JPH10194718A - Production of polycrystalline silicon ingot for solar cell - Google Patents

Production of polycrystalline silicon ingot for solar cell

Info

Publication number
JPH10194718A
JPH10194718A JP34998096A JP34998096A JPH10194718A JP H10194718 A JPH10194718 A JP H10194718A JP 34998096 A JP34998096 A JP 34998096A JP 34998096 A JP34998096 A JP 34998096A JP H10194718 A JPH10194718 A JP H10194718A
Authority
JP
Japan
Prior art keywords
mold
silicon
solar cell
ingot
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34998096A
Other languages
Japanese (ja)
Other versions
JP3852147B2 (en
Inventor
Hiroyuki Baba
裕幸 馬場
Naomichi Nakamura
尚道 中村
Masamichi Abe
正道 阿部
Yasuhiko Sakaguchi
泰彦 阪口
Yoshihide Kato
嘉英 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34998096A priority Critical patent/JP3852147B2/en
Publication of JPH10194718A publication Critical patent/JPH10194718A/en
Application granted granted Critical
Publication of JP3852147B2 publication Critical patent/JP3852147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a polycrystalline silicon ingot for a solar cell, having orientation of crystal particles in one direction uniformly and excellent in photoelectric conversion efficiency by pouring a molten silicon of a high purity into a mold arranged with a single crystalline silicon base plate and coagulating by one way coagulation from the bottom part of the mold toward upper direction. SOLUTION: This method for producing a polycrystalline silicon ingot for a solar cell is to arrange a mold 5 made of a water cooled copper or a graphite applied with a releasing agent at the inside thereof in a small room blocked from an atmosphere, also arrange a seed crystal (a single crystalline silicon base plate 6) so as to become the seed crystal on coagulation at the bottom surface in the mold 5, then pre-heat the mold up to a temperature just below the melting point of silicon, pour a molten silicon housed in a ladle into the mold 5, set the out put of a heat source arranged at the upper direction of the mold 5 and simultaneously pass a cooling water into a water cooling jacket 9 arranged at the bottom of the mold 5, and coagulate the molten silicon 7 from the bottom part of the mold 5 toward the upper direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池用多結晶
シリコン・インゴットの製造方法に関し、詳しくは、太
陽電池の光電効率を高めるため、結晶粒の成長方向がそ
ろったインゴットになるよう、溶融シリコンを鋳型に注
入する技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a polycrystalline silicon ingot for a solar cell. This is a technique for injecting silicon into a mold.

【0002】[0002]

【従来の技術】現在、エネルギー源の多様化要求から、
太陽光発電が脚光を浴びているが、コストが高いため、
電力用としては一般に普及していない。また、太陽電池
用基板材料のほとんどはシリコンであるが、該シリコン
専用の製造プロセスが存在していないので、そのシリコ
ンの製造は、図3に示すように、半導体用シリコンの製
造プロセスで発生した高純度シリコンのスクラップある
いは単結晶引き上げの際に発生したスクラップに依存し
ている。なお、図3の高純度シリコンは、金属シリコン
を塩酸と反応させてトリクロロ・シランとしてガス化
し、該ガスを精留して不純物元素を除き、水素ガスと反
応させる所謂CVD法でガスから析出させたものであ
る。
2. Description of the Related Art At present, due to the demand for diversification of energy sources,
Solar power is in the limelight, but because of its high cost,
It is not widely used for electric power. Further, most of the substrate material for solar cells is silicon, but since there is no manufacturing process dedicated to the silicon, the manufacturing of the silicon occurred in the manufacturing process of silicon for a semiconductor as shown in FIG. It relies on scrap of high-purity silicon or scrap generated during single crystal pulling. The high-purity silicon shown in FIG. 3 is obtained by reacting metallic silicon with hydrochloric acid to gasify it as trichlorosilane, rectifying the gas to remove impurity elements, and depositing it from the gas by a so-called CVD method of reacting with hydrogen gas. It is a thing.

【0003】この図3に示す方法では、化学的プロセス
におけるシリコンの精製、析出工程にコストと時間がか
かり、単結晶引上げや鋳造をしなければならないので、
手間がかかる上に、歩留が悪く、再溶解の設備、エネル
ギーも別途必要で、製造費用が嵩むという問題があっ
た。そのため、現在入手可能な太陽電池は高価なものと
なり、その一般的な普及の障害となっている。また、上
記のような化学プロセスが主体の金属シリコンの精製で
は、シラン、塩化物等の公害物質の多量発生が避けられ
ず、量産の障害になるという問題もあった。さらに、半
導体産業の活況に伴い、半導体に向けられる高純度シリ
コンの量が不足してきており、太陽電池用に向けられる
シリコンは、今後さらに少なくなると予想される。かか
る現状においては、太陽電池用に使用できるシリコン源
を、高純度シリコンよりさらに上流に位置する金属シリ
コンを主体にして、従来より一層安価に得るようにする
必要がある。
In the method shown in FIG. 3, the cost and time are required for the purification and deposition steps of silicon in a chemical process, and a single crystal must be pulled or cast.
In addition to being troublesome, there is a problem that the yield is low, re-melting equipment and energy are separately required, and the production cost increases. Therefore, currently available solar cells are expensive and hinder their general spread. Further, in the purification of metallic silicon mainly based on the above-described chemical process, there is a problem that a large amount of pollutants such as silane and chloride is inevitably generated, which hinders mass production. Furthermore, with the booming semiconductor industry, the amount of high-purity silicon used for semiconductors is becoming insufficient, and the amount of silicon used for solar cells is expected to decrease further in the future. Under such circumstances, it is necessary to obtain a silicon source that can be used for a solar cell at a lower cost than before by mainly using metallic silicon located further upstream than high-purity silicon.

