WO2022168805A1 - Valuable metal recovery method and recovery device - Google Patents

Valuable metal recovery method and recovery device Download PDF

Info

Publication number
WO2022168805A1
WO2022168805A1 PCT/JP2022/003697 JP2022003697W WO2022168805A1 WO 2022168805 A1 WO2022168805 A1 WO 2022168805A1 JP 2022003697 W JP2022003697 W JP 2022003697W WO 2022168805 A1 WO2022168805 A1 WO 2022168805A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
contained
electrode active
active material
sulfuric acid
Prior art date
Application number
PCT/JP2022/003697
Other languages
French (fr)
Japanese (ja)
Inventor
弘樹 村岡
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to DE112022000943.8T priority Critical patent/DE112022000943T5/en
Priority to KR1020237021873A priority patent/KR20230138446A/en
Publication of WO2022168805A1 publication Critical patent/WO2022168805A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0007Preliminary treatment of ores or scrap or any other metal source
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a recovery method and recovery apparatus for valuable metals.
  • This application claims priority based on Japanese Patent Application No. 2021-015218 filed in Japan on February 2, 2021, the contents of which are incorporated herein.
  • Patent Literature 1 describes a technique for adding sulfuric acid to battery slag collected from battery waste, thereby leaching and recovering valuable metals contained in the battery slag with sulfuric acid.
  • An object of the present invention is to efficiently leach out one or both of Ni and Co contained in battery slag into sulfuric acid and recover them.
  • a method for recovering a valuable metal according to one embodiment of the present invention includes a positive electrode active material containing one or both of Ni and Co, and a negative electrode active material containing graphite.
  • one or both of Ni and Co contained in the positive electrode active material in the battery slag is brought into contact with the graphite contained in the negative electrode active material, and the graphite contained in the Carbon dioxide gas can be generated by transferring the electrons from Ni and Co to one or both of Ni and Co. Therefore, one or both of Ni and Co contained in the positive electrode active material in the battery slag can be reduced to divalent and efficiently exuded into sulfuric acid.
  • the residual powder can be obtained by reducing the volume of the battery slag. Then, since sulfuric acid is added to the battery residue (residual powder) whose volume is reduced, Ni and Co contained in the positive electrode active material in the residual powder are leached out into sulfuric acid only by adding a smaller amount of sulfuric acid. can be made
  • hydrogen peroxide may be added to the residual powder together with the sulfuric acid in the acid leaching step.
  • Ni and Co which were not reduced to divalent during the generation of carbon dioxide gas in the heating step, can be reduced to divalent with hydrogen peroxide in the acid leaching step and efficiently leached into sulfuric acid.
  • the valuable metal recovery method of the present invention may further include a recovery step of recovering one or both of Ni and Co contained in the leachate.
  • the recovery step includes an addition step of adding a sulfiding agent to the leachate to generate a treatment liquid, and filtering the treatment liquid to remove the treatment liquid from the filtrate, which is a liquid component, and the leachate. a residue, which is a solid component containing one or both of Ni and Co that has been filtered;
  • Ni and Co contained in the leachate can be efficiently recovered as residue from the filtration process.
  • the method for recovering valuable metals of the present invention may further include a crushing step of crushing battery waste to produce crushed materials, and a removal step of removing aluminum pieces from the crushed materials and removing the battery slag. good. Moreover, in the heating step, the removed battery slag may be heated.
  • the aluminum pieces are removed from the crushed material and the battery slag taken out is heated in the heating step, whereby one or both of Ni and Co can be efficiently produced by melting the aluminum pieces in the heating step. It is possible to prevent inhibition of the reduction. Therefore, one or both of Ni and Co contained in the residual powder can be efficiently leached into sulfuric acid in the acid leaching step. Also, the aluminum pieces removed in the extraction process can be recovered and effectively used.
  • the battery slag may be heated to 700°C or higher in the heating step.
  • Ni and Co contained in the positive electrode active material in the battery slag can be efficiently reduced to divalent in the heating step. Therefore, in the acid leaching step, one or both of Ni and Co contained in the residual powder can be efficiently leached into sulfuric acid.
  • the leaching solution in the acid leaching step, after adding 2 mol/l or more of the sulfuric acid to the residual powder, the leaching solution is heated to 60° C. or more and stirred for 4 hours or more. good too.
  • Ni and Co contained in the residual powder can be efficiently leached into sulfuric acid in the acid leaching step.
  • a valuable metal recovery device (hereinafter referred to as "a valuable metal recovery device of the present invention”) comprises a positive electrode active material containing one or both of Ni and Co, and a negative electrode active material containing graphite.
  • the apparatus for recovering valuable metals of the present invention may further include a recovery apparatus for recovering one or both of Ni and Co contained in the leachate.
  • the same effect as the method for recovering valuable metals of the present invention can be produced.
  • Ni and Co contained in battery slag can be efficiently leached into sulfuric acid and recovered.
  • FIG. 1 is an explanatory diagram for explaining the procedure of a valuable metal recovery method according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining a recovering apparatus for valuable metals according to one embodiment of the present invention.
  • FIG. 1 shows the procedure of a valuable metal recovery method according to one embodiment of the present invention.
  • FIG. 2 schematically shows a valuable metal recovery apparatus 100 for carrying out the recovery method shown in FIG.
  • this recovery method includes a crushing step S1, a removal step S2, a heating step S3, a first acid leaching step S4, a first addition step S5, a first filtration step S6, a neutralization step S7, and a second Filtration step S8, second addition step S9, third filtration step S10, washing step S11, fourth filtration step S12, second acid leaching step S13, fifth filtration step S14, solvent extraction step S15, and carbonation step S16.
  • Steps S5 to S15 correspond to recovery steps of Ni and Co using a recovery apparatus for Ni and Co.
  • the crushing step S1 is a step of crushing the battery waste W1 with the crushing device 1 (Fig. 2) to produce the crushed material C.
  • the crushing device 1 for example, a twin-screw crusher and a hammer crusher can be used.
  • the battery waste W1 contains metals such as Li, Ni, Co, Mn, Al and Cu. Therefore, the crushed material C also contains these metals.
  • the removal step S2 is a step of removing the impurities I from the crushed material C by the removal device 2 (FIG. 2) and removing the battery slag M1.
  • a sieve such as a vibrating sieve can be used for the take-out device 2 .
  • the sieving fraction is the battery slag M1 and the sieve residue is the impurity I.
  • the battery residue M1 is a mixed powder containing the positive electrode active material and the negative electrode active material contained in the battery waste W1.
  • the impurity I contains aluminum pieces contained in the battery waste W1.
  • the heating step S3 is a step of heating the battery residue M1 with the heating device 3 (FIG. 2) to oxidize the graphite contained in the negative electrode active material in the battery residue M1 to generate carbon dioxide G. Electrons contained in graphite move to metal ions (for example, trivalent or tetravalent Ni ions and Co ions) contained in the positive electrode active material in the battery residue M1 as the carbon dioxide gas G is produced in the heating step S3. As a result, these metal ions are reduced to divalent ions. In the heating step S3, the carbon dioxide gas G is released from the battery slag M1 to produce residual powder M2.
  • metal ions for example, trivalent or tetravalent Ni ions and Co ions
  • the temperature for heating the battery residue M1 in the heating step S3 is preferably 700° C. or higher, more preferably 800° C. or higher and 900° C. or lower.
  • the interior of this heating device is preferably an atmospheric atmosphere, but is not limited to this and may be an atmosphere capable of providing oxygen for oxidizing graphite.
  • the heating time in the heating step S3 may be 0.5 hours to 10 hours, 0.5 hours to 5 hours, or 1 hour to 3 hours.
  • first acid leaching step S4 sulfuric acid and hydrogen peroxide A1 are added to the residual powder M2 in the first acid leaching device 4 (FIG. 2) to Ni ions and Co ions contained in the positive electrode active material) are leached into sulfuric acid.
  • a leaching solution E1 is produced which is a mixed solution of the residual powder M2, sulfuric acid and hydrogen peroxide A1.
  • the leachate E1 in order to efficiently leach the metal ions (especially Ni ions and Co ions) contained in the residual powder M2 into sulfuric acid, It is preferable to stir the leachate E1 at 60° C. or higher for 4 hours or longer after adding 2 mol/l or more of sulfuric acid.
  • the first addition step S5 is a step of adding a sulfiding agent A2 to the leachate E1 in the first addition device 5 (Fig. 2) to generate a sulfide of Cu contained in the leachate E1.
  • a treatment liquid P1 which is a mixed liquid of the leachate E1 and the sulfiding agent A2, is produced.
  • the pH of the treatment liquid P1 is less than 1 and the ORP (oxidation-reduction potential) is less than 0 mV (vs. Sulphidating agent A2 is added to Ag/AgCl).
  • a sulfur content such as sodium hydrogen sulfide can be used as the sulfiding agent A2.
  • the first filtering device 6 filters the treatment liquid P1 composed of the liquid component and the solid component to separate the filtrate F1, which is the liquid component, and the residue R1, which is the solid component. It is a process to do.
  • the filtrate F1 contains Li, Ni, Co, Mn and Al.
  • Residue R1 contains Cu sulfide.
  • the neutralization step S7 is a step of adding a neutralizing agent A3 to the filtrate F1 in the neutralization device 7 (Fig. 2) to generate hydroxides of Mn and Al contained in the filtrate F1.
  • a neutralized liquid N is produced which is a mixed liquid of the filtrate F1 and the neutralizing agent A3.
  • the pH of the neutralization liquid N is adjusted to 3.0 or more and 4.0 or less.
  • Admixture A3 For example, an aqueous sodium hydroxide solution can be used as the neutralizing agent A3.
  • the neutralized liquid N composed of the liquid component and the solid component is filtered in the second filtering device 8 (Fig. 2) to separate the filtrate F2, which is the liquid component, and the residue R2, which is the solid component.
  • the filtrate F2 contains Li, Ni and Co.
  • the residue R2 contains hydroxides of Mn and Al.
  • the second addition step S9 is a step of adding a sulfiding agent A4 to the filtrate F2 in the second addition device 9 (Fig. 2) to generate sulfides of Ni and Co contained in the filtrate F2.
  • a treated liquid P2 is produced which is a mixed liquid of the filtrate F2 and the sulfiding agent A4.
  • the pH of the treatment liquid P2 is 2.0 or more and 3.0 or less and ORP (oxidation A sulfiding agent A4 is added so that the reduction potential) is less than -400 mV (vs Ag/AgCl).
  • a sulfur content such as sodium hydrogen sulfide can be used as the sulfiding agent A4.
  • the treatment liquid P2 composed of the liquid component and the solid component is filtered in the third filtering device 10 (FIG. 2) to separate the filtrate F3, which is the liquid component, and the residue R3, which is the solid component. It is a process to do.
  • the filtrate F3 contains Li.
  • Residue R3 contains sulfides of Ni and Co.
  • the cleaning step S11 is a step in which the residue R3 is washed with the cleaning water W2 in the cleaning device 11 (FIG. 2) so that the Li remaining in the residue R3 is exuded into the cleaning water W2.
  • a slurry S is produced which is a mixture of the residue R3 and the cleaning water W2.
  • the slurry S composed of the liquid component and the solid component is filtered in the fourth filtering device 12 (Fig. 2) to separate the filtrate F4, which is the liquid component, and the residue R4, which is the solid component. It is a process.
  • the filtrate F4 contains Li remaining in the residue R3 without transferring to the filtrate F3.
  • Residue R4 contains sulfides of Ni and Co.
  • the second acid leaching step S13 "sulfuric acid, hydrogen peroxide and sodium hypochlorite A5" (the entirety of which is denoted by A5) is added to the residue R4 in the second acid leaching device 13 (Fig. 2).
  • a leaching solution E2 is produced which is a mixed solution of the residue R4, sulfuric acid, hydrogen peroxide and sodium hypochlorite A5.
  • the residue R4 contains a trace amount of Mn, but this Mn exists as manganese dioxide in the leachate E2 due to the addition of sulfuric acid, hydrogen peroxide and sodium hypochlorite A5.
  • the sulfides of Ni and Co contained in the residue R4 react with sulfuric acid and hydrogen peroxide to produce sulfur (elementary substance).
  • the exudate E2 consisting of the liquid component and the solid component is filtered in the fifth filtering device 14 (Fig. 2) to separate the filtrate F5 which is the liquid component and the residue R5 which is the solid component. It is a process.
  • Filtrate F5 contains Ni and Co.
  • Residue R5 contains manganese dioxide and sulfur (elementary).
  • the solvent extraction step S15 is a step of adding an organic solvent (extraction solvent) and sulfuric acid (reverse extraction solvent) to the filtrate F5 in the solvent extraction device 15 (Fig. 2) such as a mixer settler.
  • an organic solvent extraction solvent
  • sulfuric acid reverse extraction solvent
  • the carbonation step S16 is a step of adding a carbonate A6 to the filtrate F3 of the third filtration step S10 and the filtrate F4 of the fourth filtration step S12 in the carbonation device 16 (FIG. 2) to generate lithium carbonate V2.
  • a carbonate A6 for example, sodium carbonate or sodium carbonate hydrate can be used.
  • the mixture of the filtrate F3, the filtrate F4 and the carbonate A6 may be filtered to separate the filtrate and the residue. Lithium carbonate V2 can be recovered as this residue.
  • Ni and/or Co one or both of Ni and Co contained in the positive electrode active material in the battery residue M1 and graphite contained in the negative electrode active material are powdered. They are in contact, and electrons contained in graphite move to Ni and/or Co in the process of generating carbon dioxide G. Therefore, Ni and/or Co contained in the positive electrode active material in the battery residue M1 can be reduced to divalent. Therefore, these Ni and/or Co can be efficiently leached into sulfuric acid in the first acid leaching step S4.
  • the first acid leaching step S4 sulfuric acid is added to the volume-reduced battery slag M1 (residual powder M2 remaining after carbon dioxide gas G is generated from the battery slag M1). Therefore, Ni and Co contained in the positive electrode active material in the residual powder M2 can be leached into the sulfuric acid only by adding a small amount of sulfuric acid.
  • Ni and Co which were not reduced to divalent at the time of carbon dioxide gas generation in the heating step S3, are reduced to divalent with hydrogen peroxide in the first acid leaching step S4, and sulfuric acid is efficiently produced. can be leached into
  • the battery slag M1 taken out after removing the aluminum pieces (impurities I) from the crushed material C is heated in the heating step S3. and inhibiting the reduction of Co. Therefore, Ni and Co contained in the residual powder M2 can be efficiently leached into sulfuric acid in the first acid leaching step S4. Also, the aluminum pieces removed in the removal step S2 can be recovered and effectively used.
  • the crushing step S1, the extraction step S2 and the carbonation step S16 can be omitted. Further, if a step of recovering Ni and/or Co contained in the leachate E1 is provided, part of steps S5 to S15 can be omitted or changed.
  • Neutralization process An aqueous NaOH solution (25% concentration) was added to the filtrate of the first filtration step to produce a neutralized solution. The NaOH aqueous solution was added until the pH of the neutralization liquid reached 3.5.
  • Table 1 shows the type of battery used in each example and each comparative example, the baking temperature of the battery slag in the heating process, the concentration of sulfuric acid used in the first acid leaching process, and the leaching temperature in the first acid leaching process (the temperature of the leachate). heating temperature), leaching time (stirring time of the leaching solution), and recovery rates of Co and Ni in the solvent extraction step are shown for each example and comparative example.
  • NCM is an NCM-based battery (that is, a battery using a composite oxide of Ni, Co, and Mn as a positive electrode active material).
  • NCA is an NCA-based battery (that is, a battery using a composite oxide of Ni, Co and Al as a positive electrode active material).
  • the recovery rate of Co means "(the mass of Co contained in the sulfate recovered in the solvent extraction step) ⁇ 100/(the mass of Co contained in the battery slag)".
  • the recovery rate of Ni means "(the mass of Ni contained in the sulfate recovered in the solvent extraction step) ⁇ 100 ⁇ (the mass of Ni contained in the battery slag)”.
  • the masses of Co and Ni contained in the sulfate were measured using ICP-AES.
  • the masses of Co and Ni contained in the battery slag were measured by XRF quantitative analysis.
  • Example 3 Comparing Example 3 and Comparative Example 1, the conditions other than the presence or absence of firing are the same, but the difference is whether or not firing is performed. In Example 3 (fired), the Co recovery rate and Ni recovery rate are significantly higher than those of Comparative Example 1 (no firing). When Example 14 and Comparative Example 2 are compared, the conditions other than the presence or absence of firing are the same, but the difference is whether or not firing is performed. In Example 14 (fired), the Co recovery rate and Ni recovery rate are significantly higher than those of Comparative Example 2 (no firing).
  • the sintering temperature is 700°C
  • the Co recovery rate and the Ni recovery rate are significantly higher than those in the example where the sintering temperature is 600°C.
  • the sintering temperature was 800°C and 900°C
  • the Co recovery rate and the Ni recovery rate were significantly higher than those in the example in which the sintering temperature was 700°C.
  • the battery slag M1 is heated to 700° C. or higher (more preferably 800° C. or higher and 900° C. or lower), the concentration of sulfuric acid used in the first acid leaching step S4 is set to 2 mol/l or higher, and the residual powder M2 is By setting the leaching temperature of 60° C. or higher and setting the leaching time of the residual powder M2 to 4 hours or longer, Ni and Co contained in the residual powder M2 can be efficiently leached into sulfuric acid in the first acid leaching step S4. , Ni and Co can be efficiently recovered in the solvent extraction step S15.
  • Ni and Co contained in the battery slag can be efficiently leached into sulfuric acid and recovered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention has: a heating step (S3) for heating a battery slag (M1) having a positive-electrode active material that includes one or both of Ni and Co and a negative-electrode active material that includes graphite, and thereby oxidizing the graphite included in the negative-electrode active material in the battery slag (M1) to generate carbon dioxide gas (G); and an acid leaching step (S4) for adding sulfuric acid to a residual powder (M2) that remains after generation of carbon dioxide gas (G) from the battery slag (M1), and thereby leaching one or both of the Ni and Co included in the positive-electrode active material in the residual powder (M2) into the sulfuric acid to generate a leachate (E1).

