JPH0681050A - Method for recovering nickel and cobalt - Google Patents

Method for recovering nickel and cobalt

Info

Publication number
JPH0681050A
JPH0681050A JP31143891A JP31143891A JPH0681050A JP H0681050 A JPH0681050 A JP H0681050A JP 31143891 A JP31143891 A JP 31143891A JP 31143891 A JP31143891 A JP 31143891A JP H0681050 A JPH0681050 A JP H0681050A
Authority
JP
Japan
Prior art keywords
sulfide
cobalt
acid
nickel
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31143891A
Other languages
Japanese (ja)
Inventor
Shinkichi Koike
伸吉 小池
Kosuke Murai
浩介 村井
Hiromasa Yakushiji
弘昌 薬師寺
Susumu Izumimoto
将 泉本
Ryuzo Wakamatsu
隆三 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Metals Co Ltd
Original Assignee
Pacific Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Metals Co Ltd filed Critical Pacific Metals Co Ltd
Priority to JP31143891A priority Critical patent/JPH0681050A/en
Publication of JPH0681050A publication Critical patent/JPH0681050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To preferentially precipitate and recover Ni and Co at high yields by adding an alkali sulfide compd. to an acid soln. obtd. by leaching Ni- and Co-contg. raw materials with a mineral acid to precipitate and form the Ni and Co as sulfides. CONSTITUTION:The ore oxide, waste media and other raw materials in which the Ni and Co coexist are treated with the mineral acids, such as sulfuric acid, hydrochloric acid and nitric acid, to prepare an acid aq. soln. of pH >1.5 in which the Ni and Co or further, simultaneously contained components, such as Fe, Al, Mn, Mg and Cr, are acid-leached. After this aq. acid soln. is heated to and held at <=100 deg.C, the alkali sulfide compd., such as sodium sulfide or sodium hydrosulfide, is added thereto at 1.1 to 1.3 times the theoretical equiv. for formation of NiS and CoS to effect reaction for 5 to 60 minutes. The Ni and Co are preferentially deposited and precipitated as NiS and CoS and are filtered. The Ni and Co are thus recovered in the form of the sulfides at the good yields.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル、コバルト、
又はニッケルとコバルトの共存する酸化鉱石、マンガン
ノジュウル、コバルトクラスト、廃触媒、Ni、Co合
金スクラップ等を酸浸出して得られたニッケル、コバル
トを含む、又はこの他に鉄、アルミニウム、マンガン、
マグネシウム、クロム等を含む酸性水溶液から、ニッケ
ルとコバルトを優先的に効率良くしかも容易に硫化物と
して回収する方法に関する。
The present invention relates to nickel, cobalt,
Or, it contains nickel or cobalt obtained by acid leaching oxide ore, manganese nodule, cobalt crust, waste catalyst, Ni, Co alloy scrap, etc. in which nickel and cobalt coexist, or else iron, aluminum, manganese ,
The present invention relates to a method for preferentially and efficiently recovering nickel and cobalt as sulfides from an acidic aqueous solution containing magnesium, chromium and the like.

【0002】[0002]

【従来の技術】ニッケル、コバルトを含む酸性水溶液か
らの硫化物としての回収方法は、金属製錬技術ハンドブ
ック(発行所、朝倉書店)700頁に記載されているよ
うに、硫化水素ガスを使用し、2〜10kg/cm2
加圧下でしかも100℃以上の高温度でオートクレーブ
を使用して硫化し行われている。
2. Description of the Related Art As a method for recovering sulfides from an acidic aqueous solution containing nickel and cobalt, hydrogen sulfide gas is used as described in page 700 of the Metal Smelting Technology Handbook (publishing office, Asakura Shoten). Sulfurization is performed using an autoclave under a pressure of 2 to 10 kg / cm 2 and at a high temperature of 100 ° C. or higher.

【0003】このような条件下でのオートクレーブ操業
では、硫化物がオートクレーブの管壁に固着し、しばし
ば操業を中止し除去する必要がある。
In the autoclave operation under such conditions, the sulfide adheres to the tube wall of the autoclave, and it is often necessary to stop and remove the operation.

【0004】また、硫化水素ガスとニッケル、コバルト
を含む酸性水溶液との反応のため、硫化物の生成速度が
遅く濾過分離性の良好な硫化物を生成さす為には、種結
晶となる多量の硫化物をあらかじめ存在させておくこと
が必要であり、装置が大型化する。
Further, since hydrogen sulfide gas reacts with an acidic aqueous solution containing nickel and cobalt, a large amount of seed crystals are produced in order to produce a sulfide having a low rate of sulfide formation and good filterability and separability. Since it is necessary to allow sulfides to exist in advance, the device becomes large.