【0004】そこで、本出願人は、上記のような化学プ
ロセスによる金属シリコンの高純度化を改め、先般(P
CT/JP96/02965で)、図4に示すような冶
金プロセスのみで、太陽電池に適した純度のシリコンを
多量に製造し、それを鋳造して一気にシリコン基板まで
にする方法を提案している。それは、珪石を炭材で還元
して得た金属シリコン(純度98〜99重量%Si)を
出発原料とし、真空精錬によってP、Al,Ca等の易
揮発性不純物元素を除去すると共に、溶湯を凝固精製し
て不純物金属元素(Fe,Ti,Al,Ca)を粗く精
製する。そして、得られた鋳塊を再度溶解し、酸化精錬
でB,Cを除き、脱酸してから、一方向凝固で上記不純
物金属元素の仕上凝固精製した後、鋳塊の一部を切り捨
て、残部をスライスして太陽電池用シリコン基板を連続
的な流れ作業として生産するものである。かかる製造方
法によれば、太陽電池用シリコンを従来よりかなり安価
に量産できる目処が立っている。
Therefore, the present applicant has revised the purification of metallic silicon by the above chemical process, and
CT / JP96 / 02965), a method is proposed in which a large amount of silicon having a purity suitable for a solar cell is produced only by a metallurgical process as shown in FIG. 4 and then cast into a silicon substrate at a stretch. . It uses metallic silicon (purity 98-99% by weight Si) obtained by reducing silica stone as a starting material, removes easily volatile impurity elements such as P, Al and Ca by vacuum refining and removes molten metal. By coagulation and purification, impurity metal elements (Fe, Ti, Al, Ca) are roughly refined. Then, the obtained ingot is again melted, B and C are removed by oxidative refining, deoxidized, and then subjected to one-way solidification to finish solidification and purification of the impurity metal element. Then, a part of the ingot is cut off, The remaining portion is sliced to produce a silicon substrate for a solar cell as a continuous flow operation. According to such a manufacturing method, there is a prospect that silicon for solar cells can be mass-produced at a considerably lower cost than before.

【0005】ところで、上記した化学プロセスや冶金プ
ロセスは、いずれも最終工程で溶融シリコンを鋳型に鋳
込みインゴットとし、それをスライスして基板にしてい
る。この基板を太陽電池とするには、通常、その表面を
弗酸や硝酸水溶液で処理してエッチングする。つまり、
表面を図5に示すような所謂ピラミッド構造1とし、入
射太陽光の光電効率を向上させるのである。このピラミ
ッド構造1は、結晶方位が一方向に揃った単結晶インゴ
ットからスライスした基板2では、容易に得られる。
In the above-mentioned chemical and metallurgical processes, molten silicon is cast into a mold in the final step to form an ingot, which is sliced into a substrate. In order to make this substrate a solar cell, its surface is usually treated and etched with an aqueous solution of hydrofluoric acid or nitric acid. That is,
The surface has a so-called pyramid structure 1 as shown in FIG. 5 to improve the photoelectric efficiency of incident sunlight. The pyramid structure 1 can be easily obtained in a substrate 2 sliced from a single crystal ingot having a uniform crystal orientation in one direction.

【0006】しかしながら、多結晶インゴットからの基
板3では、表面にある結晶粒4の方位がまちまちなの
で、エッチングにより凹凸が多方向に形成され、ピラミ
ッド構造1となり難い。特に、その傾向は、インゴット
下部から得た最初に凝固し結晶粒4の小さい基板に多
い。そのため、多結晶シリコン・インゴットの場合、単
結晶インゴットに比し、有効な基板としての歩留が低く
なり、コスト・アップの要因になる。これでは、太陽電
池用シリコンを量産し、その製造コストをより一層安価
にするという出願人の開発目標が達成できない。
However, in the case of the substrate 3 made of a polycrystalline ingot, since the orientation of the crystal grains 4 on the surface is different, irregularities are formed in multiple directions by etching, and it is difficult to form the pyramid structure 1. In particular, the tendency is more likely to occur in the first solidified substrate having small crystal grains 4 obtained from the lower part of the ingot. Therefore, in the case of a polycrystalline silicon ingot, the yield as an effective substrate is lower than that of a single crystal ingot, which causes an increase in cost. This does not meet the applicant's development goal of mass-producing silicon for solar cells and further reducing the production cost.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる事情
を鑑み、太陽電池用シリコン基板にしても、結晶粒の方
位が一方向に揃い、光電効率に優れたものになる太陽電
池用多結晶シリコン・インゴットの製造方法を提供する
ことを目的としている。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention is directed to a polycrystalline silicon for a solar cell, in which the orientation of crystal grains is aligned in one direction and the photoelectric efficiency is excellent even in a silicon substrate for a solar cell. It is an object of the present invention to provide a method for manufacturing a silicon ingot.