Description

有価金属の回収方法及び回収装置Valuable metal recovery method and recovery device
 本発明は、有価金属の回収方法及び回収装置に関するものである。
 本願は、2021年2月2日に、日本に出願された特願2021-015218号に基づき優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to a recovery method and recovery apparatus for valuable metals.
This application claims priority based on Japanese Patent Application No. 2021-015218 filed in Japan on February 2, 2021, the contents of which are incorporated herein.
 下記特許文献1には、電池廃棄物から回収した電池滓に硫酸を添加することにより、この電池滓に含まれている有価金属を硫酸に浸出させて回収する技術が記載されている。 Patent Literature 1 below describes a technique for adding sulfuric acid to battery slag collected from battery waste, thereby leaching and recovering valuable metals contained in the battery slag with sulfuric acid.
 しかし、本発明者の研究により、下記特許文献1に記載の技術においては、電池滓に含まれる有価金属のうちNi及びCoについては効率よく硫酸に浸出させることができないことが判明した。 However, research by the present inventors revealed that Ni and Co, among the valuable metals contained in the battery slag, cannot be efficiently leached into sulfuric acid in the technique described in Patent Document 1 below.
日本国特開2019-160429号公報(A)Japanese Patent Application Laid-Open No. 2019-160429 (A)
 本発明の目的は、電池滓に含まれるNi及びCoの一方又は両方を効率よく硫酸に浸出させて回収することである。 An object of the present invention is to efficiently leach out one or both of Ni and Co contained in battery slag into sulfuric acid and recover them.
 本発明の一態様の有価金属の回収方法(以下、「本発明の有価金属の回収方法」と称する)は、Ni及びCoの一方又は両方を含む正極活物質と、グラファイトを含む負極活物質と、を有する電池滓を加熱することにより、前記電池滓中の前記負極活物質に含まれるグラファイトを酸化して炭酸ガスを生成する加熱工程と、前記電池滓から前記炭酸ガスを生成した後に残留する残留粉末に硫酸を添加することにより、前記残留粉末中の前記正極活物質に含まれるNi及びCoの一方又は両方を前記硫酸に浸出させて浸出液を生成する酸浸出工程とを有する。 A method for recovering a valuable metal according to one embodiment of the present invention (hereinafter referred to as "a method for recovering a valuable metal of the present invention") includes a positive electrode active material containing one or both of Ni and Co, and a negative electrode active material containing graphite. a heating step of oxidizing the graphite contained in the negative electrode active material in the battery residue to generate carbon dioxide gas by heating the battery residue having a, and remaining after the carbon dioxide gas is generated from the battery residue and an acid leaching step of adding sulfuric acid to the residual powder, thereby leaching one or both of Ni and Co contained in the positive electrode active material in the residual powder into the sulfuric acid to produce a leaching solution.
 前記態様の有価金属の回収方法によれば、加熱工程において電池滓中の正極活物質に含まれるNi及びCoの一方又は両方と、負極活物質に含まれるグラファイトと、を接触させ、グラファイトに含まれる電子をNi及びCoの一方又は両方に移動させて炭酸ガスを生成することができる。よって、電池滓中の正極活物質に含まれるNi及びCoの一方又は両方を2価に還元して効率よく硫酸に浸出させることができる。 According to the valuable metal recovery method of the aspect, in the heating step, one or both of Ni and Co contained in the positive electrode active material in the battery slag is brought into contact with the graphite contained in the negative electrode active material, and the graphite contained in the Carbon dioxide gas can be generated by transferring the electrons from Ni and Co to one or both of Ni and Co. Therefore, one or both of Ni and Co contained in the positive electrode active material in the battery slag can be reduced to divalent and efficiently exuded into sulfuric acid.
 また、前記態様の有価金属の回収方法によれば、電池滓を減容させて残留粉末を得ることができる。そして、電池滓を減容させたもの(残留粉末)に対して硫酸を添加するため、より少ない容量の硫酸を添加するだけで残留粉末中の正極活物質に含まれるNi及びCoを硫酸に浸出させることができる。 In addition, according to the recovering method of valuable metals of the aspect, the residual powder can be obtained by reducing the volume of the battery slag. Then, since sulfuric acid is added to the battery residue (residual powder) whose volume is reduced, Ni and Co contained in the positive electrode active material in the residual powder are leached out into sulfuric acid only by adding a smaller amount of sulfuric acid. can be made
 本発明の有価金属の回収方法においては、前記酸浸出工程において前記硫酸と共に過酸化水素を前記残留粉末に添加してもよい。 In the method for recovering valuable metals of the present invention, hydrogen peroxide may be added to the residual powder together with the sulfuric acid in the acid leaching step.
 この特徴を満足することにより、加熱工程の炭酸ガス生成時には2価に還元されなかったNi及びCoを、酸浸出工程において過酸化水素により2価に還元して効率よく硫酸に浸出させることができる。 By satisfying this characteristic, Ni and Co, which were not reduced to divalent during the generation of carbon dioxide gas in the heating step, can be reduced to divalent with hydrogen peroxide in the acid leaching step and efficiently leached into sulfuric acid. .
 本発明の有価金属の回収方法は、前記浸出液に含まれる前記Ni及びCoの一方又は両方を回収する回収工程をさらに備えてもよい。
 また、前記回収工程は、前記浸出液に硫化剤を添加して処理液を生成する添加工程と、前記処理液を濾過することにより、前記処理液を、液体成分である濾液と、前記浸出液に含まれていたNi及びCoの一方又は両方を含む固体成分である残渣と、に分離する濾過工程とを有してもよい。
The valuable metal recovery method of the present invention may further include a recovery step of recovering one or both of Ni and Co contained in the leachate.
In addition, the recovery step includes an addition step of adding a sulfiding agent to the leachate to generate a treatment liquid, and filtering the treatment liquid to remove the treatment liquid from the filtrate, which is a liquid component, and the leachate. a residue, which is a solid component containing one or both of Ni and Co that has been filtered;
 この特徴を満足することにより、浸出液に含まれるNi及びCoの一方又は両方を濾過工程の残渣として効率よく回収することができる。 By satisfying this feature, one or both of Ni and Co contained in the leachate can be efficiently recovered as residue from the filtration process.
 本発明の有価金属の回収方法は、電池廃棄物を破砕して破砕物を製造する破砕工程と、前記破砕物からアルミニウム片を除去して前記電池滓を取り出す取出工程とをさらに有してもよい。また、前記加熱工程においては、取り出された前記電池滓を加熱してもよい。 The method for recovering valuable metals of the present invention may further include a crushing step of crushing battery waste to produce crushed materials, and a removal step of removing aluminum pieces from the crushed materials and removing the battery slag. good. Moreover, in the heating step, the removed battery slag may be heated.
 この特徴を満足することにより、破砕物からアルミニウム片を除去して取り出された電池滓を加熱工程において加熱することにより、加熱工程においてアルミニウム片の溶融によってNi及びCoの一方又は両方の効率的な還元が阻害されることを防止することができる。よって、酸浸出工程において残留粉末に含まれるNi及びCoの一方又は両方を効率よく硫酸に浸出させることができる。また、取出工程において除去したアルミニウム片を回収して有効に利用することができる。 By satisfying this feature, the aluminum pieces are removed from the crushed material and the battery slag taken out is heated in the heating step, whereby one or both of Ni and Co can be efficiently produced by melting the aluminum pieces in the heating step. It is possible to prevent inhibition of the reduction. Therefore, one or both of Ni and Co contained in the residual powder can be efficiently leached into sulfuric acid in the acid leaching step. Also, the aluminum pieces removed in the extraction process can be recovered and effectively used.
 本発明の有価金属の回収方法においては、前記加熱工程において前記電池滓を700℃以上に加熱してもよい。 In the method for recovering valuable metals of the present invention, the battery slag may be heated to 700°C or higher in the heating step.
 この特徴を満足することにより、加熱工程において、電池滓中の正極活物質に含まれるNi及びCoの一方又は両方を効率よく2価に還元することができる。よって、酸浸出工程において、残留粉末に含まれるNi及びCoの一方又は両方を効率よく硫酸に浸出させることができる。 By satisfying this feature, one or both of Ni and Co contained in the positive electrode active material in the battery slag can be efficiently reduced to divalent in the heating step. Therefore, in the acid leaching step, one or both of Ni and Co contained in the residual powder can be efficiently leached into sulfuric acid.
 本発明の有価金属の回収方法においては、前記酸浸出工程において、前記残留粉末に2mol/l以上の前記硫酸を添加してから、前記浸出液を60℃以上に加熱して4時間以上攪拌してもよい。 In the method for recovering valuable metals of the present invention, in the acid leaching step, after adding 2 mol/l or more of the sulfuric acid to the residual powder, the leaching solution is heated to 60° C. or more and stirred for 4 hours or more. good too.
 この特徴を満足することにより、酸浸出工程において残留粉末に含まれるNi及びCoの一方又は両方を効率よく硫酸に浸出させることができる。 By satisfying this characteristic, one or both of Ni and Co contained in the residual powder can be efficiently leached into sulfuric acid in the acid leaching step.