【0005】この技術の改良として特公昭60―543
78号公報には金属鉄を触媒として、更に特公昭61―
28731号公報では銅を触媒として常圧で硫化物を生
成させる技術が開示されているが、いずれにしても使用
する硫化水素ガスは猛毒ガスである為、取り扱い上困難
な点が多く、装置も複雑化するという問題がある。
As an improvement of this technique, Japanese Examined Patent Publication No. 60-543
Japanese Patent No. 78 discloses a method using metallic iron as a catalyst and Japanese Patent Publication No. 61-
Japanese Patent No. 28731 discloses a technique in which copper is used as a catalyst to generate a sulfide at atmospheric pressure, but in any case, since the hydrogen sulfide gas used is a highly poisonous gas, it is difficult to handle in many cases, and the device is also used. There is the problem of complication.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する点は、ニッケル、コバルトの他に、鉄、アルミニウ
ム、マンガン、マグネシウム、クロム等を含む場合もあ
る水溶液から硫化物としてニッケルとコバルトを選択的
に回収するにあたり、水硫化ナトリウム、硫化ナトリウ
ムあるいは水硫化ナトリウムと硫化ナトリウムの混合物
とニッケル、コバルト又はニッケルとコバルトを含む酸
性水溶液とを反応さすことにより、常圧でかつ100℃
以下の温度で、オートクレーブを用いずに短時間で効率
良くしかも濾過分離性の良い、ニッケル硫化物、コバル
ト硫化物を製造することである。
The problem to be solved by the present invention is that nickel and cobalt are used as sulfides from an aqueous solution which may contain iron, aluminum, manganese, magnesium, chromium and the like in addition to nickel and cobalt. Upon selective recovery, sodium hydrosulfide, sodium sulfide, or a mixture of sodium hydrosulfide and sodium sulfide is reacted with nickel, cobalt, or an acidic aqueous solution containing nickel and cobalt at 100 ° C. under normal pressure.
It is to produce nickel sulfides and cobalt sulfides at the following temperatures in a short time without using an autoclave, with good efficiency and good filterability.

【0007】[0007]

【課題を解決するための手段】本発明は、ニッケル、コ
バルト、又はニッケルとコバルトを含む酸性水溶液から
ニッケル、コバルトを回収するに当たり、水硫化ナトリ
ウム、硫化ナトリウムあるいは水硫化ナトリウムと硫化
ナトリウムの混合物とニッケル、コバルトを含む水溶液
とを常圧で100℃以下の温度において、酸性水溶液の
PHを1.5以上の範囲において反応させることによ
り、ニッケル硫化物、コバルト硫化物の効率的な回収方
法を提供する。
According to the present invention, when recovering nickel and cobalt from nickel, cobalt, or an acidic aqueous solution containing nickel and cobalt, sodium hydrosulfide, sodium sulfide, or a mixture of sodium hydrosulfide and sodium sulfide is used. Provided is an efficient method for recovering nickel sulfide and cobalt sulfide by reacting an aqueous solution containing nickel and cobalt at a temperature of 100 ° C. or less at atmospheric pressure and a pH of an acidic aqueous solution in a range of 1.5 or more. To do.

【0008】以下に、本発明について詳細に説明する。The present invention will be described in detail below.

【0009】ニッケル、コバルト、又はニッケルとコバ
ルトを含む酸性水溶液を100℃以下に保持し、水硫化
ナトリウム、硫化ナトリウムあるいは水硫化ナトリウム
と硫化ナトリウムの混合物とを反応させた。
An acidic aqueous solution containing nickel, cobalt, or nickel and cobalt was kept at 100 ° C. or lower to react with sodium hydrosulfide, sodium sulfide, or a mixture of sodium hydrosulfide and sodium sulfide.

【0010】反応温度が40℃以下では、硫化物の反応
速度が遅く硫化物の生成に長時間かかり、ニッケル、コ
バルトの回収率が低下するばかりか、硫化物の粒子径が
小さくなり濾過分離性が悪くなる。
When the reaction temperature is 40 ° C. or lower, the reaction rate of the sulfide is slow and it takes a long time to form the sulfide, which not only lowers the recovery rate of nickel and cobalt but also reduces the particle size of the sulfide, resulting in filtration and separation. Becomes worse.

【0011】一方温度は高い方がより好ましいが、経済
性および装置の点からも100℃以下とし、50℃以上
になると反応はかなり速くなり、80℃では硫化物の反
応速度が十分速く、粒子径の大きな硫化物が生成し濾過
分離性が良好となる。
On the other hand, a higher temperature is more preferable, but from the viewpoint of economy and equipment, the temperature is set to 100 ° C. or lower, and the reaction is considerably accelerated at 50 ° C. or higher, and the reaction speed of sulfide is sufficiently high at 80 ° C. Sulfide having a large diameter is generated, and the filter separation property is improved.

【0012】以上のことから反応温度は100℃以下で
好ましくは、60〜80℃の範囲が良い。反応時間は通
常5〜60分程度で充分である。
From the above, the reaction temperature is 100 ° C. or lower, preferably 60 to 80 ° C. A reaction time of about 5 to 60 minutes is usually sufficient.