【0008】[0008]

【課題を解決するための手段】発明者は、上記目的を達
成するため、溶融シリコンの鋳造時に種基板を利用する
ことに着眼した研究を鋭意進め、それを具現化した。す
なわち、本発明は、高純度の溶融シリコンを鋳型に注入
し、該鋳型の底部から上方に向け一方向凝固させるに際
し、上記鋳型内の底面に、凝固時の種結晶となるよう単
結晶シリコン基板を配置し、その上に溶融シリコンを注
ぐことを特徴とする太陽電池用多結晶シリコン・インゴ
ットの製造方法である。
Means for Solving the Problems In order to achieve the above object, the inventor has intensively studied and focused on using a seed substrate in casting molten silicon, and has embodied it. That is, the present invention is to inject high-purity molten silicon into a mold and, when unidirectionally solidifying upward from the bottom of the mold, a single-crystal silicon substrate is formed on the bottom surface in the mold to become a seed crystal at the time of solidification. And pouring molten silicon thereon. 2. A method for producing a polycrystalline silicon ingot for solar cells, comprising:

【0009】また、本発明は、上記単結晶シリコン基板
を、その(100)面が上方に向くようにしたことを特
徴とする太陽電池用多結晶シリコン・インゴットの製造
方法である。さらに、本発明は、上記単結晶基板を、鋳
型底面と同形状、且つ同一面積としたことを特徴とする
太陽電池用多結晶シリコン・インゴットの製造方法であ
る。
Further, the present invention is a method for manufacturing a polycrystalline silicon ingot for a solar cell, wherein the (100) plane of the single crystal silicon substrate is oriented upward. Further, the present invention is a method for producing a polycrystalline silicon ingot for a solar cell, wherein the single crystal substrate has the same shape and the same area as the bottom of the mold.

【0010】本発明では、上記のような構成で太陽電池
用多結晶シリコン・インゴットを製造するようにしたの
で、該インゴットを形成する結晶粒の方位が一定にな
る。その結果、そのインゴットをスライスして得た基板
の表面を、弗酸あるいは硝酸でエッチッグすると、適切
なピラミッド構造の表面となり、該基板で製作した太陽
電池の光電効率は、従来の多結晶シリコン基板で製作し
たものよりも向上した。また、シリコン・インゴットか
らの有効な基板が増加したので、太陽電池用多結晶シリ
コン基板が従来より安価に製造できるようになった。
In the present invention, since the polycrystalline silicon ingot for a solar cell is manufactured with the above configuration, the orientation of the crystal grains forming the ingot becomes constant. As a result, when the surface of the substrate obtained by slicing the ingot is etched with hydrofluoric acid or nitric acid, the surface of the substrate becomes an appropriate pyramid structure, and the photoelectric efficiency of the solar cell manufactured on the substrate is reduced by the conventional polycrystalline silicon substrate. It was better than the one made in. Further, since the number of effective substrates from silicon ingots has increased, polycrystalline silicon substrates for solar cells can be manufactured at lower cost than before.

【0011】[0011]

【発明の実施の形態】図1に、本発明に係る太陽電池用
多結晶シリコン・インゴットの製造方法を実施している
状況を示す。それは、まず、図示していない大気を遮断
した小部屋に、内面にインゴットの付着を防止する離型
剤を塗布した水冷銅あるいは黒鉛製の鋳型5を配置す
る。そして、その中に凝固に際し種基板6となる単結晶
を置き、シリコン融点直下まで鋳型を予熱しておき、そ
の上に、ほぼ太陽電池用シリコンの純度までに精製され
た溶融シリコン(溶湯ともいう)7を取鍋8を介して注
ぐ。なお、該溶湯7の精製は、前記図4に示した冶金プ
ロセスにより行ない、脱ボロン、脱燐、脱酸、さらには
Fe,Ti等の不純物金属元素が粗く凝固精製されてい
る。また、小部屋内は、インゴットが空気で汚染されな
いように、アルゴン・ガス雰囲気とするのが好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a situation in which a method for manufacturing a polycrystalline silicon ingot for a solar cell according to the present invention is performed. First, a mold 5 made of water-cooled copper or graphite coated with a release agent for preventing the ingot from adhering to the inner surface is arranged in a small room (not shown) in which the atmosphere is blocked. Then, a single crystal serving as a seed substrate 6 during solidification is placed therein, the mold is preheated to just below the melting point of silicon, and molten silicon (also referred to as molten metal) that has been purified to approximately the purity of silicon for solar cells is placed thereon. Pour 7 through ladle 8; The refining of the molten metal 7 is carried out by the metallurgical process shown in FIG. 4, and deboron, dephosphorization, deoxidation, and coarse metal elements such as Fe and Ti are coarsely coagulated and refined. The interior of the small room is preferably set to an argon gas atmosphere so that the ingot is not contaminated with air.

