデン等も含めた各元素
の回収率を考慮することが望ましい。
Moreover, when the ratio of each element contained in the generated precipitate is defined as the recovery rate of each element based on the amount of each element contained in the used catalyst, the recovery rate of each element is determined by the composition of the post-use catalyst and ammonium. Depends on root amount and pH to be adjusted. For example, in the case of a spent catalyst having the composition as in the formula (1), most of the A element recovered as a Keggin type heteropolyacid salt is phosphorus. On the other hand, both phosphorus and arsenic are recovered as the Dawson type heteropolyacid salt, but when both coexist, arsenic is recovered more preferentially. Therefore, in the case of a spent catalyst having a composition containing both phosphorus and arsenic, the pH is preferably 1.5 or lower in order to recover phosphorus more selectively, and in order to recover arsenic more selectively. It is preferable to adjust the pH to 2 to 6.5. In determining the pH to be adjusted, it is desirable to consider the recovery rate of each element including molybdenum.

X元素の量がヘテロポリ酸をX元素の塩として沈澱させるのに十分でない場合には、pHを調整する前に、A元素1モルに対して0.5モル以上、好ましくは3〜40モルのアンモニウム根が存在するよう、アンモニウム根原料を追加しておくことが好ましい。このようにすることで、より多くのヘテロポリ酸をアンモニウム塩として沈澱させることができ、沈殿に含まれるモリブデンやA元素の回収率を高くすることができる。アンモニウム根の量は多い程、モリブデンやA元素の回収率は高くなる。アンモニウム根原料は、溶解性のものであれば特に限定されないが、例えば、アンモニア水、塩化アンモニウム、硝酸アンモニウム、炭酸アンモニウム等が挙げられる。   If the amount of element X is not sufficient to precipitate the heteropolyacid as a salt of element X, before adjusting the pH, 0.5 mol or more, preferably 3 to 40 mol, per 1 mol of element A It is preferable to add an ammonium root raw material so that the ammonium root exists. By doing in this way, more heteropoly acids can be precipitated as an ammonium salt, and the recovery rate of molybdenum and A element contained in precipitation can be made high. The greater the amount of ammonium root, the higher the recovery rate of molybdenum and element A. The ammonium root raw material is not particularly limited as long as it is soluble, and examples thereof include aqueous ammonia, ammonium chloride, ammonium nitrate, and ammonium carbonate.

このようにして沈殿させた化合物は、モリブデンおよびA元素以外にX元素を含むが、この化合物の用途によってはX元素が少ない、または含まないことが望ましい場合がある。このような場合には、pHを6.5以下に調整する前の混合液から、X元素の全部または一部を除去しておくことが好ましい。   The compound thus precipitated contains an X element in addition to molybdenum and the A element, but depending on the use of this compound, it may be desirable that the X element is low or absent. In such a case, it is preferable to remove all or part of the X element from the mixed solution before adjusting the pH to 6.5 or lower.

X元素を除去する方法は特に限定されないが、例えば、陽イオン交換樹脂でXイオンを吸着させて除去する方法等が挙げられる。陽イオン交換樹脂としては、一般的な強酸性陽イオン交換樹脂であるスチレン系樹脂やキレート樹脂等が使用でき、なかでもNa型イオン交換樹脂が好ましい。X元素を除去する時期は、pHを6.5以下に調整する前であれば特に限定されないが、以下の手順でX元素を除去することが好ましい。   The method for removing the X element is not particularly limited, and examples thereof include a method for removing the X ion by adsorbing with a cation exchange resin. As the cation exchange resin, a general strong acid cation exchange resin such as a styrene resin or a chelate resin can be used, and among these, a Na type ion exchange resin is preferable. The time for removing the X element is not particularly limited as long as it is before adjusting the pH to 6.5 or lower, but it is preferable to remove the X element by the following procedure.

すなわち、反応に使用した少なくともモリブデン、A元素、X元素を含む触媒を水に分散し、水酸化ナトリウムを加えて溶解し、その後、必要に応じて濾過等によって残さを取り除き、陽イオン交換樹脂等を用いてXを除去し、A元素1モルに対して0.5モル以上のアンモニウム根原料を添加した後、酸を添加してpHを6.5以下に調整する方法である。   That is, a catalyst containing at least molybdenum, element A, and element X used in the reaction is dispersed in water and dissolved by adding sodium hydroxide, and then the residue is removed by filtration or the like, if necessary. Is used to remove X, and after adding 0.5 mol or more of an ammonium root raw material to 1 mol of element A, an acid is added to adjust the pH to 6.5 or less.

pH調整により得られた沈澱とその残液を分離する方法は特に限定されず、例えば、重力濾過、加圧濾過、減圧濾過、フィルタープレス等の濾過分離や遠心分離等の一般的な方法が挙げられる。また、沈殿から不純物を除去するために必要に応じて洗浄してもよい。この際の洗浄液は沈澱の用途や溶解性を考慮して選ばれるが、例えば、純水、硝酸アンモニウムや塩化アンモニウム等の薄い水溶液等が挙げられる。   The method for separating the precipitate obtained by pH adjustment and the residual liquid is not particularly limited, and examples thereof include general methods such as filtration separation such as gravity filtration, pressure filtration, vacuum filtration, filter press, and centrifugal separation. It is done. Moreover, you may wash | clean as needed in order to remove an impurity from precipitation. The washing liquid at this time is selected in consideration of the purpose of precipitation and solubility, and examples thereof include pure water, and a thin aqueous solution such as ammonium nitrate and ammonium chloride.

また、不純物の含有量を低減し、より純度の高い沈殿を得る方法として、上記の方法で得られた沈殿(以下、初回沈殿とする。)をアンモニア水で溶解した後、得られた溶液のpHを再び6.5以下に調整して生成した沈殿(以下、再沈殿とする。)とその残液を分離、洗浄する方法が挙げられる。アンモニア水で溶解する際の初回沈殿の状態は特に限定されず、湿潤状態や乾燥状態のいずれでもよい。   In addition, as a method of reducing the impurity content and obtaining a precipitate with higher purity, the precipitate obtained by the above method (hereinafter referred to as initial precipitation) is dissolved in aqueous ammonia, There is a method of separating and washing the precipitate formed by adjusting the pH to 6.5 or less again (hereinafter referred to as reprecipitation) and the residual liquid. The state of the initial precipitation at the time of dissolving with ammonia water is not particularly limited, and may be either a wet state or a dry state.

アンモニア水の添加量は、初回沈殿を溶解する量であればよいが、好ましくはpHが8以上となる量である。なお、アンモニア水の添加は、初回沈殿にアンモニア水を添加してもよいし、初回沈殿を水に分散させた後に行ってもよい。また、pHの調整に用いる酸は初回沈殿の生成で用いた酸と同じものでも、異なるものでもよく特に限定されない。pHの調整後は再沈殿生成のために一定時間保持することが好ましい。このときの保持時間は0.5時間から24時間程度が好ましく、液の温度は常温から90℃程度が好ましい。   The amount of ammonia water added may be an amount that dissolves the initial precipitation, but is preferably an amount that makes the pH 8 or more. The ammonia water may be added to the initial precipitation or after the initial precipitation is dispersed in water. Moreover, the acid used for pH adjustment may be the same as or different from the acid used in the initial precipitation, and is not particularly limited. After adjusting the pH, it is preferable to hold for a certain period of time for reprecipitation. The holding time at this time is preferably about 0.5 to 24 hours, and the temperature of the liquid is preferably about room temperature to 90 ° C.

再沈殿とその残液を分離する方法は、初回沈殿とその残液を分離する際に用いた方法と同様の方法を用いることができる。また、再沈殿の洗浄液は、初回沈殿の洗浄液と同様、純水、硝酸アンモニウムや塩化アンモニウム等の薄い水溶液等が挙げられるが、好ましくは0.01モル/L以上のアンモニア根を含む、pHが6.5以下の酸性水溶液である。この際、洗浄後の再沈殿物は、沈殿物中に含まれるナトリウムおよび塩素が、A元素1モルに対して0.1モル以下であることが好ましく、0.05モル以下であることがより好ましい。   The method for separating the reprecipitation and the residual liquid can be the same as the method used for separating the initial precipitation and the residual liquid. The reprecipitation washing liquid may be pure water, a thin aqueous solution such as ammonium nitrate or ammonium chloride, etc., like the first precipitation washing liquid, but preferably contains 0.01 mol / L or more of ammonia radicals and has a pH of 6 .5 or lower acidic aqueous solution. At this time, the re-precipitate after washing is preferably such that the sodium and chlorine contained in the precipitate are 0.1 mol or less, more preferably 0.05 mol or less with respect to 1 mol of element A. preferable.

このようにして得られた沈殿を250〜350℃で熱処理を行い、固形物として触媒製造用原料とする。熱処理は、空気等の酸素含有ガス雰囲気下で行うことができる。また、熱処理前に沈殿の乾燥を行うことが好ましい。熱処理の温度が250℃より低いと、固形物中にリン等の中心元素:モリブデンの比が2:18のいわゆるドーソン型のヘテロポリ酸塩が残存したり、沈殿を生成する際に添加したアンモニア根が熱処理によって得られた固形物中に多く残存したりするために触媒の反応成績が低下して好ましくない。熱処理後の触媒製造用原料中のアンモニア残存量は、リン及びヒ素元素1モルに対して、3モル以下であることが、得られる触媒の性能の低下を抑制することができることから好ましく、2モル以下であることがより好ましい。一方、熱処理の温度が350℃より高いと固形物中に生成したリン等の中心元素:モリブデンの比が1:12のいわゆるケギン型のヘテロポリ酸またはヘテロポリ酸塩が分解して三酸化モリブデン等のモリブデン酸化物が生成したり、ケギン構造の格子酸素が一部消失した還元型ヘテロポリ酸が生成するため該固形物を用いて製造した触媒の反応成績が低下して好ましくない。焼成温度として、特に270〜330℃を好ましい範囲として挙げることができる。熱処理の時間は0.5時間以上が好ましい。得られる焼成物は粉体状であることが好ましいが、塊状物等を含んでいてもよい。   The precipitate thus obtained is heat-treated at 250 to 350 ° C. to obtain a raw material for producing a catalyst as a solid. The heat treatment can be performed in an oxygen-containing gas atmosphere such as air. Moreover, it is preferable to dry the precipitate before the heat treatment. When the temperature of the heat treatment is lower than 250 ° C., a so-called Dawson type heteropolyacid salt having a ratio of a central element such as phosphorus: molybdenum of 2:18 remains in the solid, or is added when a precipitate is formed. However, since the catalyst remains in the solid material obtained by the heat treatment, the reaction performance of the catalyst is deteriorated. The amount of residual ammonia in the raw material for producing the catalyst after the heat treatment is preferably 3 mol or less with respect to 1 mol of phosphorus and arsenic elements, since it is possible to suppress a decrease in the performance of the resulting catalyst, and 2 mol. The following is more preferable. On the other hand, when the temperature of the heat treatment is higher than 350 ° C., the so-called Keggin-type heteropolyacid or heteropolyacid salt having a ratio of the central element such as phosphorus and molybdenum produced in the solid material of 1:12 is decomposed, and molybdenum trioxide or the like is decomposed. Since a molybdenum oxide is produced or a reduced heteropolyacid in which part of the lattice oxygen of the Keggin structure has disappeared is produced, the reaction results of the catalyst produced using the solid matter are unfavorable. As the firing temperature, 270 to 330 ° C. can be mentioned as a preferable range. The heat treatment time is preferably 0.5 hours or more. The obtained fired product is preferably in the form of a powder, but may contain a lump or the like.

このようにして得られる触媒製造用原料は、X線回折測定でケギン構造を有するヘテロポリ酸又はヘテロポリ酸塩、例えば、12−モリブドリン酸セシウム塩、12−モリブドリン酸カリウム塩等に帰属する回折ピークを有し、かつ、モリブデン酸化物に帰属する回折ピークを有さない。モリブデン酸化物の生成の有無は、例えば、三酸化モリブデンの場合、CuKα線を用いたX線回折測定で、2θ=12.8°、23.4°、25.7°、27.4°、29.8°、33.7°、35.6°、39.1°、39.9°などの回折ピークにより確認することができる。触媒製造用原料がモリブデン酸化物を含まずヘテロポリ酸又はヘテロポリ酸塩構造を有することにより、触媒効率、特に、メタクリル酸を気相酸化反応により生成する触媒として優れた触媒性能を有する触媒が得られる。   The raw material for producing the catalyst thus obtained has a diffraction peak attributed to a heteropolyacid or heteropolyacid salt having a Keggin structure by X-ray diffraction measurement, for example, 12-molybdophosphoric acid cesium salt, 12-molybdophosphoric acid potassium salt, etc. And having no diffraction peak attributed to molybdenum oxide. For example, in the case of molybdenum trioxide, the presence or absence of molybdenum oxide is determined by X-ray diffraction measurement using CuKα rays. 2θ = 12.8 °, 23.4 °, 25.7 °, 27.4 °, It can be confirmed by diffraction peaks such as 29.8 °, 33.7 °, 35.6 °, 39.1 °, and 39.9 °. Since the raw material for catalyst production does not contain molybdenum oxide and has a heteropolyacid or heteropolyacid salt structure, a catalyst having excellent catalytic performance as a catalyst for generating catalyst efficiency, particularly methacrylic acid by a gas phase oxidation reaction, can be obtained. .