【0013】反応時の酸性水溶液PHは、1.5以上の
範囲に調整しておこなうことが望ましい。PHが1.5
未満ではニッケル、コバルトの回収率が低下する。
It is desirable that the acidic aqueous solution PH during the reaction is adjusted to a range of 1.5 or more. PH is 1.5
If it is less than the above, the recovery rate of nickel and cobalt decreases.

【0014】反応圧力は常圧でおこなった。オートクレ
ーブを用いて加圧下でおこなってもよいが反応性、硫化
物の生成の点から違いはなく、その必要はない。反応雰
囲気は還元性とすることが望ましい。
The reaction pressure was atmospheric pressure. It may be carried out under pressure using an autoclave, but there is no difference in terms of reactivity and formation of sulfides, and it is not necessary. The reaction atmosphere is preferably reducing.

【0015】しかし、還元性雰囲気といっても特別に硫
化水素ガスあるいは水素ガスで置換する必要はなく、空
気の侵入を防止する程度で十分である。
However, even in the reducing atmosphere, it is not necessary to replace it with hydrogen sulfide gas or hydrogen gas, and it is sufficient to prevent the invasion of air.

【0016】水硫化ナトリウム、硫化ナトリウムの使用
量は、該酸性水溶液中のニッケル、コバルトをニッケル
硫化物(NiS)、コバルト硫化物(CoS)として生
成するに必要な理論当量の1.1〜1.3倍でよい。
1.1当量未満では、ニッケル、コバルトの回収率が低
下する。
The amounts of sodium hydrosulfide and sodium sulfide used are 1.1 to 1 which is the theoretical equivalent amount required to produce nickel and cobalt in the acidic aqueous solution as nickel sulfide (NiS) and cobalt sulfide (CoS). 3 times is enough.
If it is less than 1.1 equivalents, the recovery rate of nickel and cobalt decreases.

【0017】一方1.3当量でニッケル、コバルトの回
収率は99%となり、これより多く使用しても経済的メ
リットはない。
On the other hand, at 1.3 equivalents, the recovery rate of nickel and cobalt is 99%, and there is no economic merit if more than this is used.

【0018】水硫化ナトリウム、硫化ナトリウムは水溶
液として使用するが、固体のまま使用してもなんら問題
はない。
Although sodium hydrosulfide and sodium sulfide are used as an aqueous solution, there is no problem even if they are used as a solid.

【0019】以下、本発明を実施例によりさらに詳細に
説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples.

【0020】[0020]

【実施例1】ニッケルとコバルトを含む酸化鉱石を硫酸
により、加圧酸浸出して得られたNi=2.65g/
l、Co=0.17g/l、Fe=0.10g/l、A
l=0.25g/l、Mn=1.86g/l、Mg=
1.82g/l、Cr=0.06g/lの酸性溶液を反
応容器内で温度80℃に保持し、溶液中のNi、Coを
NiS、CoSの硫化物として生成するに必要な量の
1.3倍当量の25%水硫化ナトリウム溶液を添加し攪
拌した。
Example 1 Ni obtained by pressure leaching of an oxide ore containing nickel and cobalt with sulfuric acid under pressure of Ni = 2.65 g /
1, Co = 0.17 g / l, Fe = 0.10 g / l, A
l = 0.25 g / l, Mn = 1.86 g / l, Mg =
An acidic solution of 1.82 g / l and Cr = 0.06 g / l was maintained at a temperature of 80 ° C. in the reaction vessel, and Ni and Co in the solution were added in an amount of 1 necessary for producing NiS and CoS as sulfides. A 3-fold equivalent of 25% sodium hydrosulfide solution was added and stirred.

【0021】添加後、2、5、10、20、30分後の
液濃度を分析し、Ni、Coの硫化物としての回収率を
求めた。30分後、硫化物と液を濾過分離し、硫化物の
成分と粒度を調べた。
The liquid concentration was analyzed 2, 5, 10, 20, 30 minutes after the addition, and the recovery rate of Ni and Co as sulfides was determined. After 30 minutes, the sulfide and the liquid were separated by filtration, and the component and particle size of the sulfide were examined.

【0022】この結果、水硫化ナトリウムの添加後5分
でNi、Coの99%が硫化物として回収できた。その
時の液PHは2.8であった。第1表にNi、Coの硫
化物としての回収率の結果を示す。
As a result, 99% of Ni and Co could be recovered as sulfides 5 minutes after the addition of sodium hydrosulfide. The liquid pH at that time was 2.8. Table 1 shows the results of the recovery rates of Ni and Co as sulfides.

【0023】硫化物の成分は、Ni=45.7%、Co
=2.90%、S=32%、Fe=0.08%、Al=
0.10%、Mn=0.15%、Mg=0.18%であ
り、Ni、Coが選択的に硫化物として回収された。平
均粒度は28μであり濾過分離性は非常に良好であっ
た。
The sulfide component is Ni = 45.7%, Co
= 2.90%, S = 32%, Fe = 0.08%, Al =
0.10%, Mn = 0.15%, Mg = 0.18%, and Ni and Co were selectively recovered as sulfides. The average particle size was 28μ, and the filter separation property was very good.