【0012】目標サイズのインゴットを形成する量の溶
湯7を注入したら、鋳型5の底部に配置した水冷ジャケ
ット9の冷却水量及び鋳型5の上方に配置した加熱源
(図示していないが、通常、電熱ヒータを使用)の出力
を設定し、底部から上方に向けて固液界面が一定速度で
ゆっくりと上昇するように凝固を開始する。特に、この
凝固は、インゴットを製造するだけでなく、溶湯7を太
陽電池用シリコンとして許容される純度に仕上精製する
役割も果たす。そのため、凝固は一方向凝固とし、凝固
速度(固液界面の移動速度)は、精製が効率良く行われ
る観点から予め定められている。 凝固途中でのインゴ
ット10の結晶成長状況を模式的に図2に示す。本発明
によれば、種結晶6にほぼ一致した結晶方位が上方に向
けて成長するので、どの高さで切断してもほぼ100面
に近い結晶方位となる。この事実は、凝固完了後のイン
ゴット10の縦断面観察で確認している。
After injecting the molten metal 7 in such an amount as to form an ingot of the target size, the amount of cooling water in the water cooling jacket 9 arranged at the bottom of the mold 5 and the heating source arranged above the mold 5 (not shown, usually, (Using an electric heater) and start solidification so that the solid-liquid interface slowly rises at a constant speed from the bottom upward. In particular, this solidification not only produces an ingot, but also plays a role in finishing and refining the molten metal 7 to a purity acceptable as silicon for solar cells. Therefore, the solidification is unidirectional solidification, and the solidification speed (moving speed of the solid-liquid interface) is predetermined from the viewpoint of efficient purification. FIG. 2 schematically shows the state of crystal growth of the ingot 10 during solidification. According to the present invention, the crystal orientation substantially matching the seed crystal 6 grows upward, so that the crystal orientation is almost 100 even if cut at any height. This fact has been confirmed by observing the longitudinal section of the ingot 10 after the completion of the solidification.

【0013】また、上記種結晶とする単結晶シリコン板
としては、(100)面を有するものが好ましい。それ
は、インゴットをスライスして得たシリコン基板を太陽
電池とした際、最も光電効率が高くなるからである。さ
らに、上記種結晶とする単結晶シリコン基板は鋳型底面
と同一形状、且つ同一面積のものが好ましい。それは、
結晶の生長開始が全て単結晶基材から発生するためでイ
ンゴット中の結晶方位が最も高い比率でそろうからであ
る。
The single crystal silicon plate used as the seed crystal preferably has a (100) plane. The reason is that when a silicon substrate obtained by slicing an ingot is used as a solar cell, the photoelectric efficiency becomes highest. Further, the single crystal silicon substrate used as the seed crystal preferably has the same shape and the same area as the bottom of the mold. that is,
This is because the start of crystal growth is all generated from the single crystal base material, and the crystal orientation in the ingot is aligned at the highest ratio.

【0014】[0014]

【実施例】前処理でほぼ太陽電池用シリコンの純度にし
た溶融シリコン50kgを、取鍋8に保持し、内寸が3
20×320×H400mmの鋳型5に注入し、一方向
凝固させてインゴットを製造した。その際、鋳型5に予
め配置する種結晶6としての単結晶シリコン板には、そ
の面方位が種々のもの、及び160×160mmの角型
単結晶基板を4枚ならべ320×320mmとしたもの
を用意し、それぞれについてインゴット10の製造を試
行した。また、種結晶6を用いない従来通りの製造も、
ほぼ同一条件で行った。表1に溶湯7の不純物量、表2
に溶湯温度、凝固速度等の条件を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 50 kg of molten silicon, which has been pretreated to approximately the purity of silicon for solar cells, is held in a ladle 8 and has an inner size of 3 kg.
It was poured into a mold 5 of 20 × 320 × H400 mm, and was unidirectionally solidified to produce an ingot. At this time, the single crystal silicon plate as the seed crystal 6 previously arranged in the mold 5 has various plane orientations, and a single crystal silicon substrate having a total of 320 × 320 mm with four 160 × 160 mm square single crystal substrates. The ingots were prepared and the production of the ingot 10 was tried for each. In addition, conventional production without using the seed crystal 6 is also possible.
Performed under almost the same conditions. Table 1 shows the amount of impurities in the molten metal 7 and Table 2
Shows conditions such as the melt temperature and the solidification rate.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】凝固完了後の各インゴット10を、その上
端から20%の位置で切断し、その部分をスクラップと
して除いた。そして、残りの部分をワイヤ・ソーを用い
て厚み450μmでスライスし、太陽電池用多結晶シリ
コン基板とし、その一部を分析試料及び太陽電池セル化
テスト用試料とした。ここで、太陽電池セル化テストと
は、該基板を弗化水素酸と硝酸の混合液につけて表面を
50μm程度除去し、ピラミッド構造の形成を行い、そ
の後pn接合を形成して太陽電池セルを製作し、光電変
換効率を測定することである。表3に分析及び太陽電池
セル化・テストの結果を一括して示す。
After completion of solidification, each ingot 10 was cut at a position 20% from its upper end, and the portion was removed as scrap. Then, the remaining portion was sliced at a thickness of 450 μm using a wire saw to obtain a polycrystalline silicon substrate for a solar cell, and a part thereof was used as an analysis sample and a sample for a solar cell conversion test. Here, the solar cell conversion test means that the substrate is immersed in a mixed solution of hydrofluoric acid and nitric acid to remove the surface by about 50 μm, to form a pyramid structure, and then to form a pn junction to form the solar cell. It is to manufacture and measure the photoelectric conversion efficiency. Table 3 summarizes the results of the analysis and the solar cell production / test.