なお、本発明におけるX線回折測定は、下記の条件で行うものとし、モリブデン酸化物の回折ピークは、本条件で測定を行った際に確認されないものとする。
X線回折測定の測定条件
線源:CuKα線(λ=0.15405nm)、管電圧:45kV、管電流:40mA、散乱スリット:1°、拡散防止スリット:2°、スキャンステップ:0.02°、1ステップあたりの照射時間:10秒。
The X-ray diffraction measurement in the present invention is performed under the following conditions, and the diffraction peak of molybdenum oxide is not confirmed when measurement is performed under these conditions.
Measurement conditions for X-ray diffraction measurement Source: CuKα ray (λ = 0.15405 nm), tube voltage: 45 kV, tube current: 40 mA, scattering slit: 1 °, diffusion prevention slit: 2 °, scan step: 0.02 ° Irradiation time per step: 10 seconds.

[触媒の製造方法]
本発明の触媒の製造方法は、上記触媒製造用原料を用いるものである。触媒を製造する方法は特に限定されず、例えば、従来からよく知られている蒸発乾固法、沈澱法、酸化物混合法等の種々の方法を用いることができる。触媒の製造に用いるモリブデンおよびA元素は、上記固形物のみを用いてもよいが、製造する触媒の組成や製造量に応じて、適宜、通常のA元素を含む触媒製造原料やモリブデン酸化物を併用して用いてもよく特に限定されない。また、この際、必要に応じて、新品の触媒製造原料等から触媒を製造した際に触媒前駆体中に含まれる硝酸イオンやアンモニウムイオン等の量を、触媒製造時に硝酸やアンモニウム水等を添加して調整してもよい。例えば、固形物中にセシウム等のX元素が含まれており、触媒製造時にセシウム元素の原料に硝酸セシウムを用いた場合には、上記固形物を用いて製造した触媒前駆体中の硝酸イオンの量が、新品の原料を用いて製造した触媒前駆体中の硝酸イオンよりも少なくなる。この不足分の硝酸イオンを触媒製造時に硝酸等を添加して調整してもよい。
[Method for producing catalyst]
The method for producing a catalyst of the present invention uses the above raw material for producing a catalyst. The method for producing the catalyst is not particularly limited, and various methods such as a conventionally well-known evaporation to dryness method, precipitation method, and oxide mixing method can be used. Molybdenum and A element used for the production of the catalyst may be the above solids only, but depending on the composition and production amount of the catalyst to be produced, a catalyst production raw material or molybdenum oxide containing a normal A element is appropriately used. It may be used in combination and is not particularly limited. At this time, if necessary, the amount of nitrate ions and ammonium ions contained in the catalyst precursor when a catalyst is produced from a new catalyst production raw material, etc., and nitric acid, ammonium water, etc. are added during catalyst production. You may adjust it. For example, when X element such as cesium is contained in the solid, and cesium nitrate is used as the raw material of the cesium element during the production of the catalyst, the nitrate ion in the catalyst precursor produced using the solid The amount is less than the nitrate ions in the catalyst precursor produced using new raw materials. This deficient nitrate ion may be adjusted by adding nitric acid or the like during the production of the catalyst.

本発明において、触媒の製造に用いる上記固形物とモリブデン酸化物以外の原料は特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、酸素酸、ハロゲン化物等を組み合わせて使用することができる。例えば、リンの原料としてはリン酸、五酸化二リン、リン酸アンモニウム、バナジウムの原料としてはメタバナジン酸アンモニウム、五酸化バナジウム、塩化バナジウム等が使用できる。また、触媒の製造に用いるモリブデン酸化物としては、例えば、モリブデン:酸素のモル比が1:2の二酸化モリブデン、1:3の三酸化モリブデン等が挙げられるが、好ましくは三酸化モリブデンである。   In the present invention, raw materials other than the above-mentioned solid material and molybdenum oxide used for the production of the catalyst are not particularly limited, and combinations of nitrates, carbonates, acetates, ammonium salts, oxides, oxygen acids, halides, and the like of each element. Can be used. For example, phosphoric acid, diphosphorus pentoxide, ammonium phosphate, and vanadium as the raw material for phosphorus can be ammonium metavanadate, vanadium pentoxide, vanadium chloride, and the like. Examples of the molybdenum oxide used in the production of the catalyst include molybdenum dioxide having a molar ratio of molybdenum: oxygen of 1: 2, molybdenum trioxide of 1: 3, etc., preferably molybdenum trioxide.

具体的な触媒の製造方法としては、上記固形物、必要に応じて用いるモリブデン酸化物以外に製造する触媒の組成に応じて添加するA元素およびX元素を混合した、少なくともモリブデン、A元素およびX元素を含む水性スラリーを乾燥したものを焼成する方法などが挙げられる。   As a specific method for producing the catalyst, at least molybdenum, element A and X, which are mixed with the element A and element X to be added according to the composition of the catalyst to be produced in addition to the solid material and the molybdenum oxide used as necessary, are used. The method of baking what dried the aqueous slurry containing an element is mentioned.

本発明において、スラリーの乾燥方法は特に限定されず、箱型乾燥機、噴霧乾燥機、ドラムドライヤー、スラリードライヤー等を用いる乾燥方法が使用できる。その際に得られた乾燥物(触媒前駆体)は成形を考慮して粉体状であることが好ましい。乾燥物はそのまま成形してもよいし、焼成した後に成形してもよい。成形方法としても特に限定されず、例えば、打錠成形、押出成形、造粒、担持等が挙げられる。担持触媒の担体としては、例えば、シリカ、アルミナ、シリカ・アルミナ、シリコンカーバイド等の不活性担体が挙げられる。成形に際しては、成形物の比表面積、細孔容積及び細孔分布を制御したり、機械的強度を高めたりする目的で、例えば、硫酸バリウム、硝酸アンモニウム等の無機塩類、グラファイト等の滑剤、セルロース類、でんぷん、ポリビニルアルコール、ステアリン酸等の有機物、シリカゾル、アルミナゾル等の水酸化物ゾル、ウィスカー、ガラス繊維、炭素繊維等の無機質繊維等の添加剤を適宜添加してもよい。   In the present invention, the method for drying the slurry is not particularly limited, and a drying method using a box dryer, a spray dryer, a drum dryer, a slurry dryer or the like can be used. The dried product (catalyst precursor) obtained at that time is preferably in the form of a powder in consideration of molding. The dried product may be molded as it is, or may be molded after firing. It does not specifically limit as a shaping | molding method, For example, tableting molding, extrusion molding, granulation, carrying | support etc. are mentioned. Examples of the supported catalyst carrier include inert carriers such as silica, alumina, silica / alumina, and silicon carbide. In the molding, for the purpose of controlling the specific surface area, pore volume and pore distribution of the molded product or increasing the mechanical strength, for example, inorganic salts such as barium sulfate and ammonium nitrate, lubricants such as graphite, celluloses, etc. Additives such as organic substances such as starch, polyvinyl alcohol and stearic acid, hydroxide sols such as silica sol and alumina sol, inorganic fibers such as whiskers, glass fibers and carbon fibers may be added as appropriate.

成形した成形体を焼成する場合、焼成は反応管に充填する前に行っても、反応管の中で行ってもよい。焼成条件は、用いる触媒の原料、触媒組成、調製条件等によって異なるので一概には言えないが、通常、空気等の酸素含有ガス及び/又は不活性ガス流通下で300〜500℃、好ましくは300〜450℃で、0.5時間以上、好ましくは1〜40時間行われる。   When the molded body is fired, the firing may be performed before filling the reaction tube or in the reaction tube. The firing conditions vary depending on the raw material of the catalyst used, the catalyst composition, the preparation conditions, etc., and thus cannot be generally stated. Usually, however, 300 to 500 ° C., preferably 300, in the presence of an oxygen-containing gas such as air and / or an inert gas. It is carried out at ˜450 ° C. for 0.5 hour or longer, preferably 1 to 40 hours.

[触媒]
本発明の触媒は、上記触媒の製造方法により得られた触媒であれば、いずれであってもよい。本発明の触媒は、上記触媒製造用原料を用いて調製させるものであり、例えば、式(1)を満たす組成を有するものが好ましく、より好ましくは、式(2)を満たす組成を有し、メタクロレインを分子状酸素により気相酸化するメタクリル酸合成用触媒であることが、特に好ましい。
[catalyst]
As long as the catalyst of this invention is a catalyst obtained by the manufacturing method of the said catalyst, any may be sufficient as it. The catalyst of the present invention is prepared using the above raw material for producing a catalyst, and for example, preferably has a composition satisfying the formula (1), more preferably has a composition satisfying the formula (2), A catalyst for synthesizing methacrylic acid in which methacrolein is vapor-phase oxidized with molecular oxygen is particularly preferable.

[メタクリル酸の製造方法]
本発明のメタクリル酸の製造方法は、上記触媒の存在下で、メタクロレインを分子状酸素により気相酸化することを特徴とする。
[Method for producing methacrylic acid]
The method for producing methacrylic acid of the present invention is characterized in that methacrolein is vapor-phase oxidized with molecular oxygen in the presence of the catalyst.

以下、上記触媒を用いてメタクロレインを気相接触酸化してメタクリル酸を製造する反応条件について説明する。原料ガス中のメタクロレインガス濃度は広い範囲で変えることができるが、1〜20容量%が好ましく、特に3〜10容量%が好ましい。原料のメタクロレインには、水、低級飽和アルデヒド等の実質的に反応に影響を与えない不純物が少量含まれている場合があるが、原料ガスにはこのようなメタクロレイン由来の不純物が含まれていてもよい。   Hereinafter, reaction conditions for producing methacrylic acid by gas phase catalytic oxidation of methacrolein using the above catalyst will be described. The methacrolein gas concentration in the raw material gas can be varied within a wide range, but is preferably 1 to 20% by volume, and particularly preferably 3 to 10% by volume. The raw material methacrolein may contain a small amount of impurities that do not substantially affect the reaction, such as water, lower saturated aldehydes, etc., but the raw material gas contains such an impurity derived from methacrolein. It may be.

メタクロレンを酸化する分子状酸素源としては、空気を用いるのが工業的に有利であるが、必要に応じて純酸素で酸素を富化した空気を使用することもできる。また原料ガスは、窒素、炭酸ガス等の不活性ガス、水蒸気等で希釈されていることが好ましい。原料ガス中の分子状酸素量はメタクロレインに対し0.4〜4モル倍、特に0.5〜3モル倍が好ましい。 The source of molecular oxygen to oxidize Metakurore Lee down, but to use air is industrially advantageous, can also be used air enriched in oxygen in pure oxygen as necessary. The source gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide, water vapor or the like. The amount of molecular oxygen in the raw material gas is preferably 0.4 to 4 mol times, particularly 0.5 to 3 mol times with respect to methacrolein.

反応圧力は常圧〜数気圧が好ましい。反応温度は230〜450℃の範囲で選択することができ、特に250〜400℃が好ましい。原料ガスと触媒の接触時間は、例えば、1.5〜15秒、好ましくは2〜7秒等とすることができる。   The reaction pressure is preferably atmospheric pressure to several atmospheres. The reaction temperature can be selected in the range of 230 to 450 ° C, and particularly preferably 250 to 400 ° C. The contact time between the source gas and the catalyst can be, for example, 1.5 to 15 seconds, preferably 2 to 7 seconds.

このような気相接触酸化反応により生成物としてメタクリル酸を高収率で得ることができる。   By such a gas phase catalytic oxidation reaction, methacrylic acid can be obtained in a high yield as a product.

以下、本発明を具体的に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。以下、実施例において「部」は「質量部」を示す。   The present invention will be specifically described below, but the technical scope of the present invention is not limited to the following examples. Hereinafter, in the examples, “part” means “part by mass”.