【0024】[0024]

【実施例2】反応温度を60℃とした以外は、実施例1
と同じ条件でおこなった。この結果を第1表に示す。水
硫化ナトリウムの添加後20分でNi、Coの98%が
硫化物として回収できた。その時の液PHは2.5であ
り、その平均粒度は25μであった。
Example 2 Example 1 except that the reaction temperature was 60 ° C.
The same conditions were used. The results are shown in Table 1. 20 minutes after the addition of sodium hydrosulfide, 98% of Ni and Co could be recovered as sulfides. The liquid pH at that time was 2.5, and the average particle size was 25 μ.

【0025】[0025]

【実施例3】反応温度を40℃とした以外は、実施例1
と同じ条件でおこなった。この結果を第1表に示す。水
硫化ナトリウムの添加後30分反応させても、Ni、C
oの硫化物としての回収率は88%、73%と低下し、
その平均粒度も15μと低下し、液PHは2.5であっ
た。
Example 3 Example 1 except that the reaction temperature was 40 ° C.
The same conditions were used. The results are shown in Table 1. Even after reacting for 30 minutes after adding sodium hydrosulfide, Ni, C
The recovery rate of o as sulfide decreased to 88% and 73%,
The average particle size was also reduced to 15μ, and the liquid PH was 2.5.

【0026】[0026]

【実施例4】水硫化ナトリウムの添加量を1.1当量と
した以外は、実施例1と同じ条件でおこなった。この結
果を第1表に示す。水硫化ナトリウムの添加後30分反
応させても、Ni、Coの硫化物としての回収率はそれ
ぞれ87%、79%であり、平均粒度は28μであっ
た。その時の液PHは2.7であった。
[Example 4] The same conditions as in Example 1 were carried out except that the amount of sodium hydrosulfide added was 1.1 equivalents. The results are shown in Table 1. Even after reacting for 30 minutes after the addition of sodium hydrosulfide, the recovery rates of Ni and Co as sulfides were 87% and 79%, respectively, and the average particle size was 28μ. The liquid pH at that time was 2.7.

【0027】[0027]

【実施例5】Ni=10.24g/l、Co=0.70
g/l、Fe=0.21g/l、Al=0.18g/
l、Mn=0.26g/l、Mg=13.7g/l、C
r=0.08g/lの酸性溶液を使用した以外は、実施
例1と同じ条件でおこなった。水硫化ナトリウムの添加
後5分でNi、Coの99%が硫化物として回収でき
た。その平均粒度は30μと大きく濾過分離性は非常に
良好であった。その時の液PHは1.9であった。
Example 5 Ni = 10.24 g / l, Co = 0.70
g / l, Fe = 0.21 g / l, Al = 0.18 g /
1, Mn = 0.26 g / l, Mg = 13.7 g / l, C
The same conditions as in Example 1 were used except that an acidic solution of r = 0.08 g / l was used. Five minutes after the addition of sodium hydrosulfide, 99% of Ni and Co could be recovered as sulfides. The average particle size was as large as 30 μm and the filter separation property was very good. The liquid pH at that time was 1.9.

【0028】[0028]

【実施例6】水硫化ナトリウムの代りに、硫化ナトリウ
ムを使用し、硫化ナトリウムの添加量を1.3当量とし
た以外は、実施例1と同じ条件で行なった。硫化ナトリ
ウムの添加後10分でNi、Coの98%が硫化物とし
て回収できた。その平均粒度は27μと大きく、濾過分
離性は非常に良好であった。その時の液PHは3.5で
あった。
[Example 6] The same conditions as in Example 1 were carried out except that sodium sulfide was used instead of sodium hydrosulfide, and the addition amount of sodium sulfide was 1.3 equivalents. 98% of Ni and Co could be recovered as sulfides 10 minutes after the addition of sodium sulfide. The average particle size was as large as 27 μm, and the filter separation property was very good. The liquid pH at that time was 3.5.

【0029】[0029]

【実施例7】水硫化ナトリウムと硫化ナトリウムのSぶ
んに換算して1:1の当量割合で混合使用した以外は、
実施例1と同じ条件で行なった。水硫化ナトリウムと硫
化ナトリウム混合物の添加後10分でNi、Coの99
%が硫化物として回収できた。その平均粒度は28μと
大きく、濾過分離性は非常に良好であった。その時の液
PHは3.1であった。
Example 7 Except that sodium hydrosulfide and sodium sulfide were mixed and used at an equivalent ratio of 1: 1 in terms of S.
The same conditions as in Example 1 were used. 99 minutes after addition of the mixture of sodium hydrosulfide and sodium sulfide,
% Could be recovered as sulfide. The average particle size was as large as 28 μ, and the filter separation property was very good. The liquid pH at that time was 3.1.

【0030】[0030]

【実施例8】ニッケルとコバルトを含む廃触媒を硫酸に
より、加圧浸出して得られたNi=3.72g/l、C
o=1.65g/l、Fe=0.07g/l、Al=
1.53g/l、Mn=0.03g/l、Mg=1.1
1g/lの酸性溶液と水硫化ナトリウムをNi、Coに
対し1.3当量添加し80℃で10分間反応させた。N
i、Coの99%が硫化物として回収でき、その平均粒
度は28μと大きく、濾過分離性は非常に良好であっ
た。その時の液PHは2.7であった。
Example 8 Ni = 3.72 g / l, C obtained by pressure leaching a spent catalyst containing nickel and cobalt with sulfuric acid.
o = 1.65 g / l, Fe = 0.07 g / l, Al =
1.53 g / l, Mn = 0.03 g / l, Mg = 1.1
A 1 g / l acidic solution and 1.3 equivalents of sodium hydrosulfide were added to Ni and Co and reacted at 80 ° C. for 10 minutes. N
99% of i and Co could be recovered as a sulfide, the average particle size was as large as 28μ, and the filtration separation property was very good. The liquid pH at that time was 2.7.

【0031】[0031]

【実施例9】マンガンノジュウルを硫酸により、浸出し
て得られたNi=1.15g/l、Co=0.36g/
l、Cu=0.87g/l、Fe=5.03g/l、A
l=0.23g/l、Mn=25.0g/l、Mg=
0.52g/l、Cr=0.11g/lの酸性溶液と水
硫化ナトリウムをNi、Co、Cuに対し1.2当量添
加し80℃で10分間反応させた。Ni、Coの98
%、Cuの99%が硫化物として回収でき、その平均粒
度は31μと大きく、濾過分離性は非常に良好であっ
た。その時の液PHは3.1であった。
Example 9 Manganese nodules were leached with sulfuric acid to obtain Ni = 1.15 g / l and Co = 0.36 g / l.
1, Cu = 0.87 g / l, Fe = 5.03 g / l, A
l = 0.23 g / l, Mn = 25.0 g / l, Mg =
An acidic solution of 0.52 g / l and Cr = 0.11 g / l and 1.2 equivalents of sodium hydrosulfide were added to Ni, Co and Cu and reacted at 80 ° C. for 10 minutes. 98 of Ni and Co
%, And 99% of Cu could be recovered as a sulfide, the average particle size was as large as 31 μ, and the filter separation property was very good. The liquid pH at that time was 3.1.

【0032】[0032]

【実施例10】Ni=3.12g/l、Co=0.26
g/l、Fe=0.41g/l、Al=0.15g/
l、Mn=1.36g/l、Mg=13.7g/lの塩
酸溶液と水硫化ナトリウムをNi、Coに対し1.25
当量添加し80℃で10分間反応させた。Ni、Coの
99%が硫化物として回収でき、その平均粒度は30μ
と大きく、濾過分離性は非常に良好であった。その時の
液PHは1.6であった。
Example 10 Ni = 3.12 g / l, Co = 0.26
g / l, Fe = 0.41 g / l, Al = 0.15 g /
l, Mn = 1.36 g / l, Mg = 13.7 g / l hydrochloric acid solution and sodium hydrosulfide for Ni and Co of 1.25
An equivalent amount was added and the mixture was reacted at 80 ° C. for 10 minutes. 99% of Ni and Co can be recovered as sulfides, and the average particle size is 30μ
And the filterability was very good. The liquid pH at that time was 1.6.

【0033】[0033]

【実施例11】Ni=4.32g/l、Co=0.37
g/l、Fe=0.16g/l、Al=0.20g/
l、Mn=1.55g/l、Mg=10.3g/lの硝
酸溶液と水硫化ナトリウムをNi、Coに対し1.30
当量添加し80℃で10分間反応させた。Niの97
%、Coの99%が硫化物として回収でき、その平均粒
度は27μと大きく、濾過分離性は非常に良好であっ
た。その時の液PHは1.7であった。
Example 11 Ni = 4.32 g / l, Co = 0.37
g / l, Fe = 0.16 g / l, Al = 0.20 g /
l, Mn = 1.55 g / l, Mg = 10.3 g / l nitric acid solution and sodium hydrosulfide 1.30 with respect to Ni and Co
An equivalent amount was added and the mixture was reacted at 80 ° C. for 10 minutes. Ni 97
%, And 99% of Co could be recovered as sulfides, the average particle size was large at 27 μ, and the filter separation property was very good. The liquid pH at that time was 1.7.

【0034】[0034]

【実施例12】Ni=7.36g/l、Co=2.42
g/l、Fe=0.40g/l、Mn=0.59g/
l、Cr=0.74g/lの硫酸と硝酸の混酸液と水硫
化ナトリウムをNi、Coに対し1.25当量添加し、
80℃で10分間反応させた。Niの98%、Coの9
8%が硫化物として回収でき、その平均粒度は29μと
大きく、濾過分離性は非常に良好であった。その時の液
PHは1.7であった。
Example 12 Ni = 7.36 g / l, Co = 2.42
g / l, Fe = 0.40 g / l, Mn = 0.59 g /
1, Cr = 0.74 g / l mixed acid solution of sulfuric acid and nitric acid, and sodium hydrosulfide were added in an amount of 1.25 equivalents to Ni and Co,
The reaction was carried out at 80 ° C for 10 minutes. 98% of Ni, 9 of Co
8% could be recovered as a sulfide, the average particle size was as large as 29μ, and the filterability was very good. The liquid pH at that time was 1.7.

【0035】[0035]

【実施例13】Ni=5.50g/l、Fe=6.32
g/l、Mn=0.10g/l、Cr=0.12g/l
の硫酸と塩酸の混酸液と水硫化ナトリウムをNiに対し
1.25当量添加し、80℃で10分間反応させた。N
iの98%が硫化物として回収でき、その平均粒度は2
8μと大きく、濾過分離性は非常に良好であった。その
時の液PHは1.6であった。
Example 13 Ni = 5.50 g / l, Fe = 6.32
g / l, Mn = 0.10 g / l, Cr = 0.12 g / l
1.25 equivalents of the mixed acid solution of sulfuric acid and hydrochloric acid and sodium hydrosulfide were added to Ni and reacted at 80 ° C. for 10 minutes. N
98% of i can be recovered as sulfide and its average particle size is 2
It was as large as 8μ, and the filterability was very good. The liquid pH at that time was 1.6.

【0036】[0036]

【実施例14】Co=4.57g/l、Fe=5.36
g/l、Mn=0.08g/l、Cr=0.09g/l
の塩酸と硝酸の混酸液と水硫化ナトリウムをCoに対し
1.25当量添加し、80℃で10分間反応させた。C
oの99%が硫化物として回収でき、その平均粒度は2
8μと大きく、濾過分離性は非常に良好であった。その
時の液PHは1.8であった。
Example 14 Co = 4.57 g / l, Fe = 5.36
g / l, Mn = 0.08 g / l, Cr = 0.09 g / l
A mixed acid solution of hydrochloric acid and nitric acid and 1.25 equivalent of sodium hydrosulfide were added to Co and reacted at 80 ° C. for 10 minutes. C
99% of o can be recovered as sulfide and its average particle size is 2
It was as large as 8μ, and the filterability was very good. The liquid pH at that time was 1.8.

【0037】[0037]

【比較例1】実施例1と同じ酸性溶液をオートクレーブ
内で120℃、2.5kg/cm2の高温高圧状態に保
持し、硫化水素ガスを吹込みながら60分間攪拌し反応
させた。硫化水素ガスの使用量は溶液中のNi、Coを
NiS、CoSの硫化物として生成するに必要な量の
2.5当量を吹込んだ。
Comparative Example 1 The same acidic solution as in Example 1 was kept in an autoclave at 120 ° C. and a high temperature and high pressure of 2.5 kg / cm 2 , and the reaction was carried out by stirring for 60 minutes while blowing hydrogen sulfide gas. The hydrogen sulfide gas was used in an amount of 2.5 equivalents, which was the amount necessary to produce Ni and Co in the solution as NiS and CoS sulfides.

【0038】その後、硫化物と液を濾過分離し、濾液の
液濃度分析よりNi、Coの回収率をもとめた。硫化物
は粒度を調べた。この結果、Ni、Coの回収率は82
%であり、硫化物の平均粒度は13μと細かく濾過分離
性は良くなかった。この時の液PHは2.3であった。
Then, the sulfide and the liquid were separated by filtration, and the recovery ratios of Ni and Co were determined by analyzing the liquid concentration of the filtrate. Sulfide was examined for particle size. As a result, the recovery rate of Ni and Co was 82.
%, And the average particle size of the sulfide was as fine as 13 μm, and the separability by filtration was not good. The liquid PH at this time was 2.3.

【0039】[0039]

【比較例2】実施例1と同じ酸性溶液をオートクレーブ
内で80℃、1kg/cm2 の条件で硫化水素ガスを吹
き込みながら60分間攪拌し反応させた。硫化水素ガス
の使用量はNi、Coにたいし2.5当量吹き込んだ。
この時のNi、Coの回収率は66%であり、硫化物の
平均粒度は10μであった。液PHは2.6であった。
Comparative Example 2 The same acidic solution as in Example 1 was reacted in an autoclave at 80 ° C. under the condition of 1 kg / cm 2 for 60 minutes while blowing hydrogen sulfide gas. The amount of hydrogen sulfide gas used was 2.5 equivalents of Ni and Co.
At this time, the recovery rates of Ni and Co were 66%, and the average particle size of the sulfide was 10 μ. The liquid PH was 2.6.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】本発明の方法によれば、ニッケルやコバ
ルト、又はニッケルとコバルトの共存する酸性水溶液か
らニッケル硫化物、コバルト硫化物の製造がこれまで以
上に容易にしかも安全に行われ、操業が簡素化される。
According to the method of the present invention, nickel sulfide and cobalt sulfide can be produced more easily and safely than ever before from nickel or cobalt, or an acidic aqueous solution in which nickel and cobalt coexist. Is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】水硫化ナトリウムの添加当量を1.3とした場
合、反応温度の違いによる反応時間と(a)Ni回収
率、(b)Co回収率の変化を示した図である。
FIG. 1 is a diagram showing changes in reaction time, (a) Ni recovery rate, and (b) Co recovery rate when the addition equivalent of sodium hydrosulfide is set to 1.3.