【0018】[0018]

【表3】 [Table 3]

【0019】表3より、本発明に係る方法を採用する
と、基板表面が適切なピラミッド構造1となるため、従
来法による場合に比し、いずれも高い光電変換効率を示
している。なかでも、(100)面の結晶方位を有する
単結晶シリコン板を種結晶6とした場合に最も良い結果
が得られている。さらに、鋳型底部全面を種結晶とした
場合にはさらに変換効率を示した。また、不純物元素に
関しては、表1と比較してみれば明らかなように、いず
れの場合も良く仕上精製がされていた。
As can be seen from Table 3, when the method according to the present invention is employed, the substrate surface has an appropriate pyramid structure 1. Therefore, all of them show higher photoelectric conversion efficiency than the conventional method. Among them, the best result is obtained when the single crystal silicon plate having the (100) plane crystal orientation is used as the seed crystal 6. Further, when the entire bottom surface of the mold was formed as a seed crystal, the conversion efficiency was further improved. In addition, regarding the impurity elements, as is clear from comparison with Table 1, the finish purification was well performed in each case.

【0020】[0020]

【発明の効果】以上述べたように、本発明により、光電
変換効率に優れた太陽電池用多結晶シリコン基板が安定
して製造できるようになった。その結果、基板の段階で
不合格としていた量が減り、太陽電池用シリコン基板の
生産性が向上すると共に、製造コストの低下も可能にな
った。
As described above, according to the present invention, a polycrystalline silicon substrate for a solar cell having excellent photoelectric conversion efficiency can be stably manufactured. As a result, the amount of rejects at the stage of the substrate is reduced, the productivity of the silicon substrate for solar cells is improved, and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池用多結晶シリコン・イン
ゴットの製造方法を実施している状況を示す縦断面図で
ある。
FIG. 1 is a longitudinal sectional view showing a state in which a method of manufacturing a polycrystalline silicon ingot for a solar cell according to the present invention is being performed.

【図2】凝固途中のインゴットの結晶成長を示す模式図
である。
FIG. 2 is a schematic diagram showing crystal growth of an ingot during solidification.

【図3】従来の化学プロセスを主体とした太陽電池用シ
リコン基板の製造工程図である。
FIG. 3 is a manufacturing process diagram of a silicon substrate for a solar cell mainly using a conventional chemical process.

【図4】本出願人の提案した冶金プロセスによる太陽電
池用シリコン基板の製造工程図である。
FIG. 4 is a manufacturing process diagram of a silicon substrate for a solar cell by a metallurgical process proposed by the present applicant.

【図5】シリコン基板の表面処理を説明する図である。FIG. 5 is a diagram illustrating a surface treatment of a silicon substrate.

【符号の説明】[Explanation of symbols]

1 ピラミッド構造 2 単結晶インゴットからスライスした基板 3 多結晶インゴットからスライスした基板 4 結晶粒 5 鋳型 6 種結晶 7 溶融シリコン(溶湯) 8 取鍋 9 水冷ジャケット 10 インゴット 11 結晶成長方向(凝固方向) 12 結晶粒界 DESCRIPTION OF SYMBOLS 1 Pyramid structure 2 Substrate sliced from single crystal ingot 3 Substrate sliced from polycrystalline ingot 4 Crystal grain 5 Template 6 Seed crystal 7 Molten silicon (molten metal) 8 Ladle 9 Water cooling jacket 10 Ingot 11 Crystal growth direction (solidification direction) 12 Grain boundaries