 本発明の他態様の有価金属の回収装置(以下、「本発明の有価金属の回収装置」と称する)は、Ni及びCoの一方又は両方を含む正極活物質と、グラファイトを含む負極活物質と、を有する電池滓を加熱することにより、前記電池滓中の前記負極活物質に含まれるグラファイトを酸化して炭酸ガスを生成する加熱装置と、前記電池滓から前記炭酸ガスを生成した後に残留する残留粉末に硫酸を添加することにより、前記残留粉末中の前記正極活物質に含まれるNi及びCoの一方又は両方を前記硫酸に浸出させて浸出液を生成する酸浸出装置とを備える。
 本発明の有価金属の回収装置は、前記浸出液に含まれる前記Ni及びCoの一方又は両方を回収する回収装置を更に備えてもよい。
A valuable metal recovery device according to another aspect of the present invention (hereinafter referred to as "a valuable metal recovery device of the present invention") comprises a positive electrode active material containing one or both of Ni and Co, and a negative electrode active material containing graphite. a heating device for generating carbon dioxide gas by heating the battery slag having , thereby oxidizing the graphite contained in the negative electrode active material in the battery slag, and remaining after the carbon dioxide gas is generated from the battery slag and an acid leaching device for adding sulfuric acid to the residual powder, thereby leaching one or both of Ni and Co contained in the positive electrode active material in the residual powder into the sulfuric acid to produce a leaching solution.
The apparatus for recovering valuable metals of the present invention may further include a recovery apparatus for recovering one or both of Ni and Co contained in the leachate.
 本発明の有価金属の回収装置によれば、上記本発明の有価金属の回収方法と同様の効果を生じさせることができる。 According to the apparatus for recovering valuable metals of the present invention, the same effect as the method for recovering valuable metals of the present invention can be produced.
 以上のように、本発明によれば、電池滓に含まれるNi及びCoの一方又は両方を効率よく硫酸に浸出させて回収することができる。 As described above, according to the present invention, one or both of Ni and Co contained in battery slag can be efficiently leached into sulfuric acid and recovered.
図1は、本発明の一実施形態に係る有価金属の回収方法の手順を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining the procedure of a valuable metal recovery method according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る有価金属の回収装置を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a recovering apparatus for valuable metals according to one embodiment of the present invention.
 本発明の一実施形態に係る有価金属の回収方法について説明する。この回収方法は、いわゆるリチウムイオン電池の廃棄物の処理に適用されたものである。図1は、本発明の一実施形態に係る有価金属の回収方法の手順を示している。図2は、図1に示す回収方法を行うための有価金属の回収装置100を模式的に示している。 A method for recovering valuable metals according to one embodiment of the present invention will be described. This recovery method is applied to the disposal of so-called lithium ion battery waste. FIG. 1 shows the procedure of a valuable metal recovery method according to one embodiment of the present invention. FIG. 2 schematically shows a valuable metal recovery apparatus 100 for carrying out the recovery method shown in FIG.
 図1に示すように、この回収方法は、破砕工程S1、取出工程S2、加熱工程S3、第1酸浸出工程S4、第1添加工程S5、第1濾過工程S6、中和工程S7、第2濾過工程S8、第2添加工程S9、第3濾過工程S10、洗浄工程S11、第4濾過工程S12、第2酸浸出工程S13、第5濾過工程S14、溶媒抽出工程S15、及び炭酸化工程S16を有する。工程S5~S15は、Ni及びCoの回収装置を用いたNi及びCoの回収工程に相当する。 As shown in FIG. 1, this recovery method includes a crushing step S1, a removal step S2, a heating step S3, a first acid leaching step S4, a first addition step S5, a first filtration step S6, a neutralization step S7, and a second Filtration step S8, second addition step S9, third filtration step S10, washing step S11, fourth filtration step S12, second acid leaching step S13, fifth filtration step S14, solvent extraction step S15, and carbonation step S16. have. Steps S5 to S15 correspond to recovery steps of Ni and Co using a recovery apparatus for Ni and Co.
 破砕工程S1は、電池廃棄物W1を破砕装置1(図2)により破砕して破砕物Cを製造する工程である。破砕装置1には、例えば、二軸破砕機及びハンマークラッシャーを使用することができる。電池廃棄物W1には、Li、Ni、Co、Mn、Al及びCuなどの金属が含まれている。したがって、破砕物Cにも、これらの金属が含まれている。 The crushing step S1 is a step of crushing the battery waste W1 with the crushing device 1 (Fig. 2) to produce the crushed material C. For the crushing device 1, for example, a twin-screw crusher and a hammer crusher can be used. The battery waste W1 contains metals such as Li, Ni, Co, Mn, Al and Cu. Therefore, the crushed material C also contains these metals.
 取出工程S2は、取出装置2(図2)により破砕物Cから不純物Iを除去して電池滓M1を取り出す工程である。取出装置2には、振動篩等の篩を使用することができる。篩を使用する場合、篩通過分が電池滓M1であって篩残分が不純物Iである。電池滓M1は、電池廃棄物W1に含まれていた正極活物質及び負極活物質を有する混合粉末である。不純物Iは、電池廃棄物W1に含まれていたアルミニウム片を含んでいる。 The removal step S2 is a step of removing the impurities I from the crushed material C by the removal device 2 (FIG. 2) and removing the battery slag M1. A sieve such as a vibrating sieve can be used for the take-out device 2 . When a sieve is used, the sieving fraction is the battery slag M1 and the sieve residue is the impurity I. The battery residue M1 is a mixed powder containing the positive electrode active material and the negative electrode active material contained in the battery waste W1. The impurity I contains aluminum pieces contained in the battery waste W1.
 加熱工程S3は、電池滓M1を加熱装置3(図2)によって加熱することにより、電池滓M1中の負極活物質に含まれるグラファイトを酸化して炭酸ガスGを生成する工程である。グラファイトに含まれる電子は、加熱工程S3において炭酸ガスGの生成に伴って電池滓M1中の正極活物質に含まれる金属イオン(例えば3価または4価のNiイオン及びCoイオン)に移動する。これにより、これら金属イオンは2価に還元される。加熱工程S3においては、電池滓M1から炭酸ガスGが抜けて残留粉末M2が生じる。 The heating step S3 is a step of heating the battery residue M1 with the heating device 3 (FIG. 2) to oxidize the graphite contained in the negative electrode active material in the battery residue M1 to generate carbon dioxide G. Electrons contained in graphite move to metal ions (for example, trivalent or tetravalent Ni ions and Co ions) contained in the positive electrode active material in the battery residue M1 as the carbon dioxide gas G is produced in the heating step S3. As a result, these metal ions are reduced to divalent ions. In the heating step S3, the carbon dioxide gas G is released from the battery slag M1 to produce residual powder M2.
 なお、加熱工程S3において電池滓M1を加熱する温度についてであるが、電池滓M1に含まれる有価金属(特に従来技術では第1酸浸出工程S4において硫酸に浸出させにくい3価または4価のNiイオン及びCoイオン)を効率よく2価に還元するために、700℃以上であることが好ましく、800℃以上900℃以下であることがより好ましい。また、この加熱装置の内部は大気雰囲気であると好ましいが、これに限定されずにグラファイトを酸化するための酸素を提供することができる雰囲気であればよい。
 加熱工程S3の加熱時間は0.5時間から10時間、0.5時間から5時間又は1時間から3時間であってもよい。
Regarding the temperature for heating the battery residue M1 in the heating step S3, the valuable metal contained in the battery residue M1 (particularly, in the prior art, trivalent or tetravalent Ni, which is difficult to leach out with sulfuric acid in the first acid leaching step S4, ions and Co ions) to be divalent, the temperature is preferably 700° C. or higher, more preferably 800° C. or higher and 900° C. or lower. The interior of this heating device is preferably an atmospheric atmosphere, but is not limited to this and may be an atmosphere capable of providing oxygen for oxidizing graphite.
The heating time in the heating step S3 may be 0.5 hours to 10 hours, 0.5 hours to 5 hours, or 1 hour to 3 hours.
 第1酸浸出工程S4は、第1酸浸出装置4(図2)において残留粉末M2に硫酸及び過酸化水素A1を添加することにより、残留粉末M2に含まれる金属イオン(特に、残留粉末M2中の正極活物質に含まれるNiイオン及びCoイオン)を硫酸に浸出させる工程である。第1酸浸出工程S4においては、残留粉末M2と硫酸及び過酸化水素A1との混合液である浸出液E1が生成される。なお、残留粉末M2に含まれる金属を硫酸に浸出させる条件についてであるが、残留粉末M2に含まれる金属イオン(特にNiイオン及びCoイオン)を効率よく硫酸に浸出させるために、残留粉末M2に2mol/l以上の硫酸を添加してから浸出液E1を60℃以上で4時間以上攪拌することが好ましい。 In the first acid leaching step S4, sulfuric acid and hydrogen peroxide A1 are added to the residual powder M2 in the first acid leaching device 4 (FIG. 2) to Ni ions and Co ions contained in the positive electrode active material) are leached into sulfuric acid. In the first acid leaching step S4, a leaching solution E1 is produced which is a mixed solution of the residual powder M2, sulfuric acid and hydrogen peroxide A1. Regarding the conditions for leaching the metals contained in the residual powder M2 into sulfuric acid, in order to efficiently leach the metal ions (especially Ni ions and Co ions) contained in the residual powder M2 into sulfuric acid, It is preferable to stir the leachate E1 at 60° C. or higher for 4 hours or longer after adding 2 mol/l or more of sulfuric acid.
 第1添加工程S5は、第1添加装置5(図2)において、浸出液E1に硫化剤A2を添加することにより浸出液E1に含まれるCuの硫化物を生成する工程である。第1添加工程S5においては、浸出液E1と硫化剤A2との混合液である処理液P1が生じる。ここで、第1添加工程S5においては、浸出液E1に含まれるCuの硫化物を効率よく生成するために、処理液P1のpHが1未満であってORP(酸化還元電位)が0mV未満(vs Ag/AgCl)になるように硫化剤A2を添加する。硫化剤A2には、例えば、硫化水素ナトリウムのような硫黄分を使用することができる。 The first addition step S5 is a step of adding a sulfiding agent A2 to the leachate E1 in the first addition device 5 (Fig. 2) to generate a sulfide of Cu contained in the leachate E1. In the first addition step S5, a treatment liquid P1, which is a mixed liquid of the leachate E1 and the sulfiding agent A2, is produced. Here, in the first addition step S5, in order to efficiently generate Cu sulfide contained in the leachate E1, the pH of the treatment liquid P1 is less than 1 and the ORP (oxidation-reduction potential) is less than 0 mV (vs. Sulphidating agent A2 is added to Ag/AgCl). A sulfur content such as sodium hydrogen sulfide can be used as the sulfiding agent A2.
 第1濾過工程S6は、第1濾過装置6(図2)において、液体成分と固体成分とからなる処理液P1を濾過して、液体成分である濾液F1と固体成分である残渣R1とに分離する工程である。濾液F1には、Li、Ni、Co、Mn及びAlが含まれている。残渣R1にはCuの硫化物が含まれている。 In the first filtering step S6, the first filtering device 6 (FIG. 2) filters the treatment liquid P1 composed of the liquid component and the solid component to separate the filtrate F1, which is the liquid component, and the residue R1, which is the solid component. It is a process to do. The filtrate F1 contains Li, Ni, Co, Mn and Al. Residue R1 contains Cu sulfide.
 中和工程S7は、中和装置7(図2)において、濾液F1に中和剤A3を添加することにより濾液F1に含まれるMn及びAlの水酸化物を生成する工程である。中和工程S7においては、濾液F1と中和剤A3との混合液である中和液Nが生じる。ここで、中和工程S7においては、濾液F1に含まれるMn及びAlの水酸化物を効率よく生成するために、中和液NのpHが3.0以上4.0以下になるように中和剤A3を添加する。中和剤A3には、例えば、水酸化ナトリウム水溶液を使用することができる。 The neutralization step S7 is a step of adding a neutralizing agent A3 to the filtrate F1 in the neutralization device 7 (Fig. 2) to generate hydroxides of Mn and Al contained in the filtrate F1. In the neutralization step S7, a neutralized liquid N is produced which is a mixed liquid of the filtrate F1 and the neutralizing agent A3. Here, in the neutralization step S7, in order to efficiently generate hydroxides of Mn and Al contained in the filtrate F1, the pH of the neutralization liquid N is adjusted to 3.0 or more and 4.0 or less. Add Admixture A3. For example, an aqueous sodium hydroxide solution can be used as the neutralizing agent A3.
 第2濾過工程S8は、第2濾過装置8(図2)において、液体成分と固体成分とからなる中和液Nを濾過して、液体成分である濾液F2と固体成分である残渣R2とに分離する工程である。濾液F2には、Li、Ni及びCoが含まれている。残渣R2には、Mn及びAlの水酸化物が含まれている。 In the second filtering step S8, the neutralized liquid N composed of the liquid component and the solid component is filtered in the second filtering device 8 (Fig. 2) to separate the filtrate F2, which is the liquid component, and the residue R2, which is the solid component. This is the step of separating. The filtrate F2 contains Li, Ni and Co. The residue R2 contains hydroxides of Mn and Al.
 第2添加工程S9は、第2添加装置9(図2)において、濾液F2に硫化剤A4を添加することにより濾液F2に含まれるNi及びCoの硫化物を生成する工程である。第2添加工程S9においては、濾液F2と硫化剤A4との混合液である処理液P2が生じる。ここで、第2添加工程S9においては、濾液F2に含まれるNi及びCoの硫化物を効率よく生成するために、処理液P2のpHが2.0以上3.0以下であってORP(酸化還元電位)が-400mV未満(vs Ag/AgCl)になるように硫化剤A4を添加する。硫化剤A4には、例えば、硫化水素ナトリウムのような硫黄分を使用することができる。 The second addition step S9 is a step of adding a sulfiding agent A4 to the filtrate F2 in the second addition device 9 (Fig. 2) to generate sulfides of Ni and Co contained in the filtrate F2. In the second addition step S9, a treated liquid P2 is produced which is a mixed liquid of the filtrate F2 and the sulfiding agent A4. Here, in the second addition step S9, in order to efficiently generate the sulfides of Ni and Co contained in the filtrate F2, the pH of the treatment liquid P2 is 2.0 or more and 3.0 or less and ORP (oxidation A sulfiding agent A4 is added so that the reduction potential) is less than -400 mV (vs Ag/AgCl). A sulfur content such as sodium hydrogen sulfide can be used as the sulfiding agent A4.
 第3濾過工程S10は、第3濾過装置10(図2)において、液体成分と固体成分とからなる処理液P2を濾過して、液体成分である濾液F3と固体成分である残渣R3とに分離する工程である。濾液F3には、Liが含まれている。残渣R3には、Ni及びCoの硫化物が含まれている。 In the third filtration step S10, the treatment liquid P2 composed of the liquid component and the solid component is filtered in the third filtering device 10 (FIG. 2) to separate the filtrate F3, which is the liquid component, and the residue R3, which is the solid component. It is a process to do. The filtrate F3 contains Li. Residue R3 contains sulfides of Ni and Co.
 洗浄工程S11は、洗浄装置11(図2)において、残渣R3を洗浄水W2によって洗浄することにより、残渣R3に残留しているLiを洗浄水W2に浸出させる工程である。洗浄工程S11においては、残渣R3と洗浄水W2との混合物であるスラリーSが生成される。 The cleaning step S11 is a step in which the residue R3 is washed with the cleaning water W2 in the cleaning device 11 (FIG. 2) so that the Li remaining in the residue R3 is exuded into the cleaning water W2. In the cleaning step S11, a slurry S is produced which is a mixture of the residue R3 and the cleaning water W2.
 第4濾過工程S12は、第4濾過装置12(図2)において、液体成分と固体成分とからなるスラリーSを濾過して、液体成分である濾液F4と固体成分である残渣R4とに分離する工程である。濾液F4には、濾液F3に移行せずに残渣R3に残留したLiが含まれている。残渣R4には、Ni及びCoの硫化物が含まれている。 In the fourth filtering step S12, the slurry S composed of the liquid component and the solid component is filtered in the fourth filtering device 12 (Fig. 2) to separate the filtrate F4, which is the liquid component, and the residue R4, which is the solid component. It is a process. The filtrate F4 contains Li remaining in the residue R3 without transferring to the filtrate F3. Residue R4 contains sulfides of Ni and Co.
 第2酸浸出工程S13は、第2酸浸出装置13(図2)において残渣R4に「硫酸、過酸化水素及び次亜塩素酸ナトリウムA5」(これら全体に対して符号A5を付す)を添加することにより、残渣R4に含まれるNi及びCoを硫酸に浸出させる工程である。第2酸浸出工程S13においては、残渣R4と硫酸、過酸化水素及び次亜塩素酸ナトリウムA5との混合液である浸出液E2が生成される。ここで、残渣R4には微量のMnが含まれていることも考えられるが、このMnは硫酸、過酸化水素及び次亜塩素酸ナトリウムA5の添加により浸出液E2において二酸化マンガンとして存在する。また、浸出液E2においては、残渣R4に含まれていたNi及びCoの硫化物と硫酸及び過酸化水素とが反応して硫黄(単体)が生成する。 In the second acid leaching step S13, "sulfuric acid, hydrogen peroxide and sodium hypochlorite A5" (the entirety of which is denoted by A5) is added to the residue R4 in the second acid leaching device 13 (Fig. 2). This is a step of leaching Ni and Co contained in the residue R4 into sulfuric acid. In the second acid leaching step S13, a leaching solution E2 is produced which is a mixed solution of the residue R4, sulfuric acid, hydrogen peroxide and sodium hypochlorite A5. Here, it is conceivable that the residue R4 contains a trace amount of Mn, but this Mn exists as manganese dioxide in the leachate E2 due to the addition of sulfuric acid, hydrogen peroxide and sodium hypochlorite A5. Further, in the leachate E2, the sulfides of Ni and Co contained in the residue R4 react with sulfuric acid and hydrogen peroxide to produce sulfur (elementary substance).
 第5濾過工程S14は、第5濾過装置14(図2)において、液体成分と固体成分とからなる浸出液E2を濾過して、液体成分である濾液F5と固体成分である残渣R5とに分離する工程である。濾液F5には、Ni及びCoが含まれている。残渣R5には、二酸化マンガン及び硫黄(単体)が含まれている。 In the fifth filtering step S14, the exudate E2 consisting of the liquid component and the solid component is filtered in the fifth filtering device 14 (Fig. 2) to separate the filtrate F5 which is the liquid component and the residue R5 which is the solid component. It is a process. Filtrate F5 contains Ni and Co. Residue R5 contains manganese dioxide and sulfur (elementary).
 溶媒抽出工程S15は、ミキサセトラ等の溶媒抽出装置15(図2)において濾液F5に有機溶媒(抽出溶媒)及び硫酸(逆抽出溶媒)を添加する工程である。これにより、濾液F5に含まれていたNi及びCoを硫酸塩V1として回収し、濾液F5に含まれていた不純物(リン、フッ素)を溶液Lとして排出する。 The solvent extraction step S15 is a step of adding an organic solvent (extraction solvent) and sulfuric acid (reverse extraction solvent) to the filtrate F5 in the solvent extraction device 15 (Fig. 2) such as a mixer settler. As a result, Ni and Co contained in the filtrate F5 are recovered as sulfate V1, and impurities (phosphorus and fluorine) contained in the filtrate F5 are discharged as a solution L.
 炭酸化工程S16は、炭酸化装置16(図2)において、第3濾過工程S10の濾液F3及び第4濾過工程S12の濾液F4に炭酸塩A6を添加して炭酸リチウムV2を生成する工程である。この炭酸塩には、例えば、炭酸ナトリウム又は炭酸ナトリウム水和物を使用することができる。さらに、必要であれば、炭酸化工程S16において、濾液F3、濾液F4及び炭酸塩A6の混合液を濾過して濾液と残渣とに分離してもよい。この残渣として炭酸リチウムV2を回収することができる。 The carbonation step S16 is a step of adding a carbonate A6 to the filtrate F3 of the third filtration step S10 and the filtrate F4 of the fourth filtration step S12 in the carbonation device 16 (FIG. 2) to generate lithium carbonate V2. . For this carbonate, for example, sodium carbonate or sodium carbonate hydrate can be used. Furthermore, if necessary, in the carbonation step S16, the mixture of the filtrate F3, the filtrate F4 and the carbonate A6 may be filtered to separate the filtrate and the residue. Lithium carbonate V2 can be recovered as this residue.
 上記実施の形態によれば、加熱工程S3において電池滓M1中の正極活物質に含まれるNi又は/及びCo(Ni及びCoの一方又は両方)と負極活物質に含まれるグラファイトとが粉末状態で接触しており、炭酸ガスGが生成する過程で、グラファイトに含まれる電子がNi又は/及びCoに移動する。よって、電池滓M1中の正極活物質に含まれるNi又は/及びCoを2価に還元することができる。このため、これらNi又は/及びCoを第1酸浸出工程S4において効率よく硫酸に浸出させることができる。 According to the above embodiment, in the heating step S3, Ni and/or Co (one or both of Ni and Co) contained in the positive electrode active material in the battery residue M1 and graphite contained in the negative electrode active material are powdered. They are in contact, and electrons contained in graphite move to Ni and/or Co in the process of generating carbon dioxide G. Therefore, Ni and/or Co contained in the positive electrode active material in the battery residue M1 can be reduced to divalent. Therefore, these Ni and/or Co can be efficiently leached into sulfuric acid in the first acid leaching step S4.
 また、上記実施の形態によれば、第1酸浸出工程S4においては電池滓M1を減容させたもの(電池滓M1から炭酸ガスGを生成した後に残る残留粉末M2)に対して硫酸を添加するため、少量の硫酸を添加するだけで残留粉末M2中の正極活物質に含まれるNi及びCoを硫酸に浸出させることができる。 Further, according to the above embodiment, in the first acid leaching step S4, sulfuric acid is added to the volume-reduced battery slag M1 (residual powder M2 remaining after carbon dioxide gas G is generated from the battery slag M1). Therefore, Ni and Co contained in the positive electrode active material in the residual powder M2 can be leached into the sulfuric acid only by adding a small amount of sulfuric acid.
 さらに、上記実施の形態によれば、加熱工程S3の炭酸ガス生成時には2価に還元されなかったNi及びCoを、第1酸浸出工程S4において過酸化水素により2価に還元して効率よく硫酸に浸出させることができる。 Furthermore, according to the above-described embodiment, Ni and Co, which were not reduced to divalent at the time of carbon dioxide gas generation in the heating step S3, are reduced to divalent with hydrogen peroxide in the first acid leaching step S4, and sulfuric acid is efficiently produced. can be leached into
 そして、上記実施の形態によれば、破砕物Cからアルミニウム片(不純物I)を除去して取り出された電池滓M1を加熱工程S3において加熱するので、加熱工程S3においてアルミニウム片が溶融し、Ni及びCoの還元を阻害することを防止できる。よって、第1酸浸出工程S4において残留粉末M2に含まれるNi及びCoを効率よく硫酸に浸出させることができる。また、取出工程S2において除去したアルミニウム片を回収して有効に利用することができる。 Then, according to the above embodiment, the battery slag M1 taken out after removing the aluminum pieces (impurities I) from the crushed material C is heated in the heating step S3. and inhibiting the reduction of Co. Therefore, Ni and Co contained in the residual powder M2 can be efficiently leached into sulfuric acid in the first acid leaching step S4. Also, the aluminum pieces removed in the removal step S2 can be recovered and effectively used.
 なお、上記実施の形態において、破砕工程S1、取出工程S2及び炭酸化工程S16を省略することができる。また、浸出液E1に含まれるNi又は/及びCoを回収する工程が設けられていれば、工程S5~S15の一部を省略又は変更することができる。 In addition, in the above embodiment, the crushing step S1, the extraction step S2 and the carbonation step S16 can be omitted. Further, if a step of recovering Ni and/or Co contained in the leachate E1 is provided, part of steps S5 to S15 can be omitted or changed.
 次に、本発明の一実施形態に係る有価金属の回収方法における実施例(実施例1~22)及びその比較例(比較例1、2)について説明する。以下、各実施例及び各比較例の工程を上記実施形態と対応させて説明する。なお、各実施例については以下の工程を全て行ったが、各比較例については以下の加熱工程を省略した。また、各実施例及び各比較例においては、上記実施形態の全ての工程を行ったわけではない。 Next, examples (Examples 1 to 22) and comparative examples (Comparative Examples 1 and 2) of the method for recovering valuable metals according to one embodiment of the present invention will be described. The steps of each example and each comparative example will be described below in correspondence with the above embodiment. In addition, although all the following processes were performed about each Example, the following heating processes were abbreviate|omitted about each comparative example. In each example and each comparative example, not all the steps of the above embodiments were performed.
(破砕工程、取出工程)
 まず、リチウムイオン二次電池の廃棄物(電池廃棄物)から取り出した電池滓14.5gをアルミナ製焼成ボートに投入してアルミナ製円筒管内に静置した。
(Crushing process, removal process)
First, 14.5 g of battery slag taken out from lithium ion secondary battery waste (battery waste) was put into an alumina firing boat and allowed to stand in an alumina cylindrical tube.
(加熱工程)
 アルミナ製円筒管を加熱することにより電池滓を大気雰囲気下で2時間焼成した。焼成後の電池滓を室温下まで放冷した。
(Heating process)
By heating an alumina cylindrical tube, the battery slag was calcined in the atmosphere for 2 hours. The fired battery residue was allowed to cool to room temperature.
(第1酸浸出工程)
 放冷終了後の電池滓に硫酸100ml及び過酸化水素水(濃度30%)5mlの混合液を添加して浸出液を作製した。さらに、この浸出液を加熱して攪拌しながら電池滓に含まれるNi及びCoを浸出させた。攪拌終了後の浸出液を室温まで放冷した。
(First acid leaching step)
A liquid mixture of 100 ml of sulfuric acid and 5 ml of hydrogen peroxide (concentration: 30%) was added to the battery residue after standing to cool to prepare a leachate. Further, Ni and Co contained in the battery slag were leached out while heating and stirring this leaching solution. After stirring, the leachate was allowed to cool to room temperature.
(第1添加工程)
 第1酸浸出工程において室温になった浸出液に、NaSH水溶液(濃度250g/l)を添加して処理液を生成した。NaSH水溶液の添加は、処理液を撹拌しながら処理液のORP(酸化還元電位)が0mV(vs Ag/AgCl)に達するまで行った。
(First addition step)
An aqueous solution of NaSH (concentration: 250 g/l) was added to the leaching solution that had reached room temperature in the first acid leaching step to produce a treatment solution. The NaSH aqueous solution was added while stirring the treatment liquid until the ORP (oxidation-reduction potential) of the treatment liquid reached 0 mV (vs Ag/AgCl).
(第1濾過工程)
 第1添加工程の処理液を濾過して濾液と残渣とに分離した。
(First filtration step)
The treated liquid in the first addition step was filtered to separate into a filtrate and a residue.
(中和工程)
 第1濾過工程の濾液にNaOH水溶液(濃度25%)を添加して中和液を生成した。NaOH水溶液の添加は、中和液のpHが3.5になるまで行った。
(Neutralization process)
An aqueous NaOH solution (25% concentration) was added to the filtrate of the first filtration step to produce a neutralized solution. The NaOH aqueous solution was added until the pH of the neutralization liquid reached 3.5.
(第2添加工程)
 中和液にNaSH水溶液(濃度250g/l)を添加して処理液を生成した。NaSH水溶液の添加は、処理液を撹拌しながら処理液のORP(酸化還元電位)が-400mV(vs Ag/AgCl)に達するまで行った。
(Second addition step)
An aqueous NaSH solution (concentration: 250 g/l) was added to the neutralized liquid to produce a treatment liquid. The NaSH aqueous solution was added while stirring the treatment liquid until the ORP (oxidation-reduction potential) of the treatment liquid reached −400 mV (vs Ag/AgCl).
(第3濾過工程)
 第2添加工程の処理液において黒色の沈殿物が十分生成したことを確認した後、この処理液を濾過して濾液と残渣とに分離した。
(Third filtration step)
After confirming that a sufficient amount of black precipitate was formed in the treated liquid in the second addition step, this treated liquid was filtered to separate the filtrate and the residue.
(第2酸浸出工程)
 第3濾過工程の残渣に硫酸(濃度0.5mol/l)100ml及び過酸化水素水(濃度30%)5mlを添加して浸出液を作製した。この浸出液を60℃に加熱して4時間撹拌した。その後、この浸出液を室温下まで放冷した。
(Second acid leaching step)
100 ml of sulfuric acid (concentration: 0.5 mol/l) and 5 ml of hydrogen peroxide solution (concentration: 30%) were added to the residue of the third filtration step to prepare a leachate. The leachate was heated to 60° C. and stirred for 4 hours. After that, this leachate was allowed to cool to room temperature.
(第5濾過工程)
 第2酸浸出工程の浸出液を濾過して濾液と残渣とに分離した。
(Fifth filtration step)
The leachate of the second acid leach step was filtered to separate the filtrate and the residue.
(溶媒抽出工程)
 第5濾過工程の濾液30lに対し、ミキサセトラにおいて抽出溶媒(PC-88Aの含有率が20vol%であって希釈剤ケロシンの含有率が80vol%であるもの)及び逆抽出溶媒(硫酸)を添加した。これにより、この濾液に含まれるNi及びCoを硫酸塩として回収した。なお、PC-88Aとは、大八化学工業株式会社製の金属抽出剤である。
(Solvent extraction step)
To 30 l of the filtrate of the fifth filtration step, an extraction solvent (PC-88A content of 20 vol% and diluent kerosene content of 80 vol%) and reverse extraction solvent (sulfuric acid) were added in a mixer settler. . As a result, Ni and Co contained in this filtrate were recovered as sulfates. PC-88A is a metal extractant manufactured by Daihachi Chemical Industry Co., Ltd.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、各実施例及び各比較例において使用した電池の種類、加熱工程における電池滓の焼成温度、第1酸浸出工程において使用した硫酸の濃度、第1酸浸出工程における浸出温度(浸出液の加熱温度)及び浸出時間(浸出液の攪拌時間)、溶媒抽出工程におけるCo及びNiの回収率を実施例及び比較例ごとに示している。 Table 1 shows the type of battery used in each example and each comparative example, the baking temperature of the battery slag in the heating process, the concentration of sulfuric acid used in the first acid leaching process, and the leaching temperature in the first acid leaching process (the temperature of the leachate). heating temperature), leaching time (stirring time of the leaching solution), and recovery rates of Co and Ni in the solvent extraction step are shown for each example and comparative example.
 表1において、NCMとは、NCM系電池(すなわち、正極活物質としてNi,Co及びMnの複合酸化物が使用された電池)である。NCAとは、NCA系電池(すなわち、正極活物質としてNi,Co及びAlの複合酸化物が使用された電池)である。Coの回収率とは、「(溶媒抽出工程において回収した硫酸塩に含まれるCoの質量)×100÷(電池滓に含まれるCoの質量)」を意味している。Niの回収率とは、「(溶媒抽出工程において回収した硫酸塩に含まれるNiの質量)×100÷(電池滓に含まれるNiの質量)」を意味している。硫酸塩に含まれるCo,Niの質量は、ICP-AESを用いて測定した。電池滓に含まれるCo,Niの質量は、XRFの定量分析により測定した。 In Table 1, NCM is an NCM-based battery (that is, a battery using a composite oxide of Ni, Co, and Mn as a positive electrode active material). NCA is an NCA-based battery (that is, a battery using a composite oxide of Ni, Co and Al as a positive electrode active material). The recovery rate of Co means "(the mass of Co contained in the sulfate recovered in the solvent extraction step)×100/(the mass of Co contained in the battery slag)". The recovery rate of Ni means "(the mass of Ni contained in the sulfate recovered in the solvent extraction step)×100÷(the mass of Ni contained in the battery slag)". The masses of Co and Ni contained in the sulfate were measured using ICP-AES. The masses of Co and Ni contained in the battery slag were measured by XRF quantitative analysis.
 実施例3及び比較例1を比較すると、焼成の有無以外の条件は同一であるが焼成を行っているか否かが異なっている。そして、実施例3(焼成を行った)においては、比較例1(焼成を行っていない)に比較してCo回収率及びNi回収率が顕著に高くなっている。実施例14及び比較例2を比較すると、焼成の有無以外の条件は同一であるが焼成を行っているか否かが異なっている。そして、実施例14(焼成を行った)においては、比較例2(焼成を行っていない)に比較してCo回収率及びNi回収率が顕著に高くなっている。 Comparing Example 3 and Comparative Example 1, the conditions other than the presence or absence of firing are the same, but the difference is whether or not firing is performed. In Example 3 (fired), the Co recovery rate and Ni recovery rate are significantly higher than those of Comparative Example 1 (no firing). When Example 14 and Comparative Example 2 are compared, the conditions other than the presence or absence of firing are the same, but the difference is whether or not firing is performed. In Example 14 (fired), the Co recovery rate and Ni recovery rate are significantly higher than those of Comparative Example 2 (no firing).
 実施例1~4を比較すると、浸出温度以外の条件は同一であるが浸出温度は互いに異なっている。実施例12~実施例15を比較すると、浸出温度以外の条件は同一であるが浸出温度は互いに異なっている。そして、浸出温度が60℃及び80℃である実施例においては、浸出温度が25℃及び40℃である実施例よりもCo回収率及びNi回収率が顕著に高くなっている。 Comparing Examples 1 to 4, the conditions other than the leaching temperature are the same, but the leaching temperatures are different. Comparing Examples 12 to 15, conditions other than the leaching temperature are the same, but the leaching temperatures are different. In the examples in which the leaching temperatures were 60°C and 80°C, the Co recovery rate and the Ni recovery rate were significantly higher than those in the examples in which the leaching temperatures were 25°C and 40°C.
 実施例3、5~7を比較すると、焼成温度以外の条件は同一であるが焼成温度は互いに異なっている。実施例14、16~18を比較すると、焼成温度以外の条件は同一であるが焼成温度は互いに異なっている。そして、焼成温度が700℃である実施例においては、焼成温度が600℃である実施例よりもCo回収率及びNi回収率が顕著に高くなっている。さらに、焼成温度が800℃及び900℃である実施例においては、焼成温度が700℃である実施例よりもCo回収率及びNi回収率が顕著に高くなっている。 Comparing Examples 3 and 5 to 7, the conditions other than the firing temperature are the same, but the firing temperatures are different. Comparing Examples 14 and 16 to 18, the conditions other than the firing temperature are the same, but the firing temperatures are different. In the example in which the sintering temperature is 700°C, the Co recovery rate and the Ni recovery rate are significantly higher than those in the example where the sintering temperature is 600°C. Furthermore, in the examples in which the sintering temperature was 800°C and 900°C, the Co recovery rate and the Ni recovery rate were significantly higher than those in the example in which the sintering temperature was 700°C.
 実施例3、8及び9を比較すると、硫酸濃度以外の条件は同一であるが硫酸濃度は互いに異なっている。実施例14、19及び20を比較すると、硫酸濃度以外の条件は同一であるが硫酸濃度は互いに異なっている。そして、硫酸濃度が2mol/l及び2.5mol/lである実施例においては、硫酸濃度が1.5mol/lである実施例よりもCo回収率及びNi回収率が顕著に高くなっている。 Comparing Examples 3, 8 and 9, the conditions other than the sulfuric acid concentration are the same, but the sulfuric acid concentrations are different. Comparing Examples 14, 19 and 20, the conditions are the same except for the sulfuric acid concentration, but the sulfuric acid concentration is different. In addition, in the examples in which the sulfuric acid concentrations were 2 mol/l and 2.5 mol/l, the Co recovery rate and the Ni recovery rate were significantly higher than those in the example in which the sulfuric acid concentration was 1.5 mol/l.
 実施例3、10及び11を比較すると、浸出時間以外の条件は同一であるが浸出時間は互いに異なっている。実施例14、21及び22を比較すると、浸出時間以外の条件は同一であるが浸出時間は互いに異なっている。そして、浸出時間が4時間である実施例においては、浸出時間が2時間及び3時間である実施例よりもCo回収率及びNi回収率が顕著に高くなっている。 Comparing Examples 3, 10 and 11, the conditions other than the leaching time are the same, but the leaching time is different. Comparing Examples 14, 21 and 22, the conditions are the same except for the leaching time, but the leaching time is different from each other. In the example in which the leaching time was 4 hours, the Co recovery rate and the Ni recovery rate were significantly higher than those in the examples in which the leaching time was 2 hours and 3 hours.
 以上の実施例及び比較例により次の結論を導出することができる。上記実施の形態において、電池滓M1を加熱工程S3で焼成することにより、第1酸浸出工程S4において残留粉末M2に含まれるNi及びCoを効率よく硫酸に浸出させることができ、溶媒抽出工程S15においてNi及びCoを効率よく回収することができる。 The following conclusions can be drawn from the above examples and comparative examples. In the above embodiment, by baking the battery slag M1 in the heating step S3, the Ni and Co contained in the residual powder M2 can be efficiently leached into sulfuric acid in the first acid leaching step S4, and the solvent extracting step S15. Ni and Co can be efficiently recovered in.
 また、加熱工程S3において電池滓M1を700℃以上(より好ましくは800℃以上900℃以下)に加熱し、第1酸浸出工程S4において使用する硫酸の濃度を2mol/l以上とし、残留粉末M2の浸出温度を60℃以上とし、残留粉末M2の浸出時間を4時間以上とすることにより、第1酸浸出工程S4において残留粉末M2に含まれるNi及びCoを効率よく硫酸に浸出させることができ、溶媒抽出工程S15においてNi及びCoを効率よく回収することができる。 Further, in the heating step S3, the battery slag M1 is heated to 700° C. or higher (more preferably 800° C. or higher and 900° C. or lower), the concentration of sulfuric acid used in the first acid leaching step S4 is set to 2 mol/l or higher, and the residual powder M2 is By setting the leaching temperature of 60° C. or higher and setting the leaching time of the residual powder M2 to 4 hours or longer, Ni and Co contained in the residual powder M2 can be efficiently leached into sulfuric acid in the first acid leaching step S4. , Ni and Co can be efficiently recovered in the solvent extraction step S15.
 電池滓に含まれるNi及びCoの一方又は両方を効率よく硫酸に浸出させて回収することができる。 One or both of Ni and Co contained in the battery slag can be efficiently leached into sulfuric acid and recovered.
 1  破砕装置
 2  取出装置
 3  加熱装置
 4  第1酸浸出装置
 5  第1添加装置
 6  第1濾過装置
 7  中和槽値
 8  第2濾過装置
 9  第2添加装置
 10  第3濾過装置
 11  洗浄装置
 12  第4濾過装置
 13  第2酸浸出装置
 14  第5濾過装置
 15  溶媒抽出装置
 16  炭酸化装置
1 crushing device 2 removal device 3 heating device 4 first acid leaching device 5 first addition device 6 first filtration device 7 neutralization tank value 8 second filtration device 9 second addition device 10 third filtration device 11 washing device 12 third 4 Filtration Apparatus 13 2nd Acid Leaching Apparatus 14 5th Filtration Apparatus 15 Solvent Extraction Apparatus 16 Carbonation Apparatus

Claims (9)

  1.  Ni及びCoの一方又は両方を含む正極活物質と、グラファイトを含む負極活物質と、を有する電池滓を加熱することにより、前記電池滓中の前記負極活物質に含まれるグラファイトを酸化して炭酸ガスを生成する加熱工程と、
     前記電池滓から前記炭酸ガスを生成した後に残留する残留粉末に硫酸を添加することにより、前記残留粉末中の前記正極活物質に含まれるNi及びCoの一方又は両方を前記硫酸に浸出させて浸出液を生成する酸浸出工程とを有することを特徴とする有価金属の回収方法。
    By heating a battery residue having a positive electrode active material containing one or both of Ni and Co and a negative electrode active material containing graphite, graphite contained in the negative electrode active material in the battery residue is oxidized to form carbonic acid. a heating step to generate a gas;
    By adding sulfuric acid to the residual powder remaining after the carbon dioxide gas is generated from the battery slag, one or both of Ni and Co contained in the positive electrode active material in the residual powder is leached into the sulfuric acid to form a leachate. A method for recovering valuable metals, comprising: an acid leaching step that produces
  2.  前記酸浸出工程においては、前記硫酸と共に過酸化水素を前記残留粉末に添加することを特徴とする請求項1に記載の有価金属の回収方法。 The method for recovering valuable metals according to claim 1, wherein in the acid leaching step, hydrogen peroxide is added to the residual powder together with the sulfuric acid.
  3.  前記浸出液に含まれる前記Ni又は/及びCoの一方を回収する回収工程をさらに備えることを特徴とする請求項1又は2に記載の有価金属の回収方法。 The method for recovering valuable metals according to claim 1 or 2, further comprising a recovery step of recovering one of said Ni and/or Co contained in said leachate.
  4.  前記回収工程は、
     前記浸出液に硫化剤を添加して処理液を生成する添加工程と、
     前記処理液を濾過することにより、前記処理液を、液体成分である濾液と、前記浸出液に含まれていたNi及びCoの一方又は両方を含む固体成分である残渣と、に分離する濾過工程とを有することを特徴とする請求項3に記載の有価金属の回収方法。
    The recovery step includes
    an adding step of adding a sulfiding agent to the leachate to generate a treatment liquid;
    a filtration step of separating the treatment liquid into a filtrate, which is a liquid component, and a residue, which is a solid component containing one or both of Ni and Co contained in the leachate, by filtering the treatment liquid; The method for recovering valuable metals according to claim 3, characterized by having
  5.  電池廃棄物を破砕して破砕物を製造する破砕工程と、
     前記破砕物からアルミニウム片を除去して前記電池滓を取り出す取出工程とをさらに備え、
     前記加熱工程においては、取り出された前記電池滓を加熱することを特徴とする請求項1~4のいずれか1項に記載の有価金属の回収方法。
    a crushing step of crushing battery waste to produce crushed products;
    a removing step of removing the aluminum pieces from the crushed material and removing the battery slag;
    The method for recovering valuable metals according to any one of claims 1 to 4, wherein in the heating step, the removed battery slag is heated.
  6.  前記加熱工程において、前記電池滓を700℃以上に加熱することを特徴とする請求項1~5のいずれか1項に記載の有価金属の回収方法。 The method for recovering valuable metals according to any one of claims 1 to 5, wherein in the heating step, the battery slag is heated to 700°C or higher.
  7.  前記酸浸出工程において、前記残留粉末に2mol/l以上の前記硫酸を添加してから、前記浸出液を60℃以上に加熱して4時間以上攪拌することを特徴とする請求項1~6のいずれか1項に記載の有価金属の回収方法。 7. The method according to any one of claims 1 to 6, wherein in the acid leaching step, after adding 2 mol/l or more of the sulfuric acid to the residual powder, the leaching solution is heated to 60° C. or more and stirred for 4 hours or more. 1. The method for recovering valuable metals according to 1.
  8.  Ni又はCoの一方又は両方を含む正極活物質と、グラファイトを含む負極活物質と、を有する電池滓を加熱することにより、前記電池滓中の前記負極活物質に含まれるグラファイトを酸化して炭酸ガスを生成する加熱装置と、
     前記電池滓から前記炭酸ガスを生成した後に残留する残留粉末に硫酸を添加することにより、前記残留粉末中の前記正極活物質に含まれるNi又はCoの一方又は両方を前記硫酸に浸出させて浸出液を生成する酸浸出装置とを備えることを特徴とする有価金属の回収装置。
    By heating a battery residue having a positive electrode active material containing one or both of Ni and Co and a negative electrode active material containing graphite, the graphite contained in the negative electrode active material in the battery residue is oxidized to form carbonic acid. a heating device for generating gas;
    By adding sulfuric acid to the residual powder remaining after the carbon dioxide gas is generated from the battery slag, one or both of Ni or Co contained in the positive electrode active material in the residual powder is leached out into the sulfuric acid to form a leachate. An apparatus for recovering valuable metals, comprising: an acid leaching apparatus that produces
  9.  前記浸出液に含まれる前記Ni及びCoの一方又は両方を回収する回収装置を更に備えることを特徴とする請求項8に記載の有価金属の回収装置。 The apparatus for recovering valuable metals according to claim 8, further comprising a recovery apparatus for recovering one or both of said Ni and Co contained in said leachate.
PCT/JP2022/003697 2021-02-02 2022-01-31 Valuable metal recovery method and recovery device WO2022168805A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022000943.8T DE112022000943T5 (en) 2021-02-02 2022-01-31 METHOD FOR RECOVERING VALUABLE METALS AND DEVICE FOR RECOVERY
KR1020237021873A KR20230138446A (en) 2021-02-02 2022-01-31 Recovery method and recovery device for valuable metals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-015218 2021-02-02
JP2021015218A JP2022118594A (en) 2021-02-02 2021-02-02 Recovery method and recovery apparatus for valuable metal

Publications (1)

Publication Number Publication Date
WO2022168805A1 true WO2022168805A1 (en) 2022-08-11

Family

ID=82741406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003697 WO2022168805A1 (en) 2021-02-02 2022-01-31 Valuable metal recovery method and recovery device

Country Status (5)

Country Link
JP (1) JP2022118594A (en)
KR (1) KR20230138446A (en)
DE (1) DE112022000943T5 (en)
TW (1) TW202242149A (en)
WO (1) WO2022168805A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681050A (en) * 1991-10-31 1994-03-22 Taiheiyo Kinzoku Kk Method for recovering nickel and cobalt
JPH07252548A (en) * 1994-03-11 1995-10-03 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from waste catalyst
JP2012036420A (en) * 2010-08-03 2012-02-23 Sumitomo Metal Mining Co Ltd Method of leaching nickel and cobalt, and method of recovering valuable metal from lithium ion battery
JP2013095988A (en) * 2011-11-04 2013-05-20 Sumitomo Metal Mining Co Ltd Method for precipitating metal sulfide
JP2013112538A (en) * 2011-11-25 2013-06-10 Sumitomo Metal Mining Co Ltd Method for producing high purity nickel sulfate and method for removing impurity element from solution containing nickel
JP2019169309A (en) * 2018-03-22 2019-10-03 三菱マテリアル株式会社 Cobalt, copper, and aluminum separation method
WO2019197192A1 (en) * 2018-04-11 2019-10-17 Basf Se Process for the recovery of lithium and transition metal using heat
WO2020109045A1 (en) * 2018-11-26 2020-06-04 Basf Se Battery recycling by hydrogen gas injection in leach
JP2020535323A (en) * 2017-09-28 2020-12-03 リサイクレージ・リチオン・インコーポレーテッド Lithium-ion battery recycling method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998241B2 (en) 2018-03-07 2022-01-18 Jx金属株式会社 Lithium recovery method
JP7301652B2 (en) 2019-07-12 2023-07-03 株式会社国際電気通信基礎技術研究所 Anonymous authentication method, program, and anonymous authentication system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681050A (en) * 1991-10-31 1994-03-22 Taiheiyo Kinzoku Kk Method for recovering nickel and cobalt
JPH07252548A (en) * 1994-03-11 1995-10-03 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from waste catalyst
JP2012036420A (en) * 2010-08-03 2012-02-23 Sumitomo Metal Mining Co Ltd Method of leaching nickel and cobalt, and method of recovering valuable metal from lithium ion battery
JP2013095988A (en) * 2011-11-04 2013-05-20 Sumitomo Metal Mining Co Ltd Method for precipitating metal sulfide
JP2013112538A (en) * 2011-11-25 2013-06-10 Sumitomo Metal Mining Co Ltd Method for producing high purity nickel sulfate and method for removing impurity element from solution containing nickel
JP2020535323A (en) * 2017-09-28 2020-12-03 リサイクレージ・リチオン・インコーポレーテッド Lithium-ion battery recycling method
JP2019169309A (en) * 2018-03-22 2019-10-03 三菱マテリアル株式会社 Cobalt, copper, and aluminum separation method
WO2019197192A1 (en) * 2018-04-11 2019-10-17 Basf Se Process for the recovery of lithium and transition metal using heat
WO2020109045A1 (en) * 2018-11-26 2020-06-04 Basf Se Battery recycling by hydrogen gas injection in leach

Also Published As

Publication number Publication date
KR20230138446A (en) 2023-10-05
JP2022118594A (en) 2022-08-15
DE112022000943T5 (en) 2023-11-23
TW202242149A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
CN110475879B (en) Treatment method of lithium ion battery waste
TWI625883B (en) Disposal method of lithium ion battery waste
TWI625397B (en) Disposal method of lithium ion battery waste
WO2020090690A1 (en) Treatment method of positive electrode active substance waste product of lithium ion secondary battery
KR20200024909A (en) Method for dissolving lithium compound, method for producing lithium carbonate, and method for recovering lithium from lithium ion secondary battery scrap
JP7164763B2 (en) Method for producing mixed metal solution and method for producing mixed metal salt
JP7246570B2 (en) Method for producing mixed metal salt
JP2020105597A (en) Valuable metal recovery method
JP2022182229A (en) Metal recovery method from lithium ion battery
JP4215547B2 (en) Cobalt recovery method
WO2022168805A1 (en) Valuable metal recovery method and recovery device
JP4439804B2 (en) Cobalt recovery method
JP7243749B2 (en) Valuable metal recovery method and recovery device
JP7423104B1 (en) Method for recovering metals from lithium ion batteries
WO2023157826A1 (en) Zinc recovery method
WO2024034327A1 (en) Method of treating waste battery
JP2023150694A (en) Separation method for cobalt and nickel
WO2024149937A1 (en) A method for separating manganese in leaching of cobalt and/or nickel from delithiated solid raw material and use of delithiated solid raw material comprising cathode material
JP2023150668A (en) Method for leaching electrode material, separation method for cobalt and nickel
KR20230145567A (en) Li recovery method and recovery device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022000943

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749677

Country of ref document: EP

Kind code of ref document: A1