【図2】反応温度を80℃、反応時間を30分とした場
合、水硫化ナトリウムの添加当量とNi回収率、Co回
収率の変化を示した図である。
FIG. 2 is a diagram showing changes in addition equivalent of sodium hydrosulfide, Ni recovery rate, and Co recovery rate when the reaction temperature is 80 ° C. and the reaction time is 30 minutes.

【図3】反応温度と硫化物の平均粒子径の関係を示した
図である。
FIG. 3 is a diagram showing a relationship between a reaction temperature and an average particle diameter of sulfide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 泉本 将 青森県八戸市大字河原木字遠山新田(番地 なし) 大平洋金属株式会社八戸製造所内 (72)発明者 若松 隆三 青森県八戸市大字河原木字遠山新田(番地 なし) 大平洋金属株式会社八戸製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masashi Izumimoto Aoyama Prefecture, Odaira, Kawara Wood, Toyama Nitta (no address), Odaira Metals Co., Ltd., Hachinohe Factory (72) Inventor, Ryuzo Wakamatsu, Aomori, Kawaragi Toyama Nitta (no address) Ohira Yohkin Co., Ltd. Hachinohe Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル、コバルト、又はニッケルとコ
バルトを含む酸性水溶液に硫化アルカリ化合物を作用さ
せ、ニッケル、コバルトをそれぞれニッケル硫化物、コ
バルト硫化物として沈殿生成させるニッケル、コバルト
の回収方法において、温度が100 ℃未満、常圧下で反応
させ、濾過分離性の良好なニッケル硫化物、コバルト硫
化物として回収することを特徴とするニッケル、コバル
トの回収方法。
1. A method for recovering nickel and cobalt in which nickel and cobalt or an acidic aqueous solution containing nickel and cobalt are reacted with an alkali sulfide compound to precipitate nickel and cobalt as nickel sulfide and cobalt sulfide, respectively. Is less than 100 ° C under normal pressure, and is recovered as nickel sulfide or cobalt sulfide having good filtration and separation properties.
【請求項2】 前記酸性水溶液のPHが1.5以上であ
ることより成る請求項1記載の方法。
2. The method according to claim 1, wherein the pH of the acidic aqueous solution is 1.5 or more.
【請求項3】 前記酸性水溶液に硫化ナトリウム又は水
硫化ナトリウムを作用させることより成る請求項1記載
の方法。
3. The method according to claim 1, which comprises reacting the acidic aqueous solution with sodium sulfide or sodium hydrosulfide.
【請求項4】 前記酸性水溶液に水硫化ナトリウムと硫
化ナトリウムの混合物を作用させることより成る請求項
1記載の方法。
4. The method according to claim 1, which comprises reacting the acidic aqueous solution with a mixture of sodium hydrosulfide and sodium sulfide.
【請求項5】 前記酸性水溶液が硫酸、塩酸、硝酸液又
はそれらの2種以上の混酸を含む水溶液である請求項1
記載の方法。
5. The acidic aqueous solution is an aqueous solution containing sulfuric acid, hydrochloric acid, a nitric acid solution or a mixed acid of two or more kinds thereof.
The method described.
JP31143891A 1991-10-31 1991-10-31 Method for recovering nickel and cobalt Pending JPH0681050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31143891A JPH0681050A (en) 1991-10-31 1991-10-31 Method for recovering nickel and cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31143891A JPH0681050A (en) 1991-10-31 1991-10-31 Method for recovering nickel and cobalt

Publications (1)

Publication Number Publication Date
JPH0681050A true JPH0681050A (en) 1994-03-22

Family

ID=18017219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31143891A Pending JPH0681050A (en) 1991-10-31 1991-10-31 Method for recovering nickel and cobalt

Country Status (1)

Country Link
JP (1) JPH0681050A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2108708A1 (en) 2004-03-31 2009-10-14 Pacific Metals Co., Ltd. Processes for leaching and recovering nickel or cobalt
KR100942518B1 (en) * 2009-05-12 2010-02-12 박경도 Method for recycling cobalt from cobalt scrap
EP2194148A1 (en) 2008-11-28 2010-06-09 Sumitomo Metal Mining Company Limited Production process of Co/Ni-sulfide in a sulfuric acid solution containing nickel and cobalt
WO2012011205A1 (en) * 2010-07-21 2012-01-26 住友金属鉱山株式会社 Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
JP2012036420A (en) * 2010-08-03 2012-02-23 Sumitomo Metal Mining Co Ltd Method of leaching nickel and cobalt, and method of recovering valuable metal from lithium ion battery
JP2013139616A (en) * 2012-01-06 2013-07-18 Sumitomo Metal Mining Co Ltd Recovery method of rare earth element
EP3266885A4 (en) * 2015-03-05 2018-03-07 Sumitomo Metal Mining Co., Ltd. Method for producing nickel sulfide and hydrometallurgical method for nickel oxide ore
WO2018155114A1 (en) * 2017-02-24 2018-08-30 住友金属鉱山株式会社 Method for producing sulfide, and method for hydrometallurgically refining nickel oxide ore
JP2020117794A (en) * 2019-01-28 2020-08-06 住友金属鉱山株式会社 Hydrometallurgical method of nickel oxide ore
WO2022168805A1 (en) * 2021-02-02 2022-08-11 三菱マテリアル株式会社 Valuable metal recovery method and recovery device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2108708A1 (en) 2004-03-31 2009-10-14 Pacific Metals Co., Ltd. Processes for leaching and recovering nickel or cobalt
EP2194148A1 (en) 2008-11-28 2010-06-09 Sumitomo Metal Mining Company Limited Production process of Co/Ni-sulfide in a sulfuric acid solution containing nickel and cobalt
US8716177B2 (en) 2008-11-28 2014-05-06 Sumitomo Metal Mining Co., Ltd. Production process of sulfide containing nickel and cobalt
KR100942518B1 (en) * 2009-05-12 2010-02-12 박경도 Method for recycling cobalt from cobalt scrap
US8888892B2 (en) 2010-07-21 2014-11-18 Sumitomo Metal Mining Co., Ltd. Method for separating nickel and cobalt from active material contained in spent nickel-metal hydride battery
WO2012011205A1 (en) * 2010-07-21 2012-01-26 住友金属鉱山株式会社 Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
JP2012025992A (en) * 2010-07-21 2012-02-09 Sumitomo Metal Mining Co Ltd Method for separating nickel and cobalt from active material contained in spent nickel-hydrogen battery
JP2012036420A (en) * 2010-08-03 2012-02-23 Sumitomo Metal Mining Co Ltd Method of leaching nickel and cobalt, and method of recovering valuable metal from lithium ion battery
JP2013139616A (en) * 2012-01-06 2013-07-18 Sumitomo Metal Mining Co Ltd Recovery method of rare earth element
EP3266885A4 (en) * 2015-03-05 2018-03-07 Sumitomo Metal Mining Co., Ltd. Method for producing nickel sulfide and hydrometallurgical method for nickel oxide ore
US10017835B2 (en) 2015-03-05 2018-07-10 Sumitomo Metal Mining Co., Ltd. Method for producing nickel sulfide and hydrometallurgical method for nickel oxide ore
WO2018155114A1 (en) * 2017-02-24 2018-08-30 住友金属鉱山株式会社 Method for producing sulfide, and method for hydrometallurgically refining nickel oxide ore
JP2018141179A (en) * 2017-02-24 2018-09-13 住友金属鉱山株式会社 Method for producing sulfide and wet refining method for nickel oxide ore
JP2020117794A (en) * 2019-01-28 2020-08-06 住友金属鉱山株式会社 Hydrometallurgical method of nickel oxide ore
WO2022168805A1 (en) * 2021-02-02 2022-08-11 三菱マテリアル株式会社 Valuable metal recovery method and recovery device

Similar Documents

Publication Publication Date Title
JP3203707B2 (en) Method for recovering valuable metals from oxide ore
US4218240A (en) Method for producing cobaltic hexammine compounds and cobalt metal powder
US4348224A (en) Method for producing cobalt metal powder
JP3385997B2 (en) Method of recovering valuable metals from oxide ore
US4233063A (en) Process for producing cobalt powder
US4278463A (en) Process for recovering cobalt
JPH0681050A (en) Method for recovering nickel and cobalt
EP0028638B1 (en) Method for producing cobalt metal powder
US3992270A (en) Method of reclaiming nickel values from a nickeliferous alloy
US4184868A (en) Method for producing extra fine cobalt metal powder
US4214896A (en) Process for producing cobalt metal powder
JPH09208222A (en) Production of high purity rare earth metal oxide
US4329169A (en) Method for producing cobalt metal powder
US4545816A (en) Processes relating to the extraction of metals from laterites and ocean manganese nodules
US4755453A (en) Method for recovering silver from waste solutions containing thiosulfate compounds
EP0141515B1 (en) Catalyst
US3975190A (en) Hydrometallurgical treatment of nickel and copper bearing intermediates
JP3102331B2 (en) Method for recovering valuable metals from waste Ni catalyst
JP3307204B2 (en) Concentration separation and recovery method of rare earth metal
US4612039A (en) Production of pure cobalt metal powder
US4643884A (en) Purification of molybdenum trioxide
US4885144A (en) Process for purifying molybdenum
CA1064854A (en) Method of extracting constituent metal values from pyrometallic nodules from the sea
US4482377A (en) Separation of zinc from a zinc-copper alloy
US5196580A (en) Recovery of oxalate from solutions containing complexes of iron and chromium