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 正道 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 (72)発明者 阪口 泰彦 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 (72)発明者 加藤 嘉英 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masamichi Abe 1 Kawasaki-cho, Chuo-ku, Chiba City Inside Kawasaki Steel Research & Technology Company (72) Inventor Yasuhiko Sakaguchi 1 Kawasaki-cho, Chuo-ku Chiba City Kawasaki Steel Technical Research Company In-house (72) Inventor Yoshihide Kato 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steel Corp.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高純度の溶融シリコンを鋳型に注入し、
該鋳型の底部から上方に向け一方向凝固させるに際し、 上記鋳型内の底面に、凝固時の種結晶となるよう単結晶
シリコン基板を配置し、その上に溶融シリコンを注ぐこ
とを特徴とする太陽電池用多結晶シリコン・インゴット
の製造方法。
1. Injecting high purity molten silicon into a mold,
When unidirectionally solidifying upward from the bottom of the mold, a single crystal silicon substrate is arranged on the bottom surface in the mold so as to be a seed crystal at the time of solidification, and molten silicon is poured thereon. Manufacturing method of polycrystalline silicon ingot for battery.
【請求項2】 上記単結晶シリコン基板を、その(10
0)面が上方に向くようにしたことを特徴とする請求項
1記載の太陽電池用多結晶シリコン・インゴットの製造
方法。
2. The method according to claim 1, wherein the single crystal silicon substrate is
2. The method for producing a polycrystalline silicon ingot for a solar cell according to claim 1, wherein the (0) face is directed upward.
【請求項3】 上記単結晶シリコン基板の形状を鋳型底
面と同形、且つ同面積にすることを特徴とする請求項1
または2記載の太陽電池用多結晶シリコン・インゴット
の製造方法。
3. The single crystal silicon substrate has the same shape and the same area as the bottom surface of the mold.
Or a method for producing a polycrystalline silicon ingot for a solar cell according to 2 above.
JP34998096A 1996-12-27 1996-12-27 Method for producing polycrystalline silicon ingot for solar cell Expired - Fee Related JP3852147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34998096A JP3852147B2 (en) 1996-12-27 1996-12-27 Method for producing polycrystalline silicon ingot for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34998096A JP3852147B2 (en) 1996-12-27 1996-12-27 Method for producing polycrystalline silicon ingot for solar cell

Publications (2)

Publication Number Publication Date
JPH10194718A true JPH10194718A (en) 1998-07-28
JP3852147B2 JP3852147B2 (en) 2006-11-29

Family

ID=18407422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34998096A Expired - Fee Related JP3852147B2 (en) 1996-12-27 1996-12-27 Method for producing polycrystalline silicon ingot for solar cell

Country Status (1)

Country Link
JP (1) JP3852147B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019591A (en) * 1999-06-29 2001-01-23 Kyocera Corp Device for casting silicon
JP2003095634A (en) * 2001-09-18 2003-04-03 Yutaka Kamaike Method and device for producing silicon
JP2004106019A (en) * 2002-09-19 2004-04-08 Dowa Mining Co Ltd Apparatus and method for casting indium
JP2004322195A (en) * 2003-04-28 2004-11-18 Mitsubishi Materials Corp Unidirectionally solidified silicon ingot and method for manufacturing the same, and silicon plate and substrate for solar battery
WO2005007938A1 (en) * 2003-07-17 2005-01-27 National University Corporation Tohoku University METHOD FOR GROWING Si BASED CRYSTAL, Si BASED CRYSTAL, Si BASED CRYSTAL SUBSTRATE AND SOLAR CELL
JP2006273630A (en) * 2005-03-28 2006-10-12 Kyocera Corp Seed crystal and method for manufacturing semiconductor ingot using the same
WO2007084936A2 (en) * 2006-01-20 2007-07-26 Bp Corporation North America Inc. Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics
EP1942077A1 (en) * 2005-07-04 2008-07-09 Sharp Kabushiki Kaisha Method of silicon recycling and produced thereby, silicon and silicon ingot
WO2009014962A1 (en) * 2007-07-20 2009-01-29 Bp Corporation North America Inc. Methods and apparatuses for manufacturing cast silicon from seed crystals
DE102007035756A1 (en) * 2007-07-27 2009-02-05 Deutsche Solar Ag Production of silicon-blocks for photovoltaics e.g. solar cell, comprises arranging first silicon-seed and liquid silicon in container, melting the liquid silicon in surface turned to the silicon-seed, and solidifying the liquid silicon
WO2009017201A1 (en) * 2007-08-02 2009-02-05 National University Corporation Tohoku University PROCESS FOR PRODUCING Si BULK POLYCRYSTAL INGOT
JP2009051720A (en) * 2007-08-02 2009-03-12 Tohoku Univ PROCESS FOR PRODUCING Si BULK POLYCRYSTAL INGOT
WO2009014957A3 (en) * 2007-07-20 2009-04-16 Bp Corp North America Inc Methods for manufacturing cast silicon from seed crystals
JP2010508237A (en) * 2006-11-02 2010-03-18 コミサリア、ア、レネルジ、アトミク−セーエーアー Method for refining metallic silicon by directional solidification
US7727502B2 (en) 2007-09-13 2010-06-01 Silicum Becancour Inc. Process for the production of medium and high purity silicon from metallurgical grade silicon
CN102534772A (en) * 2012-02-28 2012-07-04 江苏协鑫硅材料科技发展有限公司 Method for growing large-grain cast polycrystalline silicon
DE102011076860A1 (en) 2011-06-01 2012-12-06 Forschungsverbund Berlin E.V. Directional crystallization of silicon ingots, comprises charging crucible of crystallization system containing material to be processed, melting material, and setting stereometric temperature field with planar isothermal surfaces in melt
KR20130059272A (en) * 2011-11-28 2013-06-05 시노-아메리칸 실리콘 프로덕츠 인코포레이티드. Crystalline silicon ingot and method of fabricating the same
WO2013095928A1 (en) * 2011-12-23 2013-06-27 Gtat Corporation Method of producing bricks from a silicon ingot
JP2014024716A (en) * 2012-07-27 2014-02-06 Tohoku Univ Method for manufacturing silicon ingot
JP2015120634A (en) * 2013-12-20 2015-07-02 中美▲せき▼晶製品股▲ふん▼有限公司 Cooling device used for ingot casting furnace and casting method for ingot
JP2015214473A (en) * 2014-04-24 2015-12-03 京セラ株式会社 Method for manufacturing ingot of polycrystal silicon
JP2017066008A (en) * 2015-10-01 2017-04-06 国立大学法人名古屋大学 Silicon ingot and method for producing the same