固形物中の含有元素(または分子)の定量分析はICP発光分析法、原子吸光分析法により行った。X線回折測定は、パナリティカル社製、X’PertPRO MPDにより、線源:CuKα線(λ=0.15405nm)、管電圧:45kV、管電流:40mA、散乱スリット:1°、拡散防止スリット:2°、スキャンステップ:0.02°、1ステップあたりの照射時間10秒の条件で行った。原料ガスおよび生成物の分析はガスクロマトグラフィーにより行った。   Quantitative analysis of the contained elements (or molecules) in the solid was performed by ICP emission analysis and atomic absorption analysis. X-ray diffractometry was performed by X'Pert PRO MPD manufactured by Panalytical Co., Ltd., radiation source: CuKα ray (λ = 0.15405 nm), tube voltage: 45 kV, tube current: 40 mA, scattering slit: 1 °, diffusion prevention slit: The scan was performed under the conditions of 2 °, scan step: 0.02 °, and irradiation time of 10 seconds per step. The analysis of the raw material gas and the product was performed by gas chromatography.

各元素の回収率、原料のメタクロレインの転化率、生成するメタクリル酸の選択率、生成するメタクリル酸の収率は次式により算出した。   The recovery rate of each element, the conversion rate of the raw material methacrolein, the selectivity of the produced methacrylic acid, and the yield of the produced methacrylic acid were calculated by the following formulas.

回収率(%)=(R/S)×100
メタクロレイン転化率(%)=(B/A)×100、
メタクリル酸選択率(%)=(C/B)×100、
メタクリル酸収率(%)=(C/A)×100。
Recovery rate (%) = (R / S) × 100
Methacrolein conversion (%) = (B / A) × 100,
Methacrylic acid selectivity (%) = (C / B) × 100,
Methacrylic acid yield (%) = (C / A) × 100.

式中、Sは回収に用いた組成物中に含まれる各元素の質量、Rは回収した組成物中に含まれる各元素の質量、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。   In the formula, S is the mass of each element contained in the composition used for the recovery, R is the mass of each element contained in the recovered composition, A is the number of moles of methacrolein supplied, and B is the reacted metachrome. The number of moles of rain, C is the number of moles of methacrylic acid produced.

[参考例1]
[メタクリル酸合成用触媒Aの調製]
三酸化モリブデン100部、五酸化バナジウム2.6部、85質量%リン酸6.7部及び60質量%ヒ酸2.7部を純水200部に加え、還流下で5時間加熱攪拌した。これを50℃まで冷却した後、硝酸セシウム13.5部を純水30部に溶解した溶液を加え、攪拌しながら混合液の温度を70℃に昇温した。次いで、29質量%アンモニア水34.0部を加え、得られた混合液を70℃にて90分間攪拌した後、硝酸銅2.8部を純水10部に溶解した溶液、硝酸鉄1.2部を純水10部に溶解した溶液を加え、加熱攪拌しながら蒸発乾固した。得られた固形物を130℃で16時間乾燥したものを加圧成形し、さらに破砕し、篩を用いて0.85〜1.70mmのものを分取し、空気流通下に380℃で5時間熱処理して触媒A(酸素を除く元素の組成:P1As0.2Mo12Fe0.05Cu0.20.5Cs1.2)を得た。
[Reference Example 1]
[Preparation of methacrylic acid synthesis catalyst A]
100 parts of molybdenum trioxide, 2.6 parts of vanadium pentoxide, 6.7 parts of 85% by mass phosphoric acid and 2.7 parts of 60% by mass arsenic acid were added to 200 parts of pure water, and the mixture was heated and stirred under reflux for 5 hours. After cooling this to 50 ° C., a solution prepared by dissolving 13.5 parts of cesium nitrate in 30 parts of pure water was added, and the temperature of the mixed solution was raised to 70 ° C. while stirring. Next, 34.0 parts of 29 mass% ammonia water was added, and the resulting mixture was stirred at 70 ° C. for 90 minutes, and then a solution of 2.8 parts of copper nitrate dissolved in 10 parts of pure water, 1. A solution obtained by dissolving 2 parts in 10 parts of pure water was added and evaporated to dryness while stirring with heating. The solid material obtained was dried at 130 ° C. for 16 hours, pressure-molded, further crushed, and separated from 0.85 to 1.70 mm using a sieve, and 5% at 380 ° C. under air flow. The catalyst A (composition of elements excluding oxygen: P 1 As 0.2 Mo 12 Fe 0.05 Cu 0.2 V 0.5 Cs 1.2 ) was obtained by heat treatment for a period of time.

[メタクリル酸合成A]
得られた触媒Aを反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%及び窒素55容量%の混合ガスを反応温度290℃、接触時間3.6秒で接触させたところ、メタクロレイン転化率82.5モル%、メタクリル酸選択率87.6モル%及びメタクリル酸単流収率72.3モル%であった。
[Methacrylic acid synthesis A]
The obtained catalyst A is filled in a reaction tube, and a mixed gas of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor and 55% by volume of nitrogen is contacted at a reaction temperature of 290 ° C. and a contact time of 3.6 seconds. As a result, methacrolein conversion was 82.5 mol%, methacrylic acid selectivity was 87.6 mol%, and methacrylic acid single-flow yield was 72.3 mol%.

[実施例1]
[触媒製造用原料1の調製]
(1) 初回沈殿物1の調製
参考例1のメタクリル酸合成Aを2000時間行った後、使用済触媒を反応管から回収した。回収した触媒100部にはモリブデン55.8部、リン1.5部、バナジウム1.2部、銅0.6部、鉄0.1部、ヒ素0.7部及びセシウム7.7部が含まれていた。この使用済触媒の酸素を除く元素の組成はP1As0.2Mo12Fe0.05Cu0.20.5Cs1.2であった。この使用済触媒100部を純水400部に分散させた。これに45質量%水酸化ナトリウム水溶液130部を加え、60℃で3時間攪拌後に残液を濾別した。pHは12.2であった。これに36質量%塩酸を加えて液のpHを9.0に調整した後、塩化アンモニウム46.4部(リン+ヒ素に対して15倍モルのアンモニア根量)を添加した。次いで36質量%塩酸を加え、液のpHを5.0に調整した後、攪拌しながら30℃で3時間保持した。得られた沈殿を濾過し、2質量%硝酸アンモニウム溶液で洗浄して湿潤状態の「初回沈殿物1」を得た。
(2) 再沈殿物1の調製
得られた「初回沈殿物1」を純水500部に分散させた。これに29質量%アンモニア水60.4部を加えて60℃で攪拌して「初回沈殿物1」を溶解し、pHを8.3に調整した。次いで36質量%塩酸を加えて液のpHを5.0に調整した後、攪拌しながら30℃で3時間保持した。得られた沈殿を濾過し、2質量%硝酸アンモニウム溶液で洗浄して湿潤状態の「再沈殿物1」を得た。
(3) 熱処理工程
得られた「再沈殿物1」を110℃で16時間乾燥した後、300℃で3時間熱処理して「触媒製造用原料1」を得た。「触媒製造用原料1」には、モリブデン46.4部、リン0.7部、バナジウム0.6部、ヒ素0.7部、セシウム6.2部、リン+ヒ素の0.01倍モルのナトリウム、1.0倍モルのアンモニア根が含まれていた。このときの各元素の回収率はモリブデン83.2%、リン46.7%、バナジウム50.0%、ヒ素100%、セシウム80.5%であった。また、X線回折測定を行ったところ、触媒製造用原料1中には、ケギン型ヘテロポリ酸セシウム塩の回折ピークが見られたが、三酸化モリブデン等のモリブデン酸化物の回折ピークは見られなかった。
[Example 1]
[Preparation of raw material 1 for catalyst production]
(1) Preparation of First Precipitate 1 After performing methacrylic acid synthesis A of Reference Example 1 for 2000 hours, a used catalyst was recovered from the reaction tube. 100 parts of the recovered catalyst contain 55.8 parts of molybdenum, 1.5 parts of phosphorus, 1.2 parts of vanadium, 0.6 parts of copper, 0.1 part of iron, 0.7 parts of arsenic and 7.7 parts of cesium. It was. The composition of the elements excluding oxygen in this used catalyst was P 1 As 0.2 Mo 12 Fe 0.05 Cu 0.2 V 0.5 Cs 1.2 . 100 parts of this used catalyst was dispersed in 400 parts of pure water. To this was added 130 parts of a 45% by weight aqueous sodium hydroxide solution, and the mixture was stirred at 60 ° C. for 3 hours, and the remaining liquid was filtered off. The pH was 12.2. 36% by mass hydrochloric acid was added thereto to adjust the pH of the solution to 9.0, and then 46.4 parts of ammonium chloride (amount of ammonia root 15-fold mol of phosphorus + arsenic) was added. Subsequently, 36 mass% hydrochloric acid was added to adjust the pH of the solution to 5.0, and the mixture was kept at 30 ° C. for 3 hours with stirring. The obtained precipitate was filtered and washed with a 2 mass% ammonium nitrate solution to obtain a wet "first precipitate 1".
(2) Preparation of reprecipitate 1 The obtained “initial precipitate 1” was dispersed in 500 parts of pure water. 60.4 parts of 29 mass% ammonia water was added to this, and it stirred at 60 degreeC, the "first precipitate 1" was melt | dissolved, and pH was adjusted to 8.3. Subsequently, 36 mass% hydrochloric acid was added to adjust the pH of the solution to 5.0, and the mixture was kept at 30 ° C. for 3 hours with stirring. The obtained precipitate was filtered and washed with a 2% by mass ammonium nitrate solution to obtain a “reprecipitate 1” in a wet state.
(3) Heat treatment step The obtained “reprecipitate 1” was dried at 110 ° C. for 16 hours and then heat treated at 300 ° C. for 3 hours to obtain “raw material 1 for catalyst production”. “Raw material 1 for catalyst production” includes 46.4 parts of molybdenum, 0.7 part of phosphorus, 0.6 part of vanadium, 0.7 part of arsenic, 6.2 parts of cesium, and 0.01 times mole of phosphorus + arsenic. Sodium and 1.0-fold moles of ammonia radicals were included. The recovery rates of each element at this time were 83.2% molybdenum, 46.7% phosphorus, 50.0% vanadium, 100% arsenic, and 80.5% cesium. Further, when X-ray diffraction measurement was performed, a diffraction peak of Keggin-type heteropolyacid cesium salt was found in the catalyst production raw material 1, but a diffraction peak of molybdenum oxide such as molybdenum trioxide was not seen. It was.

[触媒1の調製]
三酸化モリブデン30.4部、五酸化バナジウム1.5部、85質量%リン酸4.1部及び触媒製造用原料1の全量(モリブデンとして46.4部、リンとして0.7部、バナジウムとして0.6部、ヒ素として0.7部、セシウムとして6.2部)を純水400部に加え、還流下で5時間加熱攪拌した。これを50℃まで冷却した後、硝酸セシウム4.4部を純水9.8部に溶解した溶液を加え、攪拌しながら混合液の温度を70℃に昇温した。次いで、29質量%アンモニア水32.1部を加え、得られた混合液を70℃にて90分間攪拌した後、硝酸銅2.8部を純水10部に溶解した溶液及び硝酸鉄1.2部を純水10部に溶解した溶液を加えた。更にこの混合液を加熱攪拌しながら蒸発乾固した。得られた固形物を参考例1の触媒Aの調製と同様にして触媒1を得た。この触媒の酸素を除く元素の組成は、P1As0.2Mo12Fe0.05Cu0.20.5Cs1.2であった。
[Preparation of catalyst 1]
30.4 parts of molybdenum trioxide, 1.5 parts of vanadium pentoxide, 4.1 parts of 85% by mass phosphoric acid and the total amount of raw material 1 for catalyst production (46.4 parts as molybdenum, 0.7 parts as phosphorus, vanadium as 0.6 parts, 0.7 parts as arsenic and 6.2 parts as cesium) were added to 400 parts of pure water, and the mixture was heated and stirred under reflux for 5 hours. After cooling this to 50 ° C., a solution obtained by dissolving 4.4 parts of cesium nitrate in 9.8 parts of pure water was added, and the temperature of the mixture was raised to 70 ° C. while stirring. Subsequently, 32.1 parts of 29 mass% ammonia water was added, and the obtained mixed liquid was stirred at 70 ° C. for 90 minutes, and then a solution of 2.8 parts of copper nitrate dissolved in 10 parts of pure water and iron nitrate 1. A solution prepared by dissolving 2 parts in 10 parts of pure water was added. The mixture was evaporated to dryness while stirring with heating. Catalyst 1 was obtained in the same manner as the preparation of catalyst A of Reference Example 1 for the obtained solid. The composition of the elements excluding oxygen in this catalyst was P 1 As 0.2 Mo 12 Fe 0.05 Cu 0.2 V 0.5 Cs 1.2 .

[メタクリル酸合成1]
得られた触媒1を用いて、参考例1と同様にメタクリル酸の合成を行った。メタクロレイン転化率82.6モル%、メタクリル酸選択率87.4モル%及びメタクリル酸単流収率72.2モル%であり、触媒1は触媒Aと同等の性能であった。
[Methacrylic acid synthesis 1]
Methacrylic acid was synthesized in the same manner as in Reference Example 1 using the obtained catalyst 1. The methacrolein conversion was 82.6 mol%, the methacrylic acid selectivity was 87.4 mol%, and the methacrylic acid single stream yield was 72.2 mol%. Catalyst 1 had the same performance as Catalyst A.

[比較例1]
[触媒製造用原料2の調製]
触媒製造用原料の調製の熱処理工程において、300℃を400℃に変えた他は実施例1と同様にして触媒製造用原料2を得た。
[Comparative Example 1]
[Preparation of raw material 2 for catalyst production]
A catalyst production raw material 2 was obtained in the same manner as in Example 1 except that 300 ° C. was changed to 400 ° C. in the heat treatment step for preparing the catalyst production raw material.

触媒製造用原料2には、モリブデン46.4部、リン0.7部、バナジウム0.6部、ヒ素0.7部、セシウム6.2部、リン+ヒ素の0.01倍モルのナトリウム、0.27倍モルのアンモニア根が含まれていた。このときの各元素の回収率はモリブデン83.2%、リン46.7%、バナジウム50.0%、ヒ素100%、セシウム80.5%であった。   Catalyst raw material 2 includes 46.4 parts of molybdenum, 0.7 parts of phosphorus, 0.6 parts of vanadium, 0.7 parts of arsenic, 6.2 parts of cesium, 0.01 moles of sodium of phosphorus + arsenic, It contained 0.27-fold moles of ammonia radicals. The recovery rates of each element at this time were 83.2% molybdenum, 46.7% phosphorus, 50.0% vanadium, 100% arsenic, and 80.5% cesium.

また、X線回折測定を行ったところ、触媒製造用原料2中には、リン等の中心元素:モリブデンの比が1:12のケギン型ヘテロポリ酸セシウム塩の回折ピークと共に、三酸化モリブデンの回折ピークが見られた。   In addition, when X-ray diffraction measurement was performed, in the raw material 2 for catalyst production, the diffraction of molybdenum trioxide was found along with the diffraction peak of the Keggin heteropolyacid cesium salt having a ratio of central element such as phosphorus: molybdenum of 1:12. A peak was seen.

[触媒2の調製]
三酸化モリブデン30.4部、五酸化バナジウム1.5部、85質量%リン酸4.1部及び触媒製造用原料2の全量(モリブデンとして46.4部、リンとして0.7部、バナジウムとして0.6部、ヒ素として0.7部、セシウムとして6.2部)を純水400部に加え、還流下で5時間加熱攪拌した。これを50℃まで冷却した後、硝酸セシウム4.4部を純水9.8部に溶解した溶液を加え、攪拌しながら混合液の温度を70℃に昇温した。次いで、29質量%アンモニア水33.6部を加え、得られた混合液を70℃にて90分間攪拌した後、硝酸銅2.8部を純水10部に溶解した溶液及び硝酸鉄1.2部を純水10部に溶解した溶液を加えた。更にこの混合液を加熱攪拌しながら蒸発乾固した。得られた固形物を参考例1の触媒Aの製造と同様に乾燥、成形、粉砕、篩分級及び焼成を実施して触媒2を得た。この触媒の酸素を除く元素の組成は、P1As0.2Mo12Fe0.05Cu0.20.5Cs1.2であった。
[Preparation of catalyst 2]
30.4 parts of molybdenum trioxide, 1.5 parts of vanadium pentoxide, 4.1 parts of 85 mass% phosphoric acid and the total amount of raw material 2 for catalyst production (46.4 parts as molybdenum, 0.7 parts as phosphorus, vanadium as 0.6 parts, 0.7 parts as arsenic and 6.2 parts as cesium) were added to 400 parts of pure water, and the mixture was heated and stirred under reflux for 5 hours. After cooling this to 50 ° C., a solution obtained by dissolving 4.4 parts of cesium nitrate in 9.8 parts of pure water was added, and the temperature of the mixture was raised to 70 ° C. while stirring. Subsequently, 33.6 parts of 29 mass% ammonia water was added, and the resulting mixture was stirred at 70 ° C. for 90 minutes, and then a solution prepared by dissolving 2.8 parts of copper nitrate in 10 parts of pure water and iron nitrate 1. A solution prepared by dissolving 2 parts in 10 parts of pure water was added. The mixture was evaporated to dryness while stirring with heating. The obtained solid was dried, shaped, pulverized, sieve classified, and calcined in the same manner as in the manufacture of Catalyst A in Reference Example 1 to obtain Catalyst 2. The composition of the elements excluding oxygen in this catalyst was P 1 As 0.2 Mo 12 Fe 0.05 Cu 0.2 V 0.5 Cs 1.2 .

[メタクリル酸合成2]
得られた触媒2を用いて、参考例1と同様にメタクリル酸合成を行った。メタクロレイン転化率60.3モル%、メタクリル酸選択率88.1モル%及びメタクリル酸単流収率53.1モル%であった。触媒2は触媒Aと比較してメタクロレイン転化率が低下した。
[Methacrylic acid synthesis 2]
Methacrylic acid synthesis was performed in the same manner as in Reference Example 1 using the obtained catalyst 2. The methacrolein conversion was 60.3 mol%, the methacrylic acid selectivity was 88.1 mol%, and the methacrylic acid single stream yield was 53.1 mol%. Catalyst 2 had a lower methacrolein conversion rate than catalyst A.

[比較例2]
[触媒製造用原料3の調製]
触媒製造用原料の調製の熱処理工程において、300℃を200℃に変えた他は実施例1と同様にして触媒製造用原料3を得た。
[Comparative Example 2]
[Preparation of raw material 3 for catalyst production]
A catalyst production raw material 3 was obtained in the same manner as in Example 1 except that 300 ° C. was changed to 200 ° C. in the heat treatment step for preparing the catalyst production raw material.

触媒製造用原料3には、モリブデン46.4部、リン0.7部、バナジウム0.6部、ヒ素0.7部、セシウム6.2部、リン+ヒ素の0.01倍モルのナトリウム、3.8倍モルのアンモニア根が含まれていた。このときの各元素の回収率はモリブデン83.2%、リン46.7%、バナジウム50.0%、ヒ素100%、セシウム80.5%であった。   Catalyst raw material 3 includes 46.4 parts of molybdenum, 0.7 parts of phosphorus, 0.6 parts of vanadium, 0.7 parts of arsenic, 6.2 parts of cesium, 0.01 moles of sodium of phosphorus + arsenic, 3.8 times moles of ammonia radicals were included. The recovery rates of each element at this time were 83.2% molybdenum, 46.7% phosphorus, 50.0% vanadium, 100% arsenic, and 80.5% cesium.

また、X線回折測定を行ったところ、触媒製造用原料3中には、リン等の中心元素:モリブデンの比が2:18のドーソン型ヘテロポリ酸セシウム塩の回折ピークが見られた。   Further, when X-ray diffraction measurement was performed, a diffraction peak of a Dawson heteropolyacid cesium salt having a ratio of the central element such as phosphorus and molybdenum of 2:18 was observed in the raw material 3 for catalyst production.

[触媒3の調製]
三酸化モリブデン30.4部、五酸化バナジウム1.5部、85質量%リン酸4.1部及び上記触媒製造用原料3の全量(モリブデンとして46.4部、リンとして0.7部、バナジウムとして0.6部、ヒ素として0.7部、セシウムとして6.2部)を純水400部に加え、還流下で5時間加熱攪拌した。これを50℃まで冷却した後、硝酸セシウム4.4部を純水9.8部に溶解した溶液を加え、攪拌しながら混合液の温度を70℃に昇温した。次いで、29質量%アンモニア水27.0部を加え、得られた混合液を70℃にて90分間攪拌した後、硝酸銅2.8部を純水10部に溶解した溶液及び硝酸鉄1.2部を純水10部に溶解した溶液を加えた。更にこの混合液を加熱攪拌しながら蒸発乾固した。得られた固形物を参考例1の触媒Aの製造と同様に乾燥、成形、粉砕、篩分級及び焼成を実施して触媒3を得た。この触媒の酸素を除く元素の組成は、P1As0.2Mo12Fe0.05Cu0.20.5Cs1.2であった。
[Preparation of catalyst 3]
30.4 parts of molybdenum trioxide, 1.5 parts of vanadium pentoxide, 4.1 parts of 85 mass% phosphoric acid and the total amount of the raw material 3 for producing the catalyst (46.4 parts as molybdenum, 0.7 parts as phosphorus, vanadium 0.6 parts, 0.7 parts as arsenic, and 6.2 parts as cesium) were added to 400 parts of pure water, and the mixture was heated and stirred under reflux for 5 hours. After cooling this to 50 ° C., a solution obtained by dissolving 4.4 parts of cesium nitrate in 9.8 parts of pure water was added, and the temperature of the mixture was raised to 70 ° C. while stirring. Subsequently, 27.0 parts of 29 mass% ammonia water was added, and the obtained mixed liquid was stirred at 70 ° C. for 90 minutes, and then a solution of 2.8 parts of copper nitrate dissolved in 10 parts of pure water and iron nitrate 1. A solution prepared by dissolving 2 parts in 10 parts of pure water was added. The mixture was evaporated to dryness while stirring with heating. The obtained solid was dried, shaped, pulverized, sieve classified, and calcined in the same manner as in the manufacture of Catalyst A in Reference Example 1 to obtain Catalyst 3. The composition of the elements excluding oxygen in this catalyst was P 1 As 0.2 Mo 12 Fe 0.05 Cu 0.2 V 0.5 Cs 1.2 .

[メタクリル酸合成3]
得られた触媒3を用いて参考例1と同様にメタクリル酸合成を行った。メタクロレイン転化率52.8モル%、メタクリル酸選択率88.3モル%及びメタクリル酸単流収率46.6モル%であった。触媒3は触媒Aと比較してメタクロレイン転化率が低下した。
[Methacrylic acid synthesis 3]
Using the obtained catalyst 3, methacrylic acid was synthesized in the same manner as in Reference Example 1. The methacrolein conversion rate was 52.8 mol%, the methacrylic acid selectivity was 88.3 mol%, and the methacrylic acid single stream yield was 46.6 mol%. Compared to catalyst A, catalyst 3 had a lower methacrolein conversion rate.

[参考例2]
[メタクリル酸合成用触媒Bの調製]
三酸化モリブデン100部、85質量%リン酸7.3部、五酸化バナジウム4.7部、酸化銅0.9部及び酸化鉄0.2部を純水400部に加え、還流下で5時間攪拌した。得られた混合液を50℃まで冷却した後、29質量%アンモニア水37.4部を滴下し、15分間攪拌した。次いで、硝酸セシウム9.0部を純水30部に溶解した溶液を滴下し、15分間攪拌した後に加熱攪拌しながら蒸発乾固した。得られた固形物を参考例1の触媒Aの製造と同様に乾燥、成形、粉砕、篩分級及び焼成を実施して触媒B(酸素を除く元素の組成:P1.1Mo12Fe0.05Cu0.20.9Cs0.8)を得た。
[Reference Example 2]
[Preparation of catalyst for synthesis of methacrylic acid B]
100 parts of molybdenum trioxide, 7.3 parts of 85% by weight phosphoric acid, 4.7 parts of vanadium pentoxide, 0.9 part of copper oxide and 0.2 part of iron oxide are added to 400 parts of pure water and refluxed for 5 hours. Stir. After cooling the obtained liquid mixture to 50 degreeC, 37.4 parts of 29 mass% ammonia water was dripped, and it stirred for 15 minutes. Next, a solution obtained by dissolving 9.0 parts of cesium nitrate in 30 parts of pure water was added dropwise, stirred for 15 minutes, and then evaporated to dryness while stirring with heating. The obtained solid was dried, molded, pulverized, sieve classified, and calcined in the same manner as in the manufacture of Catalyst A in Reference Example 1 to obtain catalyst B (element composition excluding oxygen: P 1.1 Mo 12 Fe 0.05 Cu 0.2 V 0.9 Cs 0.8 ) was obtained.

[メタクリル酸合成B]
得られた触媒Bを用いて参考例1と同様にメタクリル酸の合成を行った。メタクロレイン転化率87.4モル%、メタクリル酸選択率85.8モル%及びメタクリル酸単流収率75.0モル%であった。
[Methacrylic acid synthesis B]
Methacrylic acid was synthesized in the same manner as in Reference Example 1 using the obtained catalyst B. The methacrolein conversion rate was 87.4 mol%, the methacrylic acid selectivity was 85.8 mol%, and the methacrylic acid single stream yield was 75.0 mol%.

[実施例2]
[触媒製造用原料4の調製]
(1) 初回沈殿物4の調製
参考例2のメタクリル酸合成Bを2000時間行った後、使用済触媒を反応管から回収した。回収した触媒100部にはモリブデン55.2部、リン1.6部、バナジウム2.2部、銅0.6部、鉄0.1部及びセシウム5.1部が含まれていた。この使用済触媒の酸素を除く元素の組成はP1.1Mo12Fe0.05Cu0.20.9Cs0.8であった。この使用済触媒100部を純水400部に分散させた。これに45質量%水酸化ナトリウム水溶液130部を加え、60℃で3時間攪拌後に残液を濾別した。pHは12.4であった。これに36質量%塩酸を加えて液のpHを9.0に調整した後、塩化アンモニウム45.1部(リンに対して16.3倍モルのアンモニア根量)を添加した。次いで36質量%塩酸を加えて液のpHを1.0に調整した後、攪拌しながら30℃で3時間保持した。得られた沈殿を実施例1と同様にして湿潤状態の「初回沈殿物4」を得た。
(2) 再沈殿物4の調製
得られた「初回沈殿物4」を純水500部に分散させた。これに29質量%アンモニア水65.3部を加えて60℃で攪拌して「初回沈殿物4」を溶解し、pHを8.3に調整した。次いで36質量%塩酸を加え液のpHを1.0に調整した後、攪拌しながら30℃で3時間保持した。沈殿を実施例1の再沈殿物1の調製と同様にして「再沈殿物4」を得た。
(3) 熱処理工程
得られた再沈殿物4を実施例1と同様にして触媒製造用原料4を得た。触媒製造用原料4には、モリブデン50.8部、リン1.4部、バナジウム2.1部、セシウム4.6部、リンの0.03倍モルのナトリウム、1.2倍モルのアンモニア根が含まれていた。各元素の回収率はモリブデン92.0%、リン87.5%、バナジウム95.5%、セシウム90.2%であった。また、X線回折測定を行ったところ、触媒製造用原料4中には、ケギン型ヘテロポリ酸セシウム塩の回折ピークが見られたが、三酸化モリブデン等のモリブデン酸化物の回折ピークは見られなかった。
[Example 2]
[Preparation of raw material 4 for catalyst production]
(1) Preparation of First Precipitate 4 After methacrylic acid synthesis B of Reference Example 2 was performed for 2000 hours, a used catalyst was recovered from the reaction tube. 100 parts of the recovered catalyst contained 55.2 parts of molybdenum, 1.6 parts of phosphorus, 2.2 parts of vanadium, 0.6 parts of copper, 0.1 part of iron and 5.1 parts of cesium. The composition of the elements excluding oxygen in this used catalyst was P 1.1 Mo 12 Fe 0.05 Cu 0.2 V 0.9 Cs 0.8 . 100 parts of this used catalyst was dispersed in 400 parts of pure water. To this was added 130 parts of a 45% by weight aqueous sodium hydroxide solution, and the mixture was stirred at 60 ° C. for 3 hours, and the remaining liquid was filtered off. The pH was 12.4. After adding 36 mass% hydrochloric acid to this and adjusting pH of a liquid to 9.0, 45.1 parts (16.3 times mole ammonia root amount with respect to phosphorus) of ammonium chloride were added. Subsequently, 36 mass% hydrochloric acid was added to adjust the pH of the solution to 1.0, and the mixture was kept at 30 ° C. for 3 hours with stirring. The obtained precipitate was treated in the same manner as in Example 1 to obtain a “first precipitate 4” in a wet state.
(2) Preparation of Reprecipitate 4 The obtained “First Precipitate 4” was dispersed in 500 parts of pure water. To this was added 65.3 parts of 29 mass% aqueous ammonia, and the mixture was stirred at 60 ° C. to dissolve the “initial precipitate 4”, and the pH was adjusted to 8.3. Subsequently, 36 mass% hydrochloric acid was added to adjust the pH of the solution to 1.0, and the mixture was kept at 30 ° C. for 3 hours with stirring. In the same manner as the preparation of the reprecipitate 1 of Example 1, “reprecipitate 4” was obtained.
(3) Heat treatment step The obtained reprecipitate 4 was used in the same manner as in Example 1 to obtain a catalyst production raw material 4. Catalyst raw material 4 includes 50.8 parts of molybdenum, 1.4 parts of phosphorus, 2.1 parts of vanadium, 4.6 parts of cesium, 0.03 times mole of sodium and 1.2 times mole of ammonia root of phosphorus. Was included. The recovery rates of each element were 92.0% molybdenum, 87.5% phosphorus, 95.5% vanadium, and 90.2% cesium. Further, when X-ray diffraction measurement was performed, a diffraction peak of Keggin-type heteropolyacid cesium salt was observed in the catalyst production raw material 4, but a diffraction peak of molybdenum oxide such as molybdenum trioxide was not observed. It was.

[触媒4の調製]
三酸化モリブデン23.8部、85質量%リン酸2.1部、五酸化バナジウム0.9部、酸化銅0.9部、酸化鉄0.2部及び触媒製造用原料4の全量(モリブデンとして50.8部、リンとして1.4部、バナジウムとして2.1部、セシウムとして4.6部)を純水400部に加え、還流下で5時間攪拌した。得られた混合液を50℃まで冷却した後、29質量%アンモニア水34.2部を滴下し、15分間攪拌した。次いで、硝酸セシウム2.3部を純水7.7部に溶解した溶液を滴下し、15分間攪拌した後に加熱攪拌しながら蒸発乾固した。得られた固形物を参考例1の触媒Aの調製と同様にして触媒4(酸素を除く元素の組成:P1.1Mo12Fe0.05Cu0.20.9Cs0.8)を得た。
[Preparation of catalyst 4]
23.8 parts of molybdenum trioxide, 2.1 parts of 85 mass% phosphoric acid, 0.9 part of vanadium pentoxide, 0.9 part of copper oxide, 0.2 part of iron oxide and the total amount of raw material 4 for catalyst production (as molybdenum) 50.8 parts, 1.4 parts as phosphorus, 2.1 parts as vanadium, and 4.6 parts as cesium) were added to 400 parts of pure water and stirred for 5 hours under reflux. After cooling the obtained liquid mixture to 50 degreeC, 29 mass% ammonia water 34.2 parts was dripped and it stirred for 15 minutes. Next, a solution obtained by dissolving 2.3 parts of cesium nitrate in 7.7 parts of pure water was added dropwise, stirred for 15 minutes, and then evaporated to dryness while stirring with heating. Catalyst 4 (composition of elements excluding oxygen: P 1.1 Mo 12 Fe 0.05 Cu 0.2 V 0.9 Cs 0.8 ) was obtained from the obtained solid in the same manner as in the preparation of catalyst A in Reference Example 1.

[メタクリル酸合成4]
得られた触媒4を用いて、参考例1と同様にメタクリル酸の合成を行った。メタクロレイン転化率87.5モル%、メタクリル酸選択率85.8モル%及びメタクリル酸単流収率75.1モル%であり、触媒4は触媒Bと同等の性能であった。
[Methacrylic acid synthesis 4]
Using the resulting catalyst 4, methacrylic acid was synthesized in the same manner as in Reference Example 1. The methacrolein conversion rate was 87.5 mol%, the methacrylic acid selectivity was 85.8 mol%, and the single stream yield of methacrylic acid was 75.1 mol%. Catalyst 4 had the same performance as Catalyst B.

[参考例3]
[メタクリル酸合成用触媒Cの調製]
三酸化モリブデン100部、五酸化バナジウム2.6部、85質量%リン酸6.7部を純水800部に加え、還流下で3時間加熱攪拌した。これに酸化銅1.4部を加え、さらに還流下で2時間加熱攪拌した。還流後の混合液を50℃に冷却し、硝酸カリウム7.1部を純水40部に溶解した溶液を加え、さらに硝酸アンモニウム9.8部を純水40部に溶解した溶液を加え、加熱攪拌しながら蒸発乾固した。得られた固形物を参考例1の触媒Aの製造と同様にして触媒C(酸素を除く元素の組成:P1Mo12Cu0.30.51.2)を得た。
[Reference Example 3]
[Preparation of methacrylic acid synthesis catalyst C]
100 parts of molybdenum trioxide, 2.6 parts of vanadium pentoxide, and 6.7 parts of 85 mass% phosphoric acid were added to 800 parts of pure water, and the mixture was heated and stirred for 3 hours under reflux. To this, 1.4 parts of copper oxide was added, and the mixture was further heated and stirred under reflux for 2 hours. The mixed liquid after reflux is cooled to 50 ° C., a solution in which 7.1 parts of potassium nitrate is dissolved in 40 parts of pure water is added, and a solution in which 9.8 parts of ammonium nitrate is dissolved in 40 parts of pure water is added, followed by stirring with heating. While evaporating to dryness. Catalyst C (composition of elements excluding oxygen: P 1 Mo 12 Cu 0.3 V 0.5 K 1.2 ) was obtained from the obtained solid in the same manner as in the manufacture of catalyst A of Reference Example 1.

[メタクリル酸合成C]
得られた触媒Cを用い、反応温度を285℃とした以外は参考例1と同様にメタクリル酸の合成を行った。メタクロレイン転化率85.0モル%、メタクリル酸選択率84.2モル%及びメタクリル酸単流収率71.6モル%であった。
[Methacrylic acid synthesis C]
Using the obtained catalyst C, methacrylic acid was synthesized in the same manner as in Reference Example 1 except that the reaction temperature was 285 ° C. The methacrolein conversion rate was 85.0 mol%, the methacrylic acid selectivity was 84.2 mol%, and the methacrylic acid single stream yield was 71.6 mol%.

[実施例3]
[触媒製造用原料5の調製]
(1) 初回沈殿物5の調製
参考例3のメタクリル酸合成Cを2000時間行った後、使用済触媒を反応管から回収した。回収した触媒100部にはモリブデン57.6部、リン1.6部、バナジウム1.3部、銅1.0部及びカリウム2.4部が含まれていた。この使用済触媒の酸素を除く元素の組成はP1Mo12Cu0.30.51.2であった。この使用済触媒100部を純水400部に分散させた。これに45質量%水酸化ナトリウム水溶液130部を加え、60℃で3時間攪拌後に残液を濾別した。pHは12.2であった。これに36質量%塩酸を加えて液のpHを9.0に調整した後、塩化アンモニウム49.8部(リンに対して18倍モルのアンモニア根量)を添加した。次いで36質量%塩酸を加えて液のpHを1.0に調整した後、攪拌しながら30℃で3時間保持した。得られた沈殿を実施例1と同様にして「初回沈殿物5」を得た。
(2) 再沈殿物5の調製
得られた「初回沈殿物5」を純水500部に分散させた。これに29質量%アンモニア水67.1部を加えて60℃で攪拌して「初回沈殿物5」を溶解し、pHを8.5に調整した。次いで36質量%塩酸を加えて液のpHを1.0に調整した後、攪拌しながら30℃で3時間保持した。沈殿を実施例1の再沈殿物1の調製と同様にして「再沈殿物5」を得た。
(3) 熱処理工程
得られた再沈殿物5を実施例1と同様にして触媒製造用原料5を得た。触媒製造用原料5には、モリブデン52.7部、リン1.4部、バナジウム1.2部、カリウム2.0部、リンの0.02倍モルのナトリウム、1.1倍モルのアンモニア根が含まれていた。各元素の回収率はモリブデン91.5%、リン87.5%、バナジウム92.3%、カリウム83.3%であった。また、X線回折測定を行ったところ、触媒製造用原料5中には、ケギン型ヘテロポリ酸カリウム塩の回折ピークが見られたが、三酸化モリブデン等のモリブデン酸化物の回折ピークは見られなかった。
[Example 3]
[Preparation of raw material 5 for catalyst production]
(1) Preparation of First Precipitate 5 After performing methacrylic acid synthesis C of Reference Example 3 for 2000 hours, a used catalyst was recovered from the reaction tube. 100 parts of the recovered catalyst contained 57.6 parts of molybdenum, 1.6 parts of phosphorus, 1.3 parts of vanadium, 1.0 part of copper and 2.4 parts of potassium. The composition of the elements excluding oxygen in this used catalyst was P 1 Mo 12 Cu 0.3 V 0.5 K 1.2 . 100 parts of this used catalyst was dispersed in 400 parts of pure water. To this was added 130 parts of a 45% by weight aqueous sodium hydroxide solution, and the mixture was stirred at 60 ° C. for 3 hours, and the remaining liquid was filtered off. The pH was 12.2. After adding 36 mass% hydrochloric acid to this and adjusting pH of a liquid to 9.0, 49.8 parts of ammonium chloride (18 times mole ammonia root amount with respect to phosphorus) was added. Subsequently, 36 mass% hydrochloric acid was added to adjust the pH of the solution to 1.0, and the mixture was kept at 30 ° C. for 3 hours with stirring. The obtained precipitate was treated in the same manner as in Example 1 to obtain “Initial precipitate 5”.
(2) Preparation of Reprecipitate 5 The obtained “initial precipitate 5” was dispersed in 500 parts of pure water. To this was added 67.1 parts of 29 mass% aqueous ammonia, and the mixture was stirred at 60 ° C. to dissolve the “initial precipitate 5”, and the pH was adjusted to 8.5. Subsequently, 36 mass% hydrochloric acid was added to adjust the pH of the solution to 1.0, and the mixture was kept at 30 ° C. for 3 hours with stirring. The precipitation was carried out in the same manner as the preparation of the reprecipitate 1 of Example 1 to obtain “reprecipitate 5”.
(3) Heat treatment step The obtained reprecipitate 5 was used in the same manner as in Example 1 to obtain a raw material 5 for producing a catalyst. The catalyst production raw material 5 includes 52.7 parts of molybdenum, 1.4 parts of phosphorus, 1.2 parts of vanadium, 2.0 parts of potassium, 0.02 mol of sodium of phosphorus, 1.1 mol of ammonia root. Was included. The recovery rates of each element were 91.5% molybdenum, 87.5% phosphorus, 92.3% vanadium, and 83.3% potassium. Further, when X-ray diffraction measurement was performed, a diffraction peak of Keggin type heteropolyacid potassium salt was found in the raw material 5 for catalyst production, but a diffraction peak of molybdenum oxide such as molybdenum trioxide was not seen. It was.

[触媒5の調製]
三酸化モリブデン21.0部、五酸化バナジウム0.5部、85質量%リン酸1.5部及び触媒製造用原料5の全量(モリブデンとして52.7部、リンとして1.4部、バナジウムとして1.2部、カリウムとして2.0部)を純水800部に加え、還流下で3時間加熱攪拌した。これに酸化銅1.4部を加え、さらに還流下で2時間加熱攪拌した。還流後の混合液を50℃に冷却し、硝酸カリウム1.9部を純水10.7部に溶解した溶液を加え、さらに硝酸アンモニウム5.8部を純水23.7部に溶解した溶液を加え、加熱攪拌しながら蒸発乾固した。得られた固形物を参考例4の触媒Dの調製と同様にして触媒5を得た。この触媒の酸素を除く元素の組成は、P1Mo12Cu0.30.51.2であった。
[Preparation of catalyst 5]
Molybdenum trioxide 21.0 parts, vanadium pentoxide 0.5 parts, 85% by weight phosphoric acid 1.5 parts and the total amount of catalyst production raw material 5 (52.7 parts as molybdenum, 1.4 parts as phosphorus, vanadium as 1.2 parts and 2.0 parts as potassium) was added to 800 parts of pure water, and the mixture was heated and stirred under reflux for 3 hours. To this, 1.4 parts of copper oxide was added, and the mixture was further heated and stirred under reflux for 2 hours. The mixture after reflux is cooled to 50 ° C., a solution in which 1.9 parts of potassium nitrate is dissolved in 10.7 parts of pure water is added, and a solution in which 5.8 parts of ammonium nitrate is dissolved in 23.7 parts of pure water is added. The mixture was evaporated to dryness while stirring with heating. Catalyst 5 was obtained in the same manner as the preparation of catalyst D of Reference Example 4 for the obtained solid. The composition of the element excluding oxygen in this catalyst was P 1 Mo 12 Cu 0.3 V 0.5 K 1.2 .

[メタクリル酸合成5]
得られた触媒5を用いて、参考例3と同様にメタクリル酸の合成を行った。メタクロレイン転化率84.8モル%、メタクリル酸選択率84.3モル%及びメタクリル酸単流収率71.5モル%であり、触媒5は触媒Cと同等の性能であった。
[Methacrylic acid synthesis 5]
Methacrylic acid was synthesized in the same manner as in Reference Example 3 using the obtained catalyst 5. The methacrolein conversion rate was 84.8 mol%, the methacrylic acid selectivity was 84.3 mol%, and the methacrylic acid single stream yield was 71.5 mol%, and the catalyst 5 had the same performance as the catalyst C.

[参考例4]
[メタクリル酸合成用触媒Dの調製]
三酸化モリブデン100部、五酸化バナジウム3.2部及び85質量%リン酸8.7部を純水800部に加え、還流下で3時間加熱攪拌した。これに硝酸銅1.4部を加え、さらに還流下で2時間加熱攪拌した。還流後の混合液を60℃に冷却し、重炭酸セシウム12.3部を純水30部に溶解した溶液を加え15分間攪拌した。次いで、硝酸アンモニウム10部を純水30部に溶解した溶液を加え、さらに15分間攪拌した後に加熱攪拌しながら蒸発乾固した。得られた固形物を参考例1の触媒Aの製造と同様に乾燥、成形、粉砕、篩分級した後に窒素流通下で400℃にて5時間焼成を実施して触媒D(酸素を除く元素の組成:P1.3Mo12Cu0.10.6Cs1.1)を得た。
[Reference Example 4]
[Preparation of Methacrylic Acid Synthesis Catalyst D]
100 parts of molybdenum trioxide, 3.2 parts of vanadium pentoxide and 8.7 parts of 85% by mass phosphoric acid were added to 800 parts of pure water, and the mixture was heated and stirred for 3 hours under reflux. To this, 1.4 parts of copper nitrate was added, and the mixture was further heated and stirred under reflux for 2 hours. The mixed solution after refluxing was cooled to 60 ° C., a solution obtained by dissolving 12.3 parts of cesium bicarbonate in 30 parts of pure water was added, and the mixture was stirred for 15 minutes. Next, a solution obtained by dissolving 10 parts of ammonium nitrate in 30 parts of pure water was added, and the mixture was further stirred for 15 minutes, and then evaporated to dryness while stirring with heating. The obtained solid was dried, molded, pulverized and sieve classified in the same manner as in the manufacture of catalyst A in Reference Example 1, and then calcined at 400 ° C. for 5 hours under a nitrogen stream to prepare catalyst D (elements other than oxygen). composition: was obtained P 1.3 Mo 12 Cu 0.1 V 0.6 Cs 1.1).

[メタクリル酸合成D]
得られた触媒Dを用い、参考例1と同様にメタクリル酸の合成を行った。メタクロレイン転化率83.4モル%、メタクリル酸選択率84.9モル%及びメタクリル酸単流収率70.8モル%であった。
[Methacrylic acid synthesis D]
Using the resulting catalyst D, methacrylic acid was synthesized in the same manner as in Reference Example 1. The methacrolein conversion rate was 83.4 mol%, the methacrylic acid selectivity was 84.9 mol%, and the methacrylic acid single stream yield was 70.8 mol%.

[実施例4]
[触媒製造用原料6の調製]
(1) 初回沈殿物6の調製
参考例4のメタクリル酸合成Dを2000時間行った後、使用済触媒を反応管から回収した。回収した触媒100部にはモリブデン55.9部、リン2.0部、バナジウム1.5部、銅0.3部及びセシウム7.1部が含まれていた。この使用済触媒の酸素を除く元素の組成はP1.3Mo12Cu0.10.6Cs1.1であった。この使用済触媒100部を純水400部に分散させた。これに次亜塩素酸ナトリウム(有効塩素12質量%)25.7部を加え、60℃で3時間攪拌した後に、45質量%水酸化ナトリウム水溶液130部を加え、更に60℃で3時間攪拌し残液を濾別した。pHは12.4であった。これに36質量%塩酸を加えて液のpHを9.0に調整した後、塩化アンモニウム47.7部(リンに対して13.8倍モルのアンモニア根量)を添加した。次いで36質量%塩酸を加えて液のpHを1.0に調整した後、攪拌しながら30℃で3時間保持した。得られた沈殿を実施例1と同様にして「初回沈殿物6」を得た。
(2) 再沈殿物6の調製
得られた「初回沈殿物6」を純水500部に分散させた。これに29質量%アンモニア水65.3部を加えて60℃で攪拌して「初回沈殿物6」を溶解し、pHを8.3に調整した。次いで36質量%塩酸を加えて液のpHを1.0に調整した後、攪拌しながら30℃で3時間保持した。沈殿を実施例1の再沈殿物1の調製と同様にして「再沈殿物6」を得た。
(3) 熱処理工程
得られた再沈殿物6を実施例1と同様にして触媒製造用原料6を得た。触媒製造用原料6には、モリブデン51.3部、リン1.7部、バナジウム1.4部、セシウム6.4部、リンの0.03倍モルのナトリウム、1.0倍モルのアンモニア根が含まれていた。各元素の回収率はモリブデン91.8%、リン85.0%、バナジウム93.3%、セシウム90.1%であった。また、X線回折測定を行ったところ、触媒製造用原料6中には、ケギン型ヘテロポリ酸セシウム塩の回折ピークが見られたが、三酸化モリブデン等のモリブデン酸化物の回折ピークは見られなかった。
[Example 4]
[Preparation of raw material 6 for catalyst production]
(1) Preparation of First Precipitate 6 After performing methacrylic acid synthesis D of Reference Example 4 for 2000 hours, a used catalyst was recovered from the reaction tube. 100 parts of the recovered catalyst contained 55.9 parts of molybdenum, 2.0 parts of phosphorus, 1.5 parts of vanadium, 0.3 parts of copper and 7.1 parts of cesium. The composition of the elements of the used catalyst excluding oxygen was P 1.3 Mo 12 Cu 0.1 V 0.6 Cs 1.1 . 100 parts of this used catalyst was dispersed in 400 parts of pure water. To this was added 25.7 parts of sodium hypochlorite (effective chlorine 12% by mass), and the mixture was stirred at 60 ° C. for 3 hours. Then, 130 parts of a 45% by mass aqueous sodium hydroxide solution was added, and further stirred at 60 ° C. for 3 hours. The remaining liquid was filtered off. The pH was 12.4. 36% by mass hydrochloric acid was added thereto to adjust the pH of the solution to 9.0, and then 47.7 parts of ammonium chloride (amount of ammonia root of 13.8 times mol of phosphorus) was added. Subsequently, 36 mass% hydrochloric acid was added to adjust the pH of the solution to 1.0, and the mixture was kept at 30 ° C. for 3 hours with stirring. The obtained precipitate was treated in the same manner as in Example 1 to obtain “Initial precipitate 6”.
(2) Preparation of Reprecipitate 6 The obtained “initial precipitate 6” was dispersed in 500 parts of pure water. To this was added 65.3 parts of 29 mass% aqueous ammonia, and the mixture was stirred at 60 ° C. to dissolve the “initial precipitate 6”, and the pH was adjusted to 8.3. Subsequently, 36 mass% hydrochloric acid was added to adjust the pH of the solution to 1.0, and the mixture was kept at 30 ° C. for 3 hours with stirring. In the same manner as the preparation of the reprecipitate 1 of Example 1, “reprecipitate 6” was obtained.
(3) Heat treatment step In the same manner as in Example 1, the obtained reprecipitate 6 was used to obtain a raw material 6 for producing a catalyst. Catalyst raw material 6 includes 51.3 parts of molybdenum, 1.7 parts of phosphorus, 1.4 parts of vanadium, 6.4 parts of cesium, 0.03 moles of sodium and 1.0 moles of ammonia radicals of phosphorus. Was included. The recovery rates of each element were 91.8% molybdenum, 85.0% phosphorus, 93.3% vanadium, and 90.1% cesium. Further, when X-ray diffraction measurement was performed, a diffraction peak of Keggin-type heteropolyacid cesium salt was observed in the raw material 6 for catalyst production, but a diffraction peak of molybdenum oxide such as molybdenum trioxide was not observed. It was.

[触媒6の調製]
三酸化モリブデン23.1部、五酸化バナジウム0.7部、85質量%リン酸2.4部及び触媒製造用原料6の全量(モリブデンとして51.3部、リンとして1.7部、バナジウムとして1.4部、セシウムとして6.4部)を純水800部に加え、還流下で3時間加熱攪拌した。これに硝酸銅1.4部を加え、さらに還流下で2時間加熱攪拌した。還流後の混合液を60℃に冷却し、重炭酸セシウム3.0部を純水7.3部に溶解した溶液を加え15分間攪拌した。次いで、硝酸アンモニウム5.6部を純水16.8部に溶解した溶液を加え、15分間攪拌した後に加熱攪拌しながら蒸発乾固した。得られた固形物を参考例4の触媒Dの製造と同様にして触媒6を得た。この触媒の酸素を除く元素組成は、P1.3Mo12Cu0.10.6Cs1.1であった。
[Preparation of catalyst 6]
Molybdenum trioxide 23.1 parts, vanadium pentoxide 0.7 parts, 85 mass% phosphoric acid 2.4 parts and the total amount of raw material 6 for catalyst production (51.3 parts as molybdenum, 1.7 parts as phosphorus, vanadium as 1.4 parts, 6.4 parts as cesium) was added to 800 parts of pure water, and the mixture was heated and stirred under reflux for 3 hours. To this, 1.4 parts of copper nitrate was added, and the mixture was further heated and stirred under reflux for 2 hours. The mixture after refluxing was cooled to 60 ° C., a solution obtained by dissolving 3.0 parts of cesium bicarbonate in 7.3 parts of pure water was added, and the mixture was stirred for 15 minutes. Next, a solution prepared by dissolving 5.6 parts of ammonium nitrate in 16.8 parts of pure water was added, and the mixture was stirred for 15 minutes and then evaporated to dryness while stirring with heating. The obtained solid was used in the same manner as in the preparation of catalyst D of Reference Example 4 to obtain catalyst 6. The elemental composition excluding oxygen of this catalyst was P 1.3 Mo 12 Cu 0.1 V 0.6 Cs 1.1 .

[メタクリル酸合成6]
得られた触媒6を用いて参考例4と同様にメタクリル酸の合成を行った。メタクロレイン転化率83.6モル%、メタクリル酸選択率84.6モル%及びメタクリル酸単流収率70.7モル%であり、触媒6は触媒Dと同等の性能であった。
[Methacrylic acid synthesis 6]
Methacrylic acid was synthesized in the same manner as in Reference Example 4 using the obtained catalyst 6. The methacrolein conversion rate was 83.6 mol%, the methacrylic acid selectivity was 84.6 mol%, and the methacrylic acid single-flow yield was 70.7 mol%. Catalyst 6 had the same performance as Catalyst D.

[参考例5]
[メタクリル酸合成用触媒Eの調製]
三酸化モリブデン100部、85質量%リン酸8.9部、メタバナジン酸アンモニウム4.8部及び60質量%ヒ酸4.1部を純水400部に加え、オートクレーブ中、飽和水蒸気下120℃で3時間攪拌した。得られた液を60℃まで冷却した後、炭酸アンモニウム37.0部を純水80部に溶解した溶液を滴下して15分間攪拌した。次いで、硝酸銅1.4部を純水10部に溶解したもの、硝酸鉄2.3部を純水10部に溶解したもの、酸化セリウム1.0部、重炭酸セシウム18.0部を純水30部に溶解した溶液を滴下し、さらに15分間攪拌した後に加熱攪拌しながら蒸発乾固した。このようにして得られた固形物を参考例1の触媒Aの製造と同様に乾燥、成形、粉砕、篩分級した後に窒素流通下で400℃にて5時間焼成を実施した後、更に空気流通下で340℃にて10時間焼成を実施して触媒E(酸素を除く元素の組成:P1.3Mo12Cu0.10.7Fe0.1As0.3Ce0.1Cs1.6)を得た。
[Reference Example 5]
[Preparation of Methacrylic Acid Synthesis Catalyst E]
100 parts of molybdenum trioxide, 8.9 parts of 85% by weight phosphoric acid, 4.8 parts of ammonium metavanadate and 4.1 parts of 60% by weight arsenic acid are added to 400 parts of pure water. Stir for 3 hours. After cooling the obtained liquid to 60 ° C., a solution prepared by dissolving 37.0 parts of ammonium carbonate in 80 parts of pure water was added dropwise and stirred for 15 minutes. Next, 1.4 parts of copper nitrate dissolved in 10 parts of pure water, 2.3 parts of iron nitrate dissolved in 10 parts of pure water, 1.0 part of cerium oxide, and 18.0 parts of cesium bicarbonate were purified. A solution dissolved in 30 parts of water was added dropwise, and the mixture was further stirred for 15 minutes, and then evaporated to dryness while stirring with heating. The solid material thus obtained was dried, shaped, pulverized and sieve classified in the same manner as in the manufacture of Catalyst A in Reference Example 1, and then calcined at 400 ° C. for 5 hours under a nitrogen flow, and further air flow. (composition of elements except oxygen: P 1.3 Mo 12 Cu 0.1 V 0.7 Fe 0.1 As 0.3 Ce 0.1 Cs 1.6) catalyst E was performed baked 10 hours at 340 ° C. under was obtained.

[メタクリル酸合成E]
得られた触媒Eを用い、参考例1と同様にメタクリル酸の合成を行った。メタクロレイン転化率81.2モル%、メタクリル酸選択率83.6モル%及びメタクリル酸単流収率67.9モル%であった。
[Methacrylic acid synthesis E]
Using the resulting catalyst E, methacrylic acid was synthesized in the same manner as in Reference Example 1. The methacrolein conversion rate was 81.2 mol%, the methacrylic acid selectivity was 83.6 mol%, and the methacrylic acid single stream yield was 67.9 mol%.

[実施例5]
[触媒製造用原料7の調製]
(1) 初回沈殿物7の調製
参考例のメタクリル酸合成を2000時間行った後、使用済触媒を反応管から回収した。回収した触媒100部にはモリブデン52.9部、リン1.9部、バナジウム1.6部、銅0.3部、鉄0.3部、ヒ素1.0部、セリウム0.6部及びセシウム9.8部が含まれていた。この使用済触媒の酸素を除く元素の組成はP1.3As0.3Mo12Cu0.10.7Fe0.1Ce0.1Cs1.6であった。この使用済触媒100部を純水400部に分散させた。これに次亜塩素酸ナトリウム(有効塩素12質量%)25.7部を加え、60℃で3時間攪拌した後に、45質量%水酸化ナトリウム水溶液130部を加え、更に60℃で3時間攪拌し残液を濾別した。pHは12.3であった。これに36質量%塩酸を加えて液のpHを9.0に調整した後、塩化アンモニウム45.2部(リン+ヒ素に対して11.3倍モルのアンモニア根量)を添加した。次いで36質量%塩酸を加えて液のpHを5.0に調整した後、攪拌しながら30℃で3時間保持した。得られた沈殿を実施例1と同様にして「初回沈殿物7」を得た。
(2) 再沈殿物7の調製
得られた「初回沈殿物7」を純水500部に分散させた。これに29質量%アンモニア水56.4部を加えて60℃で攪拌して「初回沈殿物7」を溶解し、pHを8.1に調整した。次いで36質量%塩酸を加えて液のpHを5.0に調整した後、攪拌しながら30℃で3時間保持した。このようにして得られた沈殿を実施例1の再沈殿物1の調製と同様にして「再沈殿物7」を得た。
(3) 熱処理工程
得られた再沈殿物7を実施例1と同様にして触媒製造用原料7を得た。触媒製造用原料7には、モリブデン44.3部、リン0.9部、バナジウム0.8部、ヒ素1.0部、セシウム8.3部、リン+ヒ素の0.01倍モルのナトリウム、1.1倍モルのアンモニア根が含まれていた。各元素の回収率はモリブデン83.7%、リン47.4%、バナジウム50.0%、ヒ素100%、セシウム84.7%であった。また、X線回折測定を行ったところ、触媒製造用原料7中には、ケギン型ヘテロポリ酸セシウム塩の回折ピークが見られたが、三酸化モリブデン等のモリブデン酸化物の回折ピークは見られなかった。
[Example 5]
[Preparation of raw material 7 for catalyst production]
(1) After 2000 hours of methacrylic acid synthesis E Preparation Example 5 Initial precipitate 7, it was recovered spent catalyst from the reaction tube. 100 parts of the recovered catalyst were 52.9 parts of molybdenum, 1.9 parts of phosphorus, 1.6 parts of vanadium, 0.3 parts of copper, 0.3 parts of iron, 1.0 part of arsenic, 0.6 parts of cerium and cesium. 9.8 parts were included. The composition of the elements of the used catalyst excluding oxygen was P 1.3 As 0.3 Mo 12 Cu 0.1 V 0.7 Fe 0.1 Ce 0.1 Cs 1.6 . 100 parts of this used catalyst was dispersed in 400 parts of pure water. To this was added 25.7 parts of sodium hypochlorite (effective chlorine 12% by mass), and the mixture was stirred at 60 ° C. for 3 hours. Then, 130 parts of a 45% by mass aqueous sodium hydroxide solution was added, and further stirred at 60 ° C. for 3 hours. The remaining liquid was filtered off. The pH was 12.3. 36% by mass hydrochloric acid was added to this to adjust the pH of the solution to 9.0, and then 45.2 parts of ammonium chloride (amount of ammonia root of 11.3 times mol of phosphorus + arsenic) was added. Subsequently, 36 mass% hydrochloric acid was added to adjust the pH of the solution to 5.0, and the mixture was kept at 30 ° C. for 3 hours with stirring. The obtained precipitate was treated in the same manner as in Example 1 to obtain “Initial precipitate 7”.
(2) Preparation of Reprecipitate 7 The obtained “initial precipitate 7” was dispersed in 500 parts of pure water. To this, 56.4 parts of 29 mass% aqueous ammonia was added and stirred at 60 ° C. to dissolve the “initial precipitate 7”, and the pH was adjusted to 8.1. Subsequently, 36 mass% hydrochloric acid was added to adjust the pH of the solution to 5.0, and the mixture was kept at 30 ° C. for 3 hours with stirring. The precipitate thus obtained was subjected to the same procedure as the preparation of the reprecipitate 1 of Example 1 to obtain “reprecipitate 7”.
(3) Heat treatment step In the same manner as in Example 1, the obtained reprecipitate 7 was used to obtain a raw material 7 for producing a catalyst. Catalyst raw material 7 includes 44.3 parts of molybdenum, 0.9 part of phosphorus, 0.8 part of vanadium, 1.0 part of arsenic, 8.3 parts of cesium, 0.01 times mole of sodium of phosphorus + arsenic, 1.1 times moles of ammonia radicals were included. The recovery rates of each element were 83.7% molybdenum, 47.4% phosphorus, 50.0% vanadium, 100% arsenic, and 84.7% cesium. Further, when X-ray diffraction measurement was performed, a diffraction peak of Keggin-type heteropolyacid cesium salt was observed in the catalyst manufacturing raw material 7, but a diffraction peak of molybdenum oxide such as molybdenum trioxide was not observed. It was.

[触媒7の調製]
三酸化モリブデン33.6部、85質量%リン酸5.6部、メタバナジン酸アンモニウム3.0部及び触媒製造用原料7の全量(モリブデンとして44.3部、リンとして0.9部、バナジウムとして0.8部、ヒ素として1.0部、セシウムとして8.3部)を純水400部に加え、オートクレーブ中、飽和水蒸気下120℃で3時間攪拌した。得られた液を60℃まで冷却した後、炭酸アンモニウム34.3部を純水74.2部に溶解した溶液を滴下して15分間攪拌した。次いで、硝酸銅1.4部を純水10部に溶解した溶液、硝酸鉄2.3部を純水10部に溶解した溶液、酸化セリウム1.0部、重炭酸セシウム5.9部を純水9.8部に混合した液を滴下し、さらに15分間攪拌した後に加熱攪拌しながら蒸発乾固した。得られた固形物を参考例1の触媒Aの製造と同様に乾燥、成形、粉砕、篩分級した後に窒素流通下で400℃にて5時間焼成を実施した後、更に空気流通下で340℃にて10時間焼成を実施して触媒7を得た。この触媒の酸素を除く元素の組成は、P1.3As0.3Mo12Cu0.10.7Fe0.1Ce0.1Cs1.6であった。
[Preparation of catalyst 7]
33.6 parts of molybdenum trioxide, 5.6 parts of 85 mass% phosphoric acid, 3.0 parts of ammonium metavanadate and the total amount of raw material 7 for catalyst production (44.3 parts as molybdenum, 0.9 parts as phosphorus, as vanadium 0.8 parts, 1.0 part as arsenic, and 8.3 parts as cesium) were added to 400 parts of pure water, and the mixture was stirred in an autoclave at 120 ° C. for 3 hours under saturated steam. After cooling the obtained liquid to 60 ° C., a solution obtained by dissolving 34.3 parts of ammonium carbonate in 74.2 parts of pure water was added dropwise and stirred for 15 minutes. Next, a solution of 1.4 parts of copper nitrate dissolved in 10 parts of pure water, a solution of 2.3 parts of iron nitrate dissolved in 10 parts of pure water, 1.0 part of cerium oxide, and 5.9 parts of cesium bicarbonate were purified. A solution mixed with 9.8 parts of water was added dropwise, and the mixture was further stirred for 15 minutes, and then evaporated to dryness while stirring with heating. The obtained solid was dried, molded, pulverized and sieve classified in the same manner as in the manufacture of catalyst A of Reference Example 1, and then calcined at 400 ° C. for 5 hours under a nitrogen flow, and further at 340 ° C. under an air flow. The catalyst 7 was obtained by calcination for 10 hours. The composition of the elements excluding oxygen in this catalyst was P 1.3 As 0.3 Mo 12 Cu 0.1 V 0.7 Fe 0.1 Ce 0.1 Cs 1.6 .

[メタクリル酸合成7]
得られた触媒7を用いて参考例5と同様にメタクリル酸の合成を行った。メタクロレイン転化率81.3モル%、メタクリル酸選択率83.6モル%及びメタクリル酸単流収率68.0モル%であり、触媒7は触媒Eと同等の性能であった。
[Methacrylic acid synthesis 7]
Using the obtained catalyst 7, methacrylic acid was synthesized in the same manner as in Reference Example 5. The methacrolein conversion rate was 81.3 mol%, the methacrylic acid selectivity was 83.6 mol%, and the methacrylic acid single stream yield was 68.0 mol%. The catalyst 7 had the same performance as the catalyst E.

本発明の触媒製造用原料を用いることにより、新品の触媒と同様の触媒性能を有し、資源の活用を図り、環境保護を図ることができ、産業上の利用価値は極めて高い。   By using the catalyst production raw material of the present invention, the catalyst performance is the same as that of a new catalyst, resources can be utilized, environmental protection can be achieved, and the industrial utility value is extremely high.

Claims (5)

モリブデン及びA元素(Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素を示す。)を含み、触媒として使用後の使用済触媒を水に分散したものである混合液のpHを8以上に調整した後、6.5以下に調整して得られた沈殿を250〜350℃で熱処理して得られるメタクリル酸合成用触媒製造用原料であって、
触媒が式(1)
Mo a b c d e (1)
(式中、Mo、Oはそれぞれモリブデン、酸素を表し、Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素を示し、Xはカリウム、ルビシウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種の元素を示し、Yは鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン及びセリウムからなる群より選ばれる少なくとも1種の元素を示し、a〜eは各元素の原子比を示し、aが12のとき、bは0.1以上3以下、cは0.01以上3以下、dは0以上3以下を示し、eは前記各成分の原子比を満足するのに必要な酸素の原子比を示す。)で表されるメタクリル酸合成用触媒であり、
X線回折測定でケギン構造を有するヘテロポリ酸又はヘテロポリ酸塩に帰属する回折ピークを有し、かつ、モリブデン酸化物に帰属する回折ピークを有さないメタクリル酸合成用触媒製造用原料。
Molybdenum and A element (A is at least one element selected from the group consisting of phosphorus and arsenic.) Only contains the spent catalyst after used as a catalyst and the pH of the mixture is obtained by dispersing in water A raw material for producing a catalyst for synthesizing methacrylic acid obtained by heat-treating a precipitate obtained by adjusting to 8 or more and then adjusting to 6.5 or less at 250 to 350 ° C.,
The catalyst is of formula (1)
Mo a A b X c Y d O e (1)
(Wherein Mo and O represent molybdenum and oxygen, respectively, A represents at least one element selected from the group consisting of phosphorus and arsenic, and X represents at least selected from the group consisting of potassium, rubidium, cesium and thallium. Y represents iron, cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin , Lead, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium indicate at least one element, a to e indicate the atomic ratio of each element, When a is 12, b is 0.1 or more and 3 or less, c is 0.01 or more Hereinafter, d represents 0 to 3, e is methacrylic acid synthesis catalyst represented by.) Indicating the atomic ratio of oxygen required to satisfy the atomic ratio of the respective components,
A raw material for producing a catalyst for synthesizing methacrylic acid which has a diffraction peak attributed to a heteropolyacid or heteropolyacid salt having a Keggin structure by X-ray diffraction measurement and does not have a diffraction peak attributed to molybdenum oxide.
モリブデン及びA元素(Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素を示す。)を含み、触媒として使用後の使用済触媒を水に分散したものである混合液のpHを8以上に調整した後、6.5以下に調整して得られた沈殿を250〜350℃で熱処理して得られるメタクリル酸合成用触媒製造用原料の製造方法であって、
触媒が式(1)
Mo a b c d e (1)
(式中、Mo、Oはそれぞれモリブデン、酸素を表し、Aはリン及びヒ素からなる群より選ばれる少なくとも1種の元素を示し、Xはカリウム、ルビシウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種の元素を示し、Yは鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン及びセリウムからなる群より選ばれる少なくとも1種の元素を示し、a〜eは各元素の原子比を示し、aが12のとき、bは0.1以上3以下、cは0.01以上3以下、dは0以上3以下を示し、eは前記各成分の原子比を満足するのに必要な酸素の原子比を示す。)で表されるメタクリル酸合成用触媒であり、
メタクリル酸合成用触媒製造用原料が、X線回折測定でケギン構造を有するヘテロポリ酸又はヘテロポリ酸塩に帰属する回折ピークを有し、かつ、モリブデン酸化物に帰属する回折ピークを有さないことを特徴とするメタクリル酸合成用触媒製造用原料の製造方法。
PH of saw including a mixture of spent catalyst used as a catalyst Yogo is obtained by dispersing in water (at least one indicating. The element A selected from the group consisting of phosphorus and arsenic) molybdenum and A element after adjusting to 8 or more, a process for the preparation of methacrylic acid catalyst for synthesizing a raw material for producing obtained by heat-treating the precipitate obtained was adjusted to 6.5 or less at 250 to 350 ° C.,
The catalyst is of formula (1)
Mo a A b X c Y d O e (1)
(Wherein Mo and O represent molybdenum and oxygen, respectively, A represents at least one element selected from the group consisting of phosphorus and arsenic, and X represents at least selected from the group consisting of potassium, rubidium, cesium and thallium. Y represents iron, cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin , Lead, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium indicate at least one element, a to e indicate the atomic ratio of each element, When a is 12, b is 0.1 or more and 3 or less, c is 0.01 or more Hereinafter, d represents 0 to 3, e is methacrylic acid synthesis catalyst represented by.) Indicating the atomic ratio of oxygen required to satisfy the atomic ratio of the respective components,
The raw material for catalyst production for methacrylic acid synthesis has a diffraction peak attributed to a heteropolyacid or heteropolyacid salt having a Keggin structure by X-ray diffraction measurement, and does not have a diffraction peak attributed to molybdenum oxide. A method for producing a raw material for producing a catalyst for synthesizing methacrylic acid .
請求項1に記載のメタクリル酸合成用触媒製造用原料を用いることを特徴とするメタクリル酸合成用触媒の製造方法。 A method for producing a catalyst for synthesizing methacrylic acid, comprising using the raw material for producing a catalyst for synthesizing methacrylic acid according to claim 1 . 請求項3に記載のメタクリル酸合成用触媒の製造方法により得られたメタクリル酸合成用触媒。 Methacrylic acid synthesis catalyst obtained by the process for preparing a catalyst for methacrylic acid synthesis according to claim 3. 請求項4に記載のメタクリル酸合成用触媒の存在下で、メタクロレインを分子状酸素により気相酸化するメタクリル酸の製造方法。 A method for producing methacrylic acid, comprising subjecting methacrolein to gas phase oxidation with molecular oxygen in the presence of the catalyst for synthesizing methacrylic acid according to claim 4 .
JP2007261998A 2007-06-20 2007-10-05 Raw material for production of methacrylic acid catalyst, production method thereof, production method of methacrylic acid synthesis catalyst, and production method of methacrylic acid Active JP4951457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261998A JP4951457B2 (en) 2007-06-20 2007-10-05 Raw material for production of methacrylic acid catalyst, production method thereof, production method of methacrylic acid synthesis catalyst, and production method of methacrylic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007162321 2007-06-20
JP2007162321 2007-06-20
JP2007261998A JP4951457B2 (en) 2007-06-20 2007-10-05 Raw material for production of methacrylic acid catalyst, production method thereof, production method of methacrylic acid synthesis catalyst, and production method of methacrylic acid

Publications (2)

Publication Number Publication Date
JP2009022945A JP2009022945A (en) 2009-02-05
JP4951457B2 true JP4951457B2 (en) 2012-06-13

Family

ID=40395276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261998A Active JP4951457B2 (en) 2007-06-20 2007-10-05 Raw material for production of methacrylic acid catalyst, production method thereof, production method of methacrylic acid synthesis catalyst, and production method of methacrylic acid

Country Status (1)

Country Link
JP (1) JP4951457B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5335490B2 (en) * 2009-03-09 2013-11-06 住友化学株式会社 Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP5609396B2 (en) * 2010-08-03 2014-10-22 三菱レイヨン株式会社 Catalyst for methacrylic acid production
JP5691841B2 (en) * 2011-05-25 2015-04-01 住友金属鉱山株式会社 Easily soluble molybdenum trioxide particles and method for producing the same
CN110944747B (en) * 2017-07-31 2022-10-18 三菱化学株式会社 Catalyst precursor for production of methacrylic acid, acrylic acid and esters thereof, and method for production of catalyst
JP6628386B1 (en) * 2018-03-28 2020-01-08 日本化薬株式会社 Catalyst for unsaturated carboxylic acid production
CN113976179B (en) * 2021-11-04 2024-02-09 淄博市翔力致高新材料有限责任公司 Hollow structure catalyst and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018212B2 (en) * 1977-06-08 1985-05-09 ジェイエスアール株式会社 Regeneration method of catalyst for methacrylic acid production
JPS60232247A (en) * 1984-05-02 1985-11-18 Nippon Shokubai Kagaku Kogyo Co Ltd Regeneration of hetero-polyacid type catalyst
JPS61283352A (en) * 1985-06-05 1986-12-13 Mitsubishi Rayon Co Ltd Preparation of oxidizing catalyst
JP3316881B2 (en) * 1992-09-09 2002-08-19 住友化学工業株式会社 Method for producing catalyst for producing methacrylic acid
JP3298978B2 (en) * 1993-04-01 2002-07-08 日本化薬株式会社 Catalyst regeneration method
JP2667956B2 (en) * 1994-02-08 1997-10-27 日本無機化学工業株式会社 Method for recovering catalyst components from heteropolyacid salt catalyst
JP3887511B2 (en) * 1999-05-19 2007-02-28 三菱レイヨン株式会社 Catalyst production method
JP3866484B2 (en) * 2000-05-16 2007-01-10 三菱レイヨン株式会社 How to wash the precipitate

Also Published As

Publication number Publication date
JP2009022945A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP4764338B2 (en) Molybdenum recovery method and catalyst production method
JPWO2007032228A1 (en) Molybdenum recovery method and catalyst production method
JP3887511B2 (en) Catalyst production method
JP4951457B2 (en) Raw material for production of methacrylic acid catalyst, production method thereof, production method of methacrylic acid synthesis catalyst, and production method of methacrylic acid
JP4822559B2 (en) An improved method for the selective reduction of propionic acid from a (meth) acrylic acid product stream
JP5387297B2 (en) Method for producing composite oxide catalyst
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
TW201418210A (en) Oxidative dehydrogenation of ethane to ethylene and preparation of multimetallic mixed oxide catalyst for such process
WO2008050767A1 (en) Fluidized-bed catalyst for the production of acrylonitrile and process for the production of acrylonitrile
JP5030438B2 (en) Method for producing catalyst and method for producing methacrylic acid
EP0265733B1 (en) Process for producing methacrylic acid
US7229945B2 (en) Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JP3465350B2 (en) Method for producing catalyst for methacrylic acid production
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
WO2002051787A1 (en) Process for producing methacrylic acid
WO2023214235A1 (en) Catalysts for oxidative dehydrogenation
WO2023214236A1 (en) Making catalysts for oxidative dehydrogenation
JP5100520B2 (en) Method for producing catalyst for synthesizing α, β-unsaturated carboxylic acid
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP2002306970A (en) Catalyst for manufacturing methacrylic acid, method for manufacturing the catalyst and method for manufacturing methacrylic acid
JP5885019B2 (en) Method for producing a catalyst for methacrylic acid production
KR20140133862A (en) Molybdenum mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JP2008000710A (en) Manufacturing method of heteropolyacid based catalyst for manufacturing methacrylic acid
JP4065710B2 (en) Regeneration method of deteriorated catalyst
US4064171A (en) Process for preparation of aromatic amines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4951457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250