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019591A (en) * 1999-06-29 2001-01-23 Kyocera Corp Device for casting silicon
JP2003095634A (en) * 2001-09-18 2003-04-03 Yutaka Kamaike Method and device for producing silicon
JP2004106019A (en) * 2002-09-19 2004-04-08 Dowa Mining Co Ltd Apparatus and method for casting indium
JP2004322195A (en) * 2003-04-28 2004-11-18 Mitsubishi Materials Corp Unidirectionally solidified silicon ingot and method for manufacturing the same, and silicon plate and substrate for solar battery
JP4675550B2 (en) * 2003-04-28 2011-04-27 三菱マテリアル株式会社 Unidirectionally solidified silicon ingot, method for producing the same, silicon plate and substrate for solar cell
WO2005007938A1 (en) * 2003-07-17 2005-01-27 National University Corporation Tohoku University METHOD FOR GROWING Si BASED CRYSTAL, Si BASED CRYSTAL, Si BASED CRYSTAL SUBSTRATE AND SOLAR CELL
JP2006273630A (en) * 2005-03-28 2006-10-12 Kyocera Corp Seed crystal and method for manufacturing semiconductor ingot using the same
JP4508922B2 (en) * 2005-03-28 2010-07-21 京セラ株式会社 Manufacturing method of semiconductor ingot
EP1942077A1 (en) * 2005-07-04 2008-07-09 Sharp Kabushiki Kaisha Method of silicon recycling and produced thereby, silicon and silicon ingot
EP1942077A4 (en) * 2005-07-04 2010-05-19 Sharp Kk Method of silicon recycling and produced thereby, silicon and silicon ingot
WO2007084936A3 (en) * 2006-01-20 2007-10-04 Bp Corp North America Inc Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics
US8951344B2 (en) * 2006-01-20 2015-02-10 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics
KR101470814B1 (en) * 2006-01-20 2014-12-09 에이엠지 아이디얼캐스트 솔라 코포레이션 Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
US8048221B2 (en) * 2006-01-20 2011-11-01 Stoddard Nathan G Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
WO2007084934A3 (en) * 2006-01-20 2007-10-04 Bp Corp North America Inc Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
JP2009523694A (en) * 2006-01-20 2009-06-25 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Geometric polycrystalline silicon manufacturing method and apparatus, and polycrystalline silicon body for photoelectric conversion
WO2007084934A2 (en) * 2006-01-20 2007-07-26 Bp Corporation North America Inc. Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
WO2007084936A2 (en) * 2006-01-20 2007-07-26 Bp Corporation North America Inc. Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics
JP2009523693A (en) * 2006-01-20 2009-06-25 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Single crystal molded silicon for photoelectric conversion and method and apparatus for manufacturing single crystal molded silicon body
JP2010508237A (en) * 2006-11-02 2010-03-18 コミサリア、ア、レネルジ、アトミク−セーエーアー Method for refining metallic silicon by directional solidification
WO2009014962A1 (en) * 2007-07-20 2009-01-29 Bp Corporation North America Inc. Methods and apparatuses for manufacturing cast silicon from seed crystals
WO2009014961A1 (en) * 2007-07-20 2009-01-29 Bp Corporation North America Inc. Methods and apparatuses for manufacturing cast silicon from seed crystals
WO2009014957A3 (en) * 2007-07-20 2009-04-16 Bp Corp North America Inc Methods for manufacturing cast silicon from seed crystals
WO2009014963A1 (en) * 2007-07-20 2009-01-29 Bp Corporation North America Inc. Methods and apparatuses for manufacturing cast silicon from seed crystals
JP2010534179A (en) * 2007-07-20 2010-11-04 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Method and apparatus for producing cast silicon from seed crystals
JP2010534189A (en) * 2007-07-20 2010-11-04 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Method and apparatus for producing cast silicon from seed crystals
DE102007035756A1 (en) * 2007-07-27 2009-02-05 Deutsche Solar Ag Production of silicon-blocks for photovoltaics e.g. solar cell, comprises arranging first silicon-seed and liquid silicon in container, melting the liquid silicon in surface turned to the silicon-seed, and solidifying the liquid silicon
DE102007035756B4 (en) * 2007-07-27 2010-08-05 Deutsche Solar Ag Process for the production of non-ferrous metal blocks
US8187563B2 (en) 2007-08-02 2012-05-29 Tohoku Technoarch Co., Ltd. Method for producing Si bulk polycrystal ingot
WO2009017201A1 (en) * 2007-08-02 2009-02-05 National University Corporation Tohoku University PROCESS FOR PRODUCING Si BULK POLYCRYSTAL INGOT
JP2009051720A (en) * 2007-08-02 2009-03-12 Tohoku Univ PROCESS FOR PRODUCING Si BULK POLYCRYSTAL INGOT
JP4528995B2 (en) * 2007-08-02 2010-08-25 国立大学法人東北大学 Method for producing Si bulk polycrystalline ingot
US7727502B2 (en) 2007-09-13 2010-06-01 Silicum Becancour Inc. Process for the production of medium and high purity silicon from metallurgical grade silicon
DE102011076860A1 (en) 2011-06-01 2012-12-06 Forschungsverbund Berlin E.V. Directional crystallization of silicon ingots, comprises charging crucible of crystallization system containing material to be processed, melting material, and setting stereometric temperature field with planar isothermal surfaces in melt
JP2013112603A (en) * 2011-11-28 2013-06-10 Sino-American Silicon Products Inc Method for producing crystalline silicon ingot
KR20130059272A (en) * 2011-11-28 2013-06-05 시노-아메리칸 실리콘 프로덕츠 인코포레이티드. Crystalline silicon ingot and method of fabricating the same
WO2013095928A1 (en) * 2011-12-23 2013-06-27 Gtat Corporation Method of producing bricks from a silicon ingot
CN102534772B (en) * 2012-02-28 2014-11-05 江苏协鑫硅材料科技发展有限公司 Method for growing large-grain cast polycrystalline silicon
CN102534772A (en) * 2012-02-28 2012-07-04 江苏协鑫硅材料科技发展有限公司 Method for growing large-grain cast polycrystalline silicon
JP2014024716A (en) * 2012-07-27 2014-02-06 Tohoku Univ Method for manufacturing silicon ingot
JP2015120634A (en) * 2013-12-20 2015-07-02 中美▲せき▼晶製品股▲ふん▼有限公司 Cooling device used for ingot casting furnace and casting method for ingot
JP2015214473A (en) * 2014-04-24 2015-12-03 京セラ株式会社 Method for manufacturing ingot of polycrystal silicon
JP2017066008A (en) * 2015-10-01 2017-04-06 国立大学法人名古屋大学 Silicon ingot and method for producing the same

Also Published As

Publication number Publication date
JP3852147B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
JP3852147B2 (en) Method for producing polycrystalline silicon ingot for solar cell
JP3325900B2 (en) Method and apparatus for producing polycrystalline silicon, and method for producing silicon substrate for solar cell
JP3000109B2 (en) Manufacturing method of high purity silicon ingot
Ciszek Techniques for the crystal growth of silicon ingots and ribbons
KR100945517B1 (en) Process for producing polycrystalline silicon ingot
EP0869102B1 (en) Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar cell
EP1048758B1 (en) Method for producing crystalline silicon
CN1873062A (en) Method for preparing polysilicon in high purity in use for solar cell
US7601618B2 (en) Method for producing semi-conditioning material wafers by moulding and directional crystallization
JPH10245216A (en) Production of silicon for solar cell
US20160348271A1 (en) Integrated System of Silicon Casting and Float Zone Crystallization
CN1092602C (en) Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar ceu
CN102120578A (en) Method and device for coupling and purifying polysilicon and removing phosphorus and metal with electron beams
KR101074304B1 (en) Metallic silicon and process for producing the same
JPH07206420A (en) Production of high-purity silicon
JP2005255417A (en) Method for purifying silicon
JPH05254817A (en) Production of polycrystal silicon ingot
JPH1192284A (en) Production of silicon ingot having polycrystal structure solidified in one direction
JP4292300B2 (en) Method for producing semiconductor bulk crystal
JP3935747B2 (en) Method for producing silicon ingot
JP2016124713A (en) Method of producing polycrystalline silicon ingot
JPH10182135A (en) Solidification refining of silicon
JP3247842B2 (en) Method for casting silicon for solar cells
JP4817761B2 (en) Method for manufacturing semiconductor ingot and solar cell element
JPH10251009A (en) Method for solidifying and refining silicon for solar battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090915

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100915

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110915

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120915

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees