JPH10192653A - Treatment of gas containing fluorine compound - Google Patents

Treatment of gas containing fluorine compound

Info

Publication number
JPH10192653A
JPH10192653A JP9004349A JP434997A JPH10192653A JP H10192653 A JPH10192653 A JP H10192653A JP 9004349 A JP9004349 A JP 9004349A JP 434997 A JP434997 A JP 434997A JP H10192653 A JPH10192653 A JP H10192653A
Authority
JP
Japan
Prior art keywords
catalyst
gas
decomposition
hours
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9004349A
Other languages
Japanese (ja)
Other versions
JP3977887B2 (en
Inventor
Shuichi Sugano
周一 菅野
Toshiaki Arato
利昭 荒戸
Shinzo Ikeda
伸三 池田
Takeshi Yasuda
健 安田
Hisao Yamashita
寿生 山下
Shigeru Azuhata
茂 小豆畑
Shin Tamada
玉田  慎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP00434997A priority Critical patent/JP3977887B2/en
Priority to US09/005,006 priority patent/US20010001652A1/en
Publication of JPH10192653A publication Critical patent/JPH10192653A/en
Priority to US10/215,045 priority patent/US6942841B2/en
Priority to US10/676,013 priority patent/US20040067185A1/en
Priority to US10/677,961 priority patent/US6855305B2/en
Priority to US10/679,297 priority patent/US7347980B2/en
Priority to US11/294,376 priority patent/US20060093547A1/en
Priority to US11/334,345 priority patent/US20060120938A1/en
Application granted granted Critical
Publication of JP3977887B2 publication Critical patent/JP3977887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To decompose gas containing fluorine compounds efficiently at low temperatures by contacting a gas flow containing at least one of a compound consisting of two or more carbon atoms and fluorine atoms and a compound consisting of nitrogen atoms and fluorine atoms with a specified fluorine compound decomposition catalyst in the presence of water vapor. SOLUTION: When implemented in the plasma CVD apparatus-cleaning process of a semiconductor production process, cleaning gas containing C2 F6 1 which was used for removing SiO2 is sent into a CVD chamber and exited by plasma to remove SiO2 . After that, the chamber is replaced with N2 2, C2 F6 concentration is reduced to about 3-5%, and gas is discharged. Reaction gas 5 in which the exhaust gas is added with air 3 and water vapor 4 is sent to a decomposition process, in which the gas 5 is contacted with an Al2 O3 catalyst at 400-800 deg.C. Next, decomposition gas 6 is sent to an exhaust gas washing process, in which an alkali aqueous solution is sprayed, and exhaust gas 7 in which acid component in the decomposition gas 6 is eliminated is released outside the system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、C26などのフッ
素化合物含有ガスを低温で効率良く分解する分解処理方
法及び触媒材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a decomposition treatment method and a catalyst material for efficiently decomposing a fluorine compound-containing gas such as C 2 F 6 at a low temperature.

【0002】[0002]

【従来の技術】C26などのフッ素化合物ガスは、半導
体エッチング材料,半導体洗浄用などに大量に使用され
ている。しかし、これらの物質は大気中に放出される
と、地球の温暖化を引き起こす温暖化物質であることが
わかってきた。今後、これらの化合物の使用後の処理に
対して、厳しい規制が行われると予想される。
2. Description of the Related Art Fluorine compound gases such as C 2 F 6 are used in large quantities for semiconductor etching materials, semiconductor cleaning, and the like. However, these substances have been found to be warming substances that, when released into the atmosphere, cause global warming. It is expected that strict regulations will be imposed on the treatment of these compounds after use.

【0003】ところで、C26などのガスは、分子構成
成分としてフッ素(F)を多く含有している。フッ素は
すべての元素の中で最も電気陰性度が大きく、化学的に
非常に安定な物質を形成する。特にC26などは分子内
力が強く、反応性に乏しい物質である。この性質から、
分解するには高温が必要であり、大量のエネルギを消費
する。また、高温での分解反応は生成するフッ化水素な
どのガスによる装置材料の腐食速度が大きく、適切な分
解処理方法がないのが現状である。
Incidentally, gases such as C 2 F 6 contain a large amount of fluorine (F) as a molecular constituent. Fluorine has the highest electronegativity of all elements and forms a very chemically stable substance. In particular, C 2 F 6 and the like are substances having strong intramolecular forces and poor reactivity. From this property,
Decomposition requires high temperatures and consumes large amounts of energy. Further, in the decomposition reaction at a high temperature, the rate of corrosion of the device material by the generated gas such as hydrogen fluoride is high, and at present, there is no appropriate decomposition treatment method.

【0004】分解処理方法として、現在、提案されつつ
あるのは、高温での燃焼技術である。しかしながらこの
方法では、大量の燃料を使用するためエネルギー効率が
低く、また、燃焼に伴って生成する1000℃以上のハ
ロゲン化合物による炉壁の損傷の問題もある。従って、
より低温で分解できる技術が必要である。
[0004] As a decomposition treatment method, a combustion technique at a high temperature is currently being proposed. However, in this method, a large amount of fuel is used, so that the energy efficiency is low, and there is also a problem of damage to the furnace wall due to a halogen compound of 1000 ° C. or higher generated during combustion. Therefore,
Technology that can decompose at lower temperatures is needed.

【0005】触媒については、これまでに、TiO2
WO3触媒が有機ハロゲン化合物の分解用触媒として、
特公平6−59388号公報に報告されている。この触媒はT
iO2の0.1〜20wt% のWを含む触媒(原子比に
すると、Tiが92%以上99.96%以下、Wが8%
以下0.04%以上)であり、ppmオーダーのCCl
処理するのに375℃で分解率99%を1500時間保
持していた。有機ハロゲン化合物中で触媒毒としての影
響はClだけでなく、むしろFの方が大きい。該公報で
は、炭素数1の有機ハロゲン化合物、すなわちC
,Cl22等が分解できるとしているが、フッ素
化合物に関する分解結果の実施例はない。また、炭素数
1の有機ハロゲン化合物の分解に比べ、一般に炭素数2
の有機ハロゲン化合物は分解しにくい。別の例として
は、Al23−ZrO2−WO3触媒がフッ素化合物ガス
の分解触媒として、特開平7−80303号公報に報告されて
いる。この触媒は、フロン類を燃焼分解する触媒であ
り、フロン−115(C2ClF5)を処理するのに60
0℃で燃焼分解反応を行い、分解率98%を10時間保
持していた。この方法は燃焼助剤として、n−ブタン等
の炭化水素を添加するため、処理コストが大きくなる。
また、C26等の炭素とフッ素のみの化合物の分解は、
フロン−115に比べ、さらに難しいが、これらの物質
に関する分解結果の実施例はない。
[0005] As for the catalyst, TiO 2-
WO 3 catalyst is used as a catalyst for decomposing organic halogen compounds.
It is reported in Japanese Patent Publication No. 6-59388. This catalyst is T
Catalyst containing 0.1 to 20 wt% W of iO 2 (in terms of atomic ratio, Ti is 92% or more and 99.96% or less, and W is 8%
(Hereinafter 0.04% or more), and a decomposition rate of 99% was maintained at 375 ° C. for 1500 hours for treating CCl 4 on the order of ppm. In organic halogen compounds, the effect as a catalyst poison is not only Cl but also F. In this publication, an organic halogen compound having 1 carbon atom, that is, C
It is stated that F 4 , Cl 2 F 2 and the like can be decomposed, but there is no example of the decomposition result relating to the fluorine compound. In addition, as compared to decomposition of an organic halogen compound having 1 carbon atom, generally,
Is difficult to decompose. As another example, Al 2 O 3 -ZrO 2 -WO 3 catalyst as a catalyst for decomposing the fluorine compound gas is reported in JP-A-7-80303. This catalyst is burned to decompose the catalyst fluorocarbons, to process CFC -115 a (C 2 ClF 5) 60
The combustion decomposition reaction was performed at 0 ° C., and the decomposition rate was maintained at 98% for 10 hours. In this method, since a hydrocarbon such as n-butane is added as a combustion aid, the processing cost increases.
In addition, the decomposition of compounds containing only carbon and fluorine, such as C 2 F 6 ,
Although more difficult than CFC-115, there are no examples of decomposition results for these substances.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、炭素
を2つ以上含み、フッ素原子を含む化合物、もしくは窒
素原子とフッ素原子を含む化合物の少なくとも一方を含
むガスを低温で効率よく分解処理する方法及び触媒を提
供するものである。
An object of the present invention is to efficiently decompose a gas containing two or more carbon atoms and containing a fluorine atom or a gas containing at least one of a nitrogen atom and a fluorine atom at a low temperature. And a catalyst.

【0007】[0007]

【課題を解決するための手段】本発明者らは、フッ素化
合物含有ガスを低温でかつ高効率で分解が可能で、しか
も分解生成物として遊離されるフッ化水素による装置の
腐食が生じにくい分解処理方法の検討を詳細に進めた結
果、本発明に至った。
Means for Solving the Problems The present inventors have found that a fluorine-containing gas can be decomposed at a low temperature and with high efficiency, and the decomposition of hydrogen fluoride which is liberated as a decomposition product does not easily occur in the apparatus. As a result of studying the treatment method in detail, the present invention has been achieved.

【0008】即ち、炭素を2つ以上含み、かつフッ素原
子を含む化合物、もしくは窒素原子とフッ素原子を含む
化合物の少なくとも一方を含むガス流を、特定のフッ素
化合物分解触媒と、約400〜約800℃の温度で、有
効量の水蒸気の存在下で接触させることにより、ガス流
中のフッ素をHFに転化できることを見い出した。分解
触媒としては、アルミナ,チタニア,シリカ,ジルコニ
アの少なくとも一種を含む触媒を用いることができる。
That is, a gas stream containing at least one of a compound containing two or more carbon atoms and containing a fluorine atom or a compound containing a nitrogen atom and a fluorine atom is mixed with a specific fluorine compound decomposition catalyst by about 400 to about 800 It has been found that by contacting at a temperature of ° C. in the presence of an effective amount of water vapor, fluorine in the gas stream can be converted to HF. As the decomposition catalyst, a catalyst containing at least one of alumina, titania, silica, and zirconia can be used.

【0009】フッ素化合物としては、C26などのよう
に炭素数が2以上のCとFとの化合物、NF3 などのN
とFとの化合物などがある。
Examples of the fluorine compound include compounds of C and F having 2 or more carbon atoms, such as C 2 F 6, and N, such as NF 3.
And F and the like.

【0010】さらに、触媒にSi,Mg,Zr,W,S
n,Ce,Mn,Bi,Niのうちの少なくとも一成分
を添加すると、フッ素化合物含有ガスをより高い活性で
分解できることを見い出した。これらの触媒はアルミ
ナ,チタニア,シリカ,ジルコニア、そしてSi,M
g,Zr,W,Sn,Ce,Mn,Bi,Ni,P,B
のうちの少なくとも一成分の酸化物を混合物、あるいは
複合酸化物の形態で含有している。特にアルミナとチタ
ニアを含む触媒では、アルミナが75wt%以上98w
t%以下、チタニアが25%以下2wt%以上である場
合に効果が大きい。また、Si,Mg,Zr,W,S
n,Ce,Mn,Bi,Ni,P,Bの酸化物を触媒主
量に対して0.1〜10wt% で含む場合に効果が大き
い。
Further, Si, Mg, Zr, W, S
It has been found that when at least one of n, Ce, Mn, Bi and Ni is added, the fluorine compound-containing gas can be decomposed with higher activity. These catalysts include alumina, titania, silica, zirconia, and Si, M
g, Zr, W, Sn, Ce, Mn, Bi, Ni, P, B
Of at least one of the components in the form of a mixture or a composite oxide. In particular, in a catalyst containing alumina and titania, alumina is 75 wt% or more and 98 w
The effect is large when the content of titania is 2% by weight or less and the content of titania is 2% by weight or less. Also, Si, Mg, Zr, W, S
The effect is significant when the oxides of n, Ce, Mn, Bi, Ni, P, and B are contained in an amount of 0.1 to 10 wt% with respect to the main amount of the catalyst.

【0011】フッ素化合物含有ガスの分解触媒の開発の
ため種々検討した結果、触媒の性質として、フッ素と適
度な強さの結合を形成する金属成分を含有する必要があ
ることを見い出した。特に、炭素とフッ素とからなる化
合物の場合、分子自体が安定であるため、フッ化物生成
エンタルピーが大きい金属成分を含有する触媒が高分解
活性を示すことを見い出した。あまり安定な結合を形成
してしまうと触媒上からフッ素化合物が離れないため、
活性が徐々に低下する。一方で結合力が弱すぎると十分
な分解率が得られない。本発明の対象ガスであるC26
などは、分子内力が強く、反応性の乏しい物質である。
これらのガスを燃焼させる場合、1500〜2000℃の温
度が必要と言われている。我枚は、本対象ガスは、アル
ミナ,チタニア,シリカ,ジルコニアを単独で触媒とし
て用いても分解できることを見い出したが、より高い分
解率を得る触媒としては、アルミナとチタニアを含んで
なる触媒が好ましいことを見い出した。アルミナはフッ
素化合物を触媒上に引き付ける働きをし、チタニアは触
媒上のフッ素化合物を引き離す働きをすると思われる。
As a result of various studies for the development of a catalyst for decomposing a fluorine compound-containing gas, it has been found that the catalyst must contain a metal component which forms a bond having an appropriate strength with fluorine. In particular, in the case of a compound comprising carbon and fluorine, it has been found that a catalyst containing a metal component having a large enthalpy of fluoride formation exhibits high decomposition activity because the molecule itself is stable. If a stable bond is formed, the fluorine compound will not separate from the catalyst,
Activity gradually decreases. On the other hand, if the bonding strength is too weak, a sufficient decomposition rate cannot be obtained. C 2 F 6 which is the target gas of the present invention
Are substances having strong intramolecular force and poor reactivity.
When burning these gases, it is said that a temperature of 1500 to 2000 ° C. is required. We found that the target gas could be decomposed by using alumina, titania, silica, and zirconia alone as a catalyst. I found something favorable. Alumina appears to work to attract fluorine compounds onto the catalyst, and titania appears to work to release fluorine compounds on the catalyst.

【0012】Si,Mg,Zr,W,Sn,Ce,M
n,Bi,Niの酸化物は、アルミナ,チタニア,シリ
カ,ジルコニアとの協奏効果を発現させると思われる。
また、触媒中のチタニアの安定化に寄与していると考え
られる。
Si, Mg, Zr, W, Sn, Ce, M
It is considered that the oxides of n, Bi, and Ni exhibit a concerted effect with alumina, titania, silica, and zirconia.
Further, it is considered that this contributes to stabilization of titania in the catalyst.

【0013】本発明のフッ素化合物含有ガスの分解処理
方法では、C26などのフッ素化合物を、不活性ガスで
希釈してもよいことを見い出した。フッ素化合物の濃度
を希釈することで、触媒に対する負荷が小さくなり、分
解活性を長時間維持することができる。希釈ガスとして
は、Ar,N2 ,Heなどの不活性ガスを用いることが
できる。
In the method for decomposing a fluorine compound-containing gas of the present invention, it has been found that a fluorine compound such as C 2 F 6 may be diluted with an inert gas. By diluting the concentration of the fluorine compound, the load on the catalyst is reduced, and the decomposition activity can be maintained for a long time. As a diluting gas, an inert gas such as Ar, N 2 , and He can be used.

【0014】本発明の対象とするフッ素含有化合物はC
26,NF3などのPFC(perfluorocompound)あるいは
FFC(fully fluorocompound)と呼ばれるもので、代
表的な反応としては次のようなものがある。
The fluorine-containing compound which is the object of the present invention is C
What is called a 2 F 6, NF 3 etc. PFC (perfluorocompound) or FFC (fully fluorocompound), there are the following as a typical reaction.

【0015】C26+3H2O→CO+CO2+6HF C26+2H2O+1/2O2→2CO2+6HF NF3+3H2O→NO2+1/2O2+6HF これらのフッ素化合物は、処理するガス中に水素原子を
フッ素化合物中のF数と少なくとも同等になるよう添加
することが望ましい。このことにより、化合物中のFは
HFになり、分解生成物中のFは後処理しやすいハロゲ
ン化水素の形態となる。このときの水素源としては、水
蒸気のほかに、水素,炭化水素などを用いることができ
るが、炭化水素を用いた場合、炭化水素が触媒上で燃焼
し、供給する熱エネルギを小さくすることができる。
C 2 F 6 + 3H 2 O → CO + CO 2 + 6HF C 2 F 6 + 2H 2 O + 1 / 2O 2 → 2CO 2 + 6HF NF 3 + 3H 2 O → NO 2 + 1 / 2O 2 + 6HF These fluorine compounds are gases to be treated. It is desirable to add a hydrogen atom therein so as to be at least equivalent to the F number in the fluorine compound. As a result, F in the compound becomes HF, and F in the decomposition product becomes a form of hydrogen halide which can be easily post-treated. As the hydrogen source at this time, in addition to steam, hydrogen, hydrocarbons, and the like can be used. When hydrocarbons are used, the hydrocarbons burn on the catalyst, and the supplied thermal energy can be reduced. it can.

【0016】また、反応ガス中に酸素などの酸化ガスを
含有させることで、COの酸化反応も同時に起こらせる
ことができる。COの酸化反応が不完全な場合は、分解
生成ガス中のHFを除去した後、CO酸化触媒に接触さ
せてCOをCO2 に転換させることもできる。
Also, by including an oxidizing gas such as oxygen in the reaction gas, an oxidation reaction of CO can be simultaneously caused. When the oxidation reaction of CO is incomplete, after removing HF in the decomposition product gas, it is possible to convert CO into CO 2 by contacting with a CO oxidation catalyst.

【0017】本発明の触媒を用いれば、C2Cl33
2Cl24,C2ClF5などのフロン類,HFC13
4aなどの代替フロン類、また、SF6 等の化合物も分
解できる。また、CCl3F ,CCl22などの物質も
十分分解できる。なお、塩素化合物を処理した場合の化
合物中のClは、HClに転化される。
When the catalyst of the present invention is used, C 2 Cl 3 F 3 ,
CFCs such as C 2 Cl 2 F 4 and C 2 ClF 5 , HFC13
Alternative fluorocarbons such as 4a and compounds such as SF 6 can also be decomposed. In addition, substances such as CCl 3 F and CCl 2 F 2 can be sufficiently decomposed. Note that Cl in the compound when the chlorine compound is treated is converted to HCl.

【0018】本発明で用いられる反応温度は、約400
〜約800℃が好ましい。これ以上の高温で使用する
と、高分解率は得られるが、触媒の劣化が速い。また、
装置材料の腐食速度が急激に大きくなる。逆に、これ以
下の温度では、分解率が低い。また、生成したHFを中
和除去する工程としては、アルカリ溶液をスプレーして
洗浄するものが効率が高く、結晶析出などによる配管の
閉塞が起こりにくいので好ましい。アルカリ溶液中に分
解生成ガスをバブリングする方法あるいは充填塔を用い
て洗浄する方法でもよい。
The reaction temperature used in the present invention is about 400
~ 800 ° C is preferred. When used at higher temperatures, a high decomposition rate can be obtained, but the catalyst deteriorates quickly. Also,
The corrosion rate of the equipment material increases rapidly. Conversely, at temperatures below this, the decomposition rate is low. As the step of neutralizing and removing the generated HF, a step of washing by spraying an alkali solution is preferred because it is highly efficient and the pipe is hardly clogged due to crystal precipitation or the like. A method of bubbling a decomposition product gas in an alkaline solution or a method of washing using a packed tower may be used.

【0019】本発明の触媒を調製するためのAl原料と
しては、γ−アルミナ,γ−アルミナとδ−アルミナの
混合物などを使用することができる。特にベーマイトな
どをAl原料として用い、最終的な焼成により酸化物を
形成するのも好ましい方法である。
As the Al raw material for preparing the catalyst of the present invention, γ-alumina, a mixture of γ-alumina and δ-alumina, and the like can be used. In particular, it is also preferable to use boehmite or the like as an Al raw material and form an oxide by final firing.

【0020】本発明の触媒を調製するためのTi原料と
しては、硫酸チタン,チタニアゾル,チタンスラリ、な
どを使用することができる。
As the Ti raw material for preparing the catalyst of the present invention, titanium sulfate, titania sol, titanium slurry and the like can be used.

【0021】さらに、Si,Mg,Zrなどの第三金属
成分の原料としては、各種、硝酸塩,アンモニウム塩,
塩化物などを用いることができる。
Further, as a raw material of the third metal component such as Si, Mg, Zr, etc., various kinds of nitrates, ammonium salts,
Chloride or the like can be used.

【0022】本発明の触媒の製造法は通常触媒の製造に
用いられる沈殿法,含浸法,混練法などいずれも使用で
きる。
As the method for producing the catalyst of the present invention, any of a precipitation method, an impregnation method, a kneading method and the like usually used for producing a catalyst can be used.

【0023】また、本発明における触媒は、そのまま粒
状,ハニカム状などに成形して使用することができる。
成形法としては、押し出し成形法,打錠成形法,転動造
粒法などを目的に応じ任意の方法を採用できる。また、
セラミックスや金属製のハニカムや板にコーティングし
て使用することもできる。
The catalyst according to the present invention can be used as it is in the form of granules, honeycombs or the like.
As the molding method, an arbitrary method such as an extrusion molding method, a tablet molding method, a tumbling granulation method and the like can be adopted according to the purpose. Also,
It can also be used by coating on ceramics or metal honeycombs or plates.

【0024】本発明のフッ素化合物含有ガス処理方法
は、他の処理方法に比べて低温でフッ素化合物を分解す
ることができる。
The method of treating a fluorine compound-containing gas of the present invention can decompose a fluorine compound at a lower temperature than other treatment methods.

【0025】フッ素化合物含有ガスを処理する場合、分
解して生成するHFなどの酸成分による装置材料の腐食
が問題となるが、本発明によれば、使用する温度が比較
的低温であるため、腐食速度が遅く、装置のメンテナン
スなどが不要となる。
When a fluorine compound-containing gas is treated, corrosion of equipment materials due to acid components such as HF generated by decomposition is a problem. However, according to the present invention, since the temperature used is relatively low, The corrosion rate is low, and maintenance of the equipment is not required.

【0026】本発明のフッ素化合物含有ガス処理方法を
実施する装置は、フッ素化合物を分解する触媒反応槽と
分解生成ガス中の酸成分を中和除去する設備を備えるだ
けでよく、装置を小型化できる。
The apparatus for carrying out the method for treating a gas containing a fluorine compound of the present invention need only be equipped with a catalyst reaction tank for decomposing a fluorine compound and a facility for neutralizing and removing an acid component in a decomposition product gas. it can.

【0027】[0027]

【発明の実施の形態】以下、実施例にて本発明をさらに
詳細に説明する。本発明は、これら実施例にのみ限定さ
れるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to only these examples.

【0028】図1は、本発明の分解処理方法を半導体生
産プロセスのプラズマCVD装置のクリーニング工程で
用いる場合の実施例を示す。
FIG. 1 shows an embodiment in which the decomposition treatment method of the present invention is used in a cleaning step of a plasma CVD apparatus in a semiconductor production process.

【0029】プラズマCVD装置は、半導体ウェハー表
面にSiO2 膜を蒸着法で形成させる装置である。しか
し、SiO2 膜は装置内全体に付着してしまうので、不
必要な箇所に付いたSiO2 を除去する必要がある。こ
のSiO2 をクリーニングするためにC26が用いられ
る。C26を含むクリーニングガスは、CVDチャンバ
へ送られ、プラズマで励起してSiO2を除去する。そ
の後、チャンバ内をN2で置換し、C26濃度を約3〜
5%に希釈して約15l/min でチャンバから排出して
いる。
The plasma CVD apparatus is an apparatus for forming an SiO 2 film on the surface of a semiconductor wafer by a vapor deposition method. However, since the SiO 2 film adheres to the entire inside of the apparatus, it is necessary to remove the SiO 2 attached to unnecessary portions. C 2 F 6 is used to clean this SiO 2 . The cleaning gas containing C 2 F 6 is sent to a CVD chamber and excited by plasma to remove SiO 2 . Thereafter, the inside of the chamber is replaced with N 2 , and the C 2 F 6 concentration is reduced to about 3 to
It is diluted to 5% and discharged from the chamber at about 15 l / min.

【0030】この排出ガスに空気3を添加しC26を希
釈した。この希釈ガスに、さらに水蒸気4を添加した反
応ガス5を分解工程に送る。反応ガス中のC26濃度は
約0.5% である。分解工程では、反応ガス5を、空間
速度3000毎時(空間速度(h~1)=反応ガス流量
(ml/h)/触媒量(ml))の条件でAl23系触
媒と700℃で接触させる。この場合、反応ガスを加熱
してもよく、電気炉などにより触媒を加熱してもよい。
分解ガス6は、排ガス洗浄工程に送られる。排ガス洗浄
工程では、分解ガス6にアルカリ水溶液がスプレーさ
れ、分解ガス中の酸成分が除去された排ガス7が系外に
放出される。C26の分解率は、反応ガス5と排ガス7
をFID(Flame Ionization Detector の略称)ガスク
ロマトグラフ,TCD(Thermal Conductivity Detecto
r の略称)ガスクロマトグラフを用いて分析し、入り口
及び出口の物質収支により求める。
Air 3 was added to the exhaust gas to dilute C 2 F 6 . The reaction gas 5 obtained by further adding steam 4 to the dilution gas is sent to a decomposition step. The concentration of C 2 F 6 in the reaction gas is about 0.5%. In the decomposition step, the reaction gas 5 is mixed with the Al 2 O 3 -based catalyst at 700 ° C. under the condition of a space velocity of 3000 per hour (space velocity (h 1 ) = reaction gas flow rate (ml / h) / catalyst amount (ml)). Make contact. In this case, the reaction gas may be heated, or the catalyst may be heated by an electric furnace or the like.
The decomposition gas 6 is sent to an exhaust gas cleaning step. In the exhaust gas cleaning step, an alkaline aqueous solution is sprayed on the decomposition gas 6, and the exhaust gas 7 from which the acid component in the decomposition gas has been removed is discharged out of the system. The decomposition rate of C 2 F 6 is determined by the reaction gas 5 and exhaust gas 7
FID (Flame Ionization Detector) gas chromatograph, TCD (Thermal Conductivity Detector)
Analyze using a gas chromatograph, and determine from the material balance at the entrance and exit.

【0031】以下、各種フッ素化合物分解触媒の活性を
調べた結果について説明する。
Hereinafter, the results of examining the activities of various fluorine compound decomposition catalysts will be described.

【0032】[実施例1]純度99%以上のC26ガス
に空気を添加して希釈した。この希釈ガスに、さらに水
蒸気を添加した。水蒸気は純水を0.11ml/minで反
応管上部へマイクロチューブポンプを用いて供給しガス
化させた。反応ガス中のC26濃度は約0.5% であっ
た。この反応ガスを、電気炉により反応管外部から70
0℃に加温した触媒と空間速度3000毎時で接触させ
た。
Example 1 C 2 F 6 gas having a purity of 99% or more was diluted by adding air. Steam was further added to this dilution gas. Steam was supplied as pure water at a rate of 0.11 ml / min to the upper portion of the reaction tube by using a micro tube pump to be gasified. The C 2 F 6 concentration in the reaction gas was about 0.5%. This reaction gas is supplied from the outside of the reaction tube to 70 by an electric furnace.
The catalyst was brought into contact with the catalyst heated to 0 ° C. at a space velocity of 3000 per hour.

【0033】反応管は内径19mmのインコネル製の反応
管で、触媒層を反応管中央に有しており、内部に外径3
mmのインコネル製の熱電対保護管を有している。触媒層
を通過した分解生成ガスは水酸化ナトリウム溶液中にバ
ブリングさせ、系外に放出した。C26の分解率は、F
IDガスクロマトグラフ,TCDガスクロマトグラフに
より、次式で求めた。
The reaction tube is a reaction tube made of Inconel having an inner diameter of 19 mm, having a catalyst layer at the center of the reaction tube, and having an outer diameter of 3 mm inside.
It has a thermocouple protection tube made of Inconel. The decomposition product gas that passed through the catalyst layer was bubbled into a sodium hydroxide solution and released outside the system. The decomposition rate of C 2 F 6 is F
It was determined by the following equation using an ID gas chromatograph and a TCD gas chromatograph.

【0034】[0034]

【数1】 (Equation 1)

【0035】以下に上記条件における試験に供した各触
媒の調製法を示す。
The preparation method of each catalyst used in the test under the above conditions is shown below.

【0036】触媒1;Al23 住友化学製粒状アルミナ(NKHD−24)を粉砕し、
0.5−1mm 粒径に篩い分けし、120℃で2時間乾燥
し、700℃で2時間焼成したものを試験に供した。
Catalyst 1; Granulated alumina (NKHD-24) manufactured by Al 2 O 3 Sumitomo Chemical Co., Ltd.
The mixture was sieved to a particle size of 0.5-1 mm, dried at 120 ° C. for 2 hours, and calcined at 700 ° C. for 2 hours and subjected to a test.

【0037】触媒2;TiO2 堺化学製粒状チタニア(CS−200−24)を粉砕
し、0.5−1mm 粒径に篩い分けし、120℃で2時間
乾燥し、700℃で2時間焼成したものを試験に供し
た。
Catalyst 2: TiO 2 Granular titania (CS-200-24) manufactured by Sakai Chemical Co., Ltd. was pulverized, sieved to a particle size of 0.5-1 mm, dried at 120 ° C. for 2 hours, and calcined at 700 ° C. for 2 hours. Those that were subjected to the test.

【0038】触媒3;ZrO2 硝酸ジルコニル200gを120℃で2時間乾燥し、7
00℃で2時間焼成した。得られた粉末を金型に入れ、
500kgf/cm2 の圧力で圧縮成型した。成型品を粉
砕,篩い分けして0.5−1mm 粒径のジルコニアに造粒
し、試験に供した。
Catalyst 3: 200 g of ZrO 2 zirconyl nitrate was dried at 120 ° C. for 2 hours,
Baking was performed at 00 ° C. for 2 hours. Put the obtained powder in a mold,
Compression molding was performed at a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved, granulated into zirconia having a particle size of 0.5-1 mm, and subjected to a test.

【0039】触媒4;SiO2 Fuji Silysia製粒状シリカ(CARIACT−10)を
粉砕し、0.5−1mm粒径に篩い分けし、120℃で2
時間乾燥し、700℃で2時間焼成したものを試験に供
した。
Catalyst 4: Granulated silica (CARIACT-10) manufactured by SiO 2 Fuji Silysia was crushed, sieved to a 0.5-1 mm particle size,
After drying for 700 hours and calcining at 700 ° C. for 2 hours, it was subjected to the test.

【0040】触媒5;TiO2−ZrO2 堺化学製粒状チタニア(CS−200−24)を0.5m
m 以下に粉砕した。この粉末100gに対し硝酸ジルコ
ニル78.3g を加え、純水を添加しながら混練した。
混練後、120℃で2時間乾燥し、700℃で2時間焼
成した。得られた粉末を金型に入れ、500kgf/cm2
の圧力で圧縮成型した。成型品を粉砕,篩い分けして
0.5−1mm 粒径に造粒し、試験に供した。
Catalyst 5: TiO 2 -ZrO 2 0.5 m granular titania (CS-200-24) manufactured by Sakai Chemical Co., Ltd.
m or less. 78.3 g of zirconyl nitrate was added to 100 g of this powder, and kneaded while adding pure water.
After kneading, the mixture was dried at 120 ° C. for 2 hours and calcined at 700 ° C. for 2 hours. The obtained powder is placed in a mold, and 500 kgf / cm 2
Compression molding. The molded product was pulverized and sieved, granulated to a particle size of 0.5-1 mm, and subjected to a test.

【0041】触媒6;Al23−MgO 住友化学製粒状アルミナ(NKHD−24)を0.5mm
以下の粒径に粉砕した。この粉末100gに対し、硝酸
マグネシウム56.4g を加え、純水を添加しながら混
練した。混練後、120℃で2時間乾燥し、700℃で
2時間焼成した。得られた粉末を金型に入れ、500kg
f/cm2 の圧力で圧縮成型した。成型品を粉砕,篩い分
けして0.5−1mm 粒径として試験に供した。
Catalyst 6: Al 2 O 3 —MgO 0.5 mm granular alumina (NKHD-24) manufactured by Sumitomo Chemical Co., Ltd.
It was pulverized to the following particle size. 56.4 g of magnesium nitrate was added to 100 g of this powder, and kneaded while adding pure water. After kneading, the mixture was dried at 120 ° C. for 2 hours and calcined at 700 ° C. for 2 hours. Put the obtained powder in a mold, 500kg
Compression molding was performed at a pressure of f / cm 2 . The molded product was pulverized and sieved to give a test having a particle size of 0.5-1 mm.

【0042】触媒7;Al23−TiO2 住友化学製粒状アルミナ(NKHD−24)を0.5mm
以下の粒径に粉砕した。この粉末100gに対し、メタ
チタン酸スラリの乾燥粉末56.4g を加え、純水を添
加しながら混練した。混練後、120℃で2時間乾燥
し、700℃で2時間焼成した。得られた粉末を金型に
入れ、500kgf/cm2 の圧力で圧縮成型した。成型品
を粉砕,篩い分けして0.5−1mm 粒径として試験に供
した。
Catalyst 7: Al 2 O 3 —TiO 2 Granular alumina (NKHD-24) manufactured by Sumitomo Chemical Co., Ltd.
It was pulverized to the following particle size. To 100 g of this powder, 56.4 g of a dry powder of metatitanate slurry was added and kneaded while adding pure water. After kneading, the mixture was dried at 120 ° C. for 2 hours and calcined at 700 ° C. for 2 hours. The obtained powder was put in a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved to give a test having a particle size of 0.5-1 mm.

【0043】触媒8;Al23−SiO2 住友化学製粒状アルミナ(NKHD−24)を0.5mm
以下の粒径に粉砕した。この粉末100gに対し、Si
2 ゾルの乾燥粉末13.2g を加え、純水を添加しな
がら混練した。混練後、120℃で2時間乾燥し、70
0℃で2時間焼成した。得られた粉末を金型に入れ、5
00kgf/cm2 の圧力で圧縮成型した。成型品を粉砕,
篩い分けして0.5−1mm 粒径として試験に供した。
Catalyst 8: Al 2 O 3 —SiO 2 Granular alumina (NKHD-24) manufactured by Sumitomo Chemical Co., Ltd.
It was pulverized to the following particle size. For 100 g of this powder, Si
13.2 g of a dry powder of O 2 sol was added and kneaded while adding pure water. After kneading, drying at 120 ° C. for 2 hours, 70
It was baked at 0 ° C. for 2 hours. Put the obtained powder in a mold,
It was compression molded at a pressure of 00 kgf / cm 2 . Crush the molded product,
The mixture was sieved and subjected to a test with a particle size of 0.5-1 mm.

【0044】上記触媒1〜8の試験結果を図2に示す。FIG. 2 shows the test results of the catalysts 1 to 8.

【0045】[実施例2]本実施例は、実施例1と同様
の条件で、第三成分添加の効果を調べたものである。各
触媒は以下のように調製した。
Example 2 In this example, the effect of the addition of the third component was examined under the same conditions as in Example 1. Each catalyst was prepared as follows.

【0046】触媒9;Al23−TiO2 住友化学製粒状アルミナ(NKHD−24)を粉砕し、
0.5−1mm 粒径に篩い分けし、120℃で2時間乾燥
した。これに、30%硫酸チタン溶液176gを含浸し
た。含浸後、250〜300℃で約5時間乾燥し、70
0℃で2時間焼成した。これを試験に供した。
Catalyst 9; Al 2 O 3 —TiO 2 Granulated alumina (NKHD-24) manufactured by Sumitomo Chemical Co., Ltd.
It was sieved to a particle size of 0.5-1 mm and dried at 120 ° C. for 2 hours. This was impregnated with 176 g of a 30% titanium sulfate solution. After impregnation, dry at 250-300 ° C for about 5 hours,
It was baked at 0 ° C. for 2 hours. This was subjected to a test.

【0047】触媒10;Al23−TiO2−ZrO2 住友化学製粒状アルミナ(NKHD−24)を粉砕し、
0.5−1mm 粒径に篩い分けし、120℃で2時間乾燥
した。これに、30%硫酸チタン溶液176gを含浸し
た。含浸後、250〜300℃で約5時間乾燥し、70
0℃で2時間焼成し、触媒Aを作製した。続いて、触媒
A50gに、硝酸ジルコニル2水和物6.7gを90g
のH2Oに溶かした水溶液を含浸した。含浸後、120
℃で2時間乾燥し、700℃で2時間焼成した。これを
試験に供した。
Catalyst 10: Al 2 O 3 —TiO 2 —ZrO 2 Granulated alumina (NKHD-24) manufactured by Sumitomo Chemical Co., Ltd.
It was sieved to a particle size of 0.5-1 mm and dried at 120 ° C. for 2 hours. This was impregnated with 176 g of a 30% titanium sulfate solution. After impregnation, dry at 250-300 ° C for about 5 hours,
It was calcined at 0 ° C. for 2 hours to prepare Catalyst A. Subsequently, 6.7 g of zirconyl nitrate dihydrate was added to 90 g of catalyst A in 50 g.
With an aqueous solution dissolved in H 2 O. After impregnation, 120
C. for 2 hours and calcined at 700.degree. C. for 2 hours. This was subjected to a test.

【0048】触媒11;Al23−TiO2−WO3 触媒10と同様の方法で触媒Aを作製した。続いて、触
媒A50gに、パラタングステン酸アンモニウム6.5
gをH2Oに溶かした90gの水溶液を含浸した。含浸
後、120℃で2時間乾燥し、700℃で2時間焼成し
た。これを試験に供した。
Catalyst 11: Al 2 O 3 —TiO 2 —WO 3 Catalyst A was prepared in the same manner as the catalyst 10. Subsequently, 6.5 g of ammonium paratungstate was added to 50 g of Catalyst A.
g in H 2 O was impregnated with 90 g of an aqueous solution. After impregnation, it was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. This was subjected to a test.

【0049】触媒12;Al23−TiO2−SiO2 触媒10と同様の方法で触媒Aを作製した。続いて、触
媒A50gに、20wt%シリカゾル7.5gをH2Oに
溶かした90gの水溶液を含浸した。含浸後、120℃
で2時間乾燥し、700℃で2時間焼成した。これを試
験に供した。 触媒13;Al23−TiO2−SnO2 触媒10と同様の方法で触媒Aを作製した。続いて、触
媒A50gに、塩化すず2水和物5.6gをH2Oに溶か
した90gの水溶液を含浸した。含浸後、120℃で2時
間乾燥し、700℃で2時間焼成した。これを試験に供
した。
Catalyst 12: Al 2 O 3 —TiO 2 —SiO 2 Catalyst A was prepared in the same manner as the catalyst 10. Subsequently, 50 g of the catalyst A was impregnated with 90 g of an aqueous solution in which 7.5 g of 20 wt% silica sol was dissolved in H 2 O. 120 ° C after impregnation
For 2 hours and calcined at 700 ° C. for 2 hours. This was subjected to a test. Catalyst 13: Al 2 O 3 —TiO 2 —SnO 2 Catalyst A was prepared in the same manner as the catalyst 10. Subsequently, 50 g of Catalyst A was impregnated with 90 g of an aqueous solution in which 5.6 g of tin chloride dihydrate was dissolved in H 2 O. After impregnation, it was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. This was subjected to a test.

【0050】触媒14;Al23−TiO2−CeO2 触媒10と同様の方法で触媒Aを作製した。続いて、触
媒A50gに、硝酸セリウム6水和物10.9gをH2
に溶かした90gの水溶液を含浸した。含浸後、120
℃で2時間乾燥し、700℃で2時間焼成した。これを
試験に供した。 触媒15;Al23−TiO2−MnO2 触媒10と同様の方法で触媒Aを作製した。続いて、触
媒A50gに、硝酸マンガン6水和物7.2gをH2Oに
溶かした90gの水溶液を含浸した。含浸後、120℃
で2時間乾燥し、700℃で2時間焼成した。これを試
験に供した。
Catalyst 14: Al 2 O 3 —TiO 2 —CeO 2 Catalyst A was prepared in the same manner as the catalyst 10. Subsequently, 10.9 g of cerium nitrate hexahydrate was added to 50 g of catalyst A in H 2 O.
Was impregnated with 90 g of an aqueous solution. After impregnation, 120
C. for 2 hours and calcined at 700.degree. C. for 2 hours. This was subjected to a test. Catalyst 15: Al 2 O 3 —TiO 2 —MnO 2 Catalyst A was prepared in the same manner as the catalyst 10. Subsequently, 50 g of the catalyst A was impregnated with 90 g of an aqueous solution in which 7.2 g of manganese nitrate hexahydrate was dissolved in H 2 O. 120 ° C after impregnation
For 2 hours and calcined at 700 ° C. for 2 hours. This was subjected to a test.

【0051】触媒16;Al23−TiO2−Bi23 触媒10と同様の方法で触媒Aを作製した。続いて、触
媒A50gに、硝酸ビスマス6水和物7.4gをH2Oに
溶かした90gの水溶液を含浸した。含浸後、120℃
で2時間乾燥し、700℃で2時間焼成した。これを試
験に供した。
Catalyst 16: Al 2 O 3 —TiO 2 —Bi 2 O 3 Catalyst A was prepared in the same manner as the catalyst 10. Subsequently, 50 g of Catalyst A was impregnated with 90 g of an aqueous solution of 7.4 g of bismuth nitrate hexahydrate dissolved in H 2 O. 120 ° C after impregnation
For 2 hours and calcined at 700 ° C. for 2 hours. This was subjected to a test.

【0052】触媒17;Al23−TiO2−NiO 触媒10と同様の方法で触媒Aを作製した。続いて、触
媒A50gに、硝酸ニッケル6水和物7.3gをH2Oに
溶かした90gの水溶液を含浸した。含浸後、120℃
で2時間乾燥し、700℃で2時間焼成した。これを試
験に供した。
Catalyst 17: Al 2 O 3 —TiO 2 —NiO Catalyst A was prepared in the same manner as the catalyst 10. Subsequently, 50 g of the catalyst A was impregnated with 90 g of an aqueous solution in which 7.3 g of nickel nitrate hexahydrate was dissolved in H 2 O. 120 ° C after impregnation
For 2 hours and calcined at 700 ° C. for 2 hours. This was subjected to a test.

【0053】触媒18;Al23−TiO2−BO4 触媒10と同様の方法で触媒Aを作製した。続いて、触
媒A50gに、ほう酸アンモニウム8水和物12.0g
をH2Oに溶かした90gの水溶液を含浸した。含浸
後、120℃で2時間乾燥し、700℃で2時間焼成し
た。これを試験に供した。
Catalyst 18: Al 2 O 3 —TiO 2 —BO 4 Catalyst A was prepared in the same manner as the catalyst 10. Subsequently, 12.0 g of ammonium borate octahydrate was added to 50 g of Catalyst A.
Was dissolved in H 2 O and impregnated with 90 g of an aqueous solution. After impregnation, it was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. This was subjected to a test.

【0054】上記触媒9〜18と、実施例1中の触媒1
の活性を図3に示す。
The above catalysts 9 to 18 and catalyst 1 in Example 1
Is shown in FIG.

【0055】[実施例3]本実施例は、アルミナ原料及
びチタニア原料を変化させて各種触媒を調製し、実施例
1と同様の方法で活性を調べた例である。
Example 3 In this example, various catalysts were prepared by changing the alumina raw material and titania raw material, and the activity was examined in the same manner as in Example 1.

【0056】触媒19;Al23 CONDEA製ベーマイト粉末(PURAL SB)を
120℃で2時間乾燥した。この乾燥粉末200gを3
00℃で0.5 時間焼成し、さらに焼成温度を700℃
にあげ2時間焼成した。得られた粉末を金型に入れ、5
00kgf/cm2の圧力で圧縮成型した。成型品を粉砕,
篩い分けして0.5−1mm 粒径として試験に供した。
Catalyst 19: Boehmite powder (PURAL SB) manufactured by Al 2 O 3 CONDEA was dried at 120 ° C. for 2 hours. 200 g of this dry powder
Firing at 00 ° C for 0.5 hours, and then firing at 700 ° C
Raised for 2 hours. Put the obtained powder in a mold,
It was compression molded at a pressure of 00 kgf / cm 2 . Crush the molded product,
The mixture was sieved and subjected to a test with a particle size of 0.5-1 mm.

【0057】触媒20;Al23−TiO2 CONDEA製ベーマイト粉末(PURAL SB)を
120℃で1時間乾燥した。この乾燥粉末200gと3
0%硫酸チタン溶液248.4g を純水約200gを添
加しながら混練した。混練後、250〜300℃で約5
時間乾燥し、700℃で2時間焼成した。得られた粉末
を金型に入れ、500kgf/cm2 の圧力で圧縮成型し
た。成型品を粉砕,篩い分けして0.5−1mm 粒径とし
て試験に供した。
Catalyst 20: Boehmite powder (PURAL SB) manufactured by Al 2 O 3 —TiO 2 CONDEA was dried at 120 ° C. for 1 hour. 200 g of this dry powder and 3
248.4 g of a 0% titanium sulfate solution was kneaded while adding about 200 g of pure water. After kneading, at 250-300 ° C, about 5
It was dried for 700 hours and baked at 700 ° C. for 2 hours. The obtained powder was put in a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved to give a test having a particle size of 0.5-1 mm.

【0058】触媒21;Al23−TiO2 CONDEA製ベーマイト粉末(PURAL SB)を
120℃で1時間乾燥した。この乾燥粉末200gと、
30%チタニアゾル78.6g に純水を加えた約100
gの水溶液を混練した。混練後、120℃で約2時間乾
燥し、700℃で2時間焼成した。得られた粉末を金型
に入れ、500kgf/cm2 の圧力で圧縮成型した。成型
品を粉砕,篩い分けして0.5−1mm 粒径として試験に
供した。上記の触媒19〜21の活性を実施例1と同様
の方法で調べた結果を図4に示す。
And Al 2 O 3 -TiO 2 CONDEA Ltd. boehmite powder (PURAL SB) was dried 1 hour at 120 ° C.; [0058] Catalyst 21. 200 g of this dry powder,
About 100% of pure water added to 78.6 g of 30% titania sol
g of the aqueous solution was kneaded. After kneading, the mixture was dried at 120 ° C. for about 2 hours and calcined at 700 ° C. for 2 hours. The obtained powder was put in a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved to give a test having a particle size of 0.5-1 mm. FIG. 4 shows the results of examining the activities of the catalysts 19 to 21 in the same manner as in Example 1.

【0059】[実施例4]本実施例は、実施例3の触媒
20中のAlとTiの組成を変化させた触媒を調製し、
活性を調べた結果である。
Example 4 In this example, a catalyst was prepared by changing the composition of Al and Ti in the catalyst 20 of Example 3,
This is the result of examining the activity.

【0060】触媒22;Al23−TiO2 CONDEA製ベーマイト粉末(PURAL SB)を
120℃で1時間乾燥した。この乾燥粉末100gと3
0%硫酸チタン溶液48.8g を純水約150gを添加
しながら混練した。混練後、250〜300℃で約5時
間乾燥し、700℃で2時間焼成した。得られた粉末を金
型に入れ、500kgf/cm2 の圧力で圧縮成型した。成
型品を粉砕,篩い分けして0.5−1mm 粒径として試験
に供した。
Catalyst 22: AlTwoOThree-TiOTwo  CONDEA boehmite powder (PURAL SB)
Dried at 120 ° C. for 1 hour. 100 g of this dry powder and 3
48.8 g of 0% titanium sulfate solution and about 150 g of pure water
While kneading. After kneading, about 5 o'clock at 250-300 ° C
After drying, the mixture was fired at 700 ° C. for 2 hours. Gold powder obtained
500kgf / cmTwoCompression molding. Success
Pulverize and sieve the mold and test as 0.5-1mm particle size
Was served.

【0061】触媒23;Al23−TiO2 CONDEA製ベーマイト粉末(PURAL SB)を
120℃で1時間乾燥した。この乾燥粉末100gと3
0%硫酸チタン溶液82.4g を純水約120gを添加
しながら混練した。混練後、250〜300℃で約5時
間乾燥し、700℃で2時間焼成した。得られた粉末を金
型に入れ、500kgf/cm2 の圧力で圧縮成型した。成
型品を粉砕,篩い分けして0.5−1mm 粒径として試験
に供した。
Catalyst 23: Boehmite powder (PURAL SB) manufactured by Al 2 O 3 —TiO 2 CONDEA was dried at 120 ° C. for 1 hour. 100 g of this dry powder and 3
82.4 g of a 0% titanium sulfate solution was kneaded while adding about 120 g of pure water. After kneading, the mixture was dried at 250 to 300 ° C for about 5 hours and calcined at 700 ° C for 2 hours. The obtained powder was put in a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved to give a test having a particle size of 0.5-1 mm.

【0062】触媒24;Al23−TiO2 CONDEA製ベーマイト粉末(PURAL SB)を
120℃で1時間乾燥した。この乾燥粉末100gと3
0%硫酸チタン溶液174.4g を純水約70gを添加
しながら混練した。混練後、250〜300℃で約5時
間乾燥し、700℃で2時間焼成した。得られた粉末を金
型に入れ、500kgf/cm2 の圧力で圧縮成型した。成
型品を粉砕,篩い分けして0.5−1mm 粒径として試験
に供した。
Catalyst 24: Boehmite powder (PURAL SB) manufactured by Al 2 O 3 —TiO 2 CONDEA was dried at 120 ° C. for 1 hour. 100 g of this dry powder and 3
174.4 g of a 0% titanium sulfate solution was kneaded while adding about 70 g of pure water. After kneading, the mixture was dried at 250 to 300 ° C for about 5 hours and calcined at 700 ° C for 2 hours. The obtained powder was put in a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved to give a test having a particle size of 0.5-1 mm.

【0063】触媒25;Al23−TiO2 CONDEA製ベーマイト粉末(PURAL SB)を
120℃で1時間乾燥した。この乾燥粉末100gと3
0%硫酸チタン溶液392gを添加しながら混練した。
混練後、250〜300℃で約5時間乾燥し、700℃
で2時間焼成した。得られた粉末を金型に入れ、500
kgf/cm2 の圧力で圧縮成型した。成型品を粉砕,篩い
分けして0.5−1mm 粒径として試験に供した。
Catalyst 25: Boehmite powder (PURAL SB) manufactured by Al 2 O 3 —TiO 2 CONDEA was dried at 120 ° C. for 1 hour. 100 g of this dry powder and 3
The mixture was kneaded while adding 392 g of a 0% titanium sulfate solution.
After kneading, drying at 250-300 ° C for about 5 hours, 700 ° C
For 2 hours. The obtained powder is put in a mold, and 500
Compression molding was performed at a pressure of kgf / cm 2 . The molded product was pulverized and sieved to give a test having a particle size of 0.5-1 mm.

【0064】上記の触媒22〜25の活性を実施例1と
同様の方法で調べた結果を図5に示す。
FIG. 5 shows the results of examining the activities of the catalysts 22 to 25 in the same manner as in Example 1.

【0065】[実施例5]本実施例は、触媒調製時に硫
酸を添加した場合の例である。
Example 5 This example is an example in which sulfuric acid was added during catalyst preparation.

【0066】触媒26;Al23−TiO2 CONDEA製ベーマイト粉末(PURAL SB)を
120℃で1時間乾燥した。この乾燥粉末150gに、
石原産業製CS−N30%チタニアゾル溶液58.8g
と、97%硫酸溶液44.8g を純水250mlで希釈
した水溶液を添加し混練した。混練後、250〜300
℃で約5時間乾燥し、700℃で2時間焼成した。得ら
れた粉末を金型に入れ、500kgf/cm2 の圧力で圧縮
成型した。成型品を粉砕,篩い分けして0.5−1mm 粒
径として試験に供した。試験条件は、空間速度を100
0毎時とした以外は実施例1と同様である。試験の結
果、反応温度650℃でC26の分解率80%が得られ
た。
Catalyst 26: Boehmite powder (PURAL SB) manufactured by Al 2 O 3 —TiO 2 CONDEA was dried at 120 ° C. for 1 hour. To 150 g of this dry powder,
Ishihara Sangyo CS-N 30% titania sol solution 58.8 g
And an aqueous solution obtained by diluting 44.8 g of a 97% sulfuric acid solution with 250 ml of pure water was added and kneaded. 250-300 after kneading
C. for about 5 hours and calcined at 700.degree. C. for 2 hours. The obtained powder was put in a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved to give a test having a particle size of 0.5-1 mm. The test condition is that the space velocity is 100
It is the same as Example 1 except that the time is set to 0 every hour. As a result of the test, a decomposition rate of C 2 F 6 of 80% was obtained at a reaction temperature of 650 ° C.

【0067】[0067]

【発明の効果】本発明によれば、C26,NF3 などの
フッ素含有ガスを効率良く分解処理することができる。
According to the present invention, fluorine-containing gases such as C 2 F 6 and NF 3 can be efficiently decomposed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による処理プロセスを示す工
程図である。
FIG. 1 is a process chart showing a processing process according to an embodiment of the present invention.

【図2】各種フッ素化合物分解触媒の性能を示すグラフ
である。
FIG. 2 is a graph showing the performance of various fluorine compound decomposition catalysts.

【図3】各種フッ素化合物分解触媒の性能を示すグラフ
である。
FIG. 3 is a graph showing the performance of various fluorine compound decomposition catalysts.

【図4】各種フッ素化合物分解触媒の性能を示すグラフ
である。
FIG. 4 is a graph showing the performance of various fluorine compound decomposition catalysts.

【図5】各種フッ素化合物分解触媒の性能を示すグラフ
である。
FIG. 5 is a graph showing the performance of various fluorine compound decomposition catalysts.

【符号の説明】 1…C26、2…N2 、3…空気、4…水蒸気、5…反
応ガス、6…分解ガス、7…排ガス。
[Description of Signs] 1 ... C 2 F 6 , 2 ... N 2 , 3 ... Air, 4 ... Steam, 5 ... Reaction gas, 6 ... Decomposition gas, 7 ... Exhaust gas.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 健 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山下 寿生 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小豆畑 茂 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 玉田 慎 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ken Yasuda 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory, Ltd. (72) Inventor Hisao Yamashita 7-1 Omikacho, Hitachi City, Ibaraki Prefecture # 1 Inside Hitachi, Ltd.Hitachi Research Laboratory (72) Inventor Shigeru Azuhata 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Research Laboratory (72) Inventor Shin Tamada, Hitachi City, Ibaraki Prefecture 3-1-1, Machi-cho Hitachi, Ltd. Hitachi Plant

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】炭素を2つ以上含み、かつフッ素原子を含
む化合物、もしくは窒素原子とフッ素原子を含む化合物
の少なくとも一方を含むガス流を、アルミナ,チタニ
ア,シリカ,ジルコニアの少なくとも一種を含む触媒と
約400〜800℃の温度で、有効量の水蒸気の存在下
で接触させて、前記ガス流中のFをHFに転化する工程
を含んでなることを特徴とするフッ素化合物含有ガスの
処理方法。
1. A catalyst comprising at least one of alumina, titania, silica and zirconia, wherein a gas stream containing two or more carbon atoms and containing a fluorine atom or a compound containing at least one of a nitrogen atom and a fluorine atom is used. And converting the F in the gas stream to HF by contacting the gas at a temperature of about 400 to 800 ° C. in the presence of an effective amount of steam. .
【請求項2】請求項1記載の方法において、前記フッ素
化合物含有ガスが、炭素を2つ以上含むCとFとの化合
物、もしくはNとFとの化合物であることを特徴とする
フッ素化合物含有ガスの処理方法。
2. The method according to claim 1, wherein the fluorine compound-containing gas is a compound of C and F or a compound of N and F containing two or more carbon atoms. Gas treatment method.
【請求項3】請求項1記載の方法において、前記触媒
が、さらにSi,Mg,Zr,W,Sn,Ce,Mn,
Bi,Niのうちの少なくとも一成分を含むことを特徴
とするフッ素化合物含有ガスの処理方法。
3. The method of claim 1, wherein said catalyst further comprises Si, Mg, Zr, W, Sn, Ce, Mn,
A method for treating a fluorine compound-containing gas, comprising at least one component of Bi and Ni.
【請求項4】炭素を2つ以上含むCとFとの化合物、も
しくはNとFとの化合物を少なくとも一方を含むガス流
を処理する触媒であって、アルミナとチタニアを含み、
アルミナが75wt%以上98wt%以下、チタニアが
25wt%以下2wt%以上であることを特徴とするフ
ッ素化合物分解触媒。
4. A catalyst for treating a gas stream containing at least one of a compound of C and F or a compound of N and F containing two or more carbons, comprising alumina and titania.
A fluorine compound decomposition catalyst comprising 75 wt% to 98 wt% of alumina and 25 wt% to 2 wt% of titania.
【請求項5】請求項4記載の触媒において、さらにS
i,Mg,Zr,W,Sn,Ce,Mn,Bi,Ni,
P,Bのうちの少なくとも一成分を含むことを特徴とす
るフッ素化合物分解触媒。
5. The catalyst according to claim 4, further comprising S
i, Mg, Zr, W, Sn, Ce, Mn, Bi, Ni,
A fluorine compound decomposition catalyst comprising at least one of P and B.
【請求項6】請求項5記載の触媒において、Si,M
g,Zr,W,Sn,Ce,Mn,Bi,Ni,P,B
の酸化物を、アルミナーチタニア触媒主量に対し、0.
1wt%〜10wt%で含むことを特徴とするフッ素化合
物分解触媒。
6. The catalyst according to claim 5, wherein Si, M
g, Zr, W, Sn, Ce, Mn, Bi, Ni, P, B
Of the oxide with respect to the main amount of the alumina-titania catalyst.
A fluorine compound decomposition catalyst, which is contained at 1 wt% to 10 wt%.
JP00434997A 1997-01-14 1997-01-14 Treatment method for fluorine compound-containing gas Expired - Fee Related JP3977887B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP00434997A JP3977887B2 (en) 1997-01-14 1997-01-14 Treatment method for fluorine compound-containing gas
US09/005,006 US20010001652A1 (en) 1997-01-14 1998-01-09 Process for treating flourine compound-containing gas
US10/215,045 US6942841B2 (en) 1997-01-14 2002-08-09 Process for treating fluorine compound-containing gas
US10/676,013 US20040067185A1 (en) 1997-01-14 2003-10-02 Process for treating fluorine compound-containing gas
US10/677,961 US6855305B2 (en) 1997-01-14 2003-10-03 Process for treating fluorine compound-containing gas
US10/679,297 US7347980B2 (en) 1997-01-14 2003-10-07 Process for treating fluorine compound-containing gas
US11/294,376 US20060093547A1 (en) 1997-01-14 2005-12-06 Process for treating fluorine compound-containing gas
US11/334,345 US20060120938A1 (en) 1997-01-14 2006-01-19 Process for treating fluorine compound-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00434997A JP3977887B2 (en) 1997-01-14 1997-01-14 Treatment method for fluorine compound-containing gas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004116314A Division JP2004255380A (en) 2004-04-12 2004-04-12 Treating method for gas containing fluorine compound

Publications (2)

Publication Number Publication Date
JPH10192653A true JPH10192653A (en) 1998-07-28
JP3977887B2 JP3977887B2 (en) 2007-09-19

Family

ID=11581954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00434997A Expired - Fee Related JP3977887B2 (en) 1997-01-14 1997-01-14 Treatment method for fluorine compound-containing gas

Country Status (1)

Country Link
JP (1) JP3977887B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323537A (en) * 1997-03-24 1998-12-08 Showa Denko Kk Catalytic cracking method of prefluoro compound
WO2000009258A1 (en) * 1998-08-17 2000-02-24 Ebara Corporation Method and apparatus for treating waste gas containing fluorochemical
WO2001021304A1 (en) * 1999-09-17 2001-03-29 Guild Associates Alumina-based catalyst composition and method of destruction of pfc and hfc
US6391146B1 (en) 2000-04-11 2002-05-21 Applied Materials, Inc. Erosion resistant gas energizer
US6426443B1 (en) 1996-06-12 2002-07-30 Guild Associates, Inc. Catalytic process for the decomposition of perfluoroalkanes
EP1228800A1 (en) * 2001-02-02 2002-08-07 Ebara Corporation Process and apparatus for treating gas containing fluorine-containing compounds and CO
US6468490B1 (en) 2000-06-29 2002-10-22 Applied Materials, Inc. Abatement of fluorine gas from effluent
US6509511B1 (en) 1998-10-07 2003-01-21 Guild Associates, Inc. Process for the conversion of perfluoroalkanes, a catalyst for use therein and a method for its preparation
JP2003053137A (en) * 2001-08-17 2003-02-25 Japan Pionics Co Ltd Cleaning method of harmful gas
US6673326B1 (en) 2000-08-07 2004-01-06 Guild Associates, Inc. Catalytic processes for the reduction of perfluorinated compounds and hydrofluorocarbons
US6673323B1 (en) 2000-03-24 2004-01-06 Applied Materials, Inc. Treatment of hazardous gases in effluent
US6676913B2 (en) 1996-06-12 2004-01-13 Guild Associates, Inc. Catalyst composition and method of controlling PFC and HFC emissions
US6689252B1 (en) 1999-07-28 2004-02-10 Applied Materials, Inc. Abatement of hazardous gases in effluent
US6824748B2 (en) 2001-06-01 2004-11-30 Applied Materials, Inc. Heated catalytic treatment of an effluent gas from a substrate fabrication process
US6921519B2 (en) 2001-01-24 2005-07-26 Ineos Fluor Holdings Limited Decomposition of fluorine containing compounds
JP2006205006A (en) * 2005-01-26 2006-08-10 Ichimura Fukuyo Catalyst material for waste gas purification, and waste gas purification apparatus having this material fixed to it
US7141221B2 (en) 1997-11-14 2006-11-28 Hitachi, Ltd. Apparatus for processing perfluorocarbon
US7160521B2 (en) 2001-07-11 2007-01-09 Applied Materials, Inc. Treatment of effluent from a substrate processing chamber
JP2007045702A (en) * 2005-08-09 2007-02-22 Linde Ag Process and apparatus for producing krypton and/or xenon
US7261868B2 (en) 2001-09-13 2007-08-28 Hitachi, Ltd. Process and apparatus for the decomposition of fluorine compounds
JP2007216229A (en) * 2007-06-01 2007-08-30 Ebara Corp Apparatus for treating exhaust gas including fluorine-containing compound
CN100342952C (en) * 2003-01-29 2007-10-17 昭和电工株式会社 Process for decomposing fluorine compounds
US7294315B1 (en) 1999-06-09 2007-11-13 Hitachi, Ltd. Method and apparatus for disposing of fluorine-containing compound by decomposition
US7347980B2 (en) 1997-01-14 2008-03-25 Hitachi, Ltd. Process for treating fluorine compound-containing gas
KR100832076B1 (en) * 1999-11-18 2008-05-27 가부시키가이샤 에바라 세이사꾸쇼 Method and apparatus for treating a waste gas containing fluorine-containing compounds
US7435394B2 (en) 2002-08-28 2008-10-14 Hitachi, Ltd. Treatment method for decomposing perfluorocompound, decomposing catalyst and treatment apparatus
JP2010051856A (en) * 2008-08-26 2010-03-11 Chubu Electric Power Co Inc Method for treating fluorine selective separation agent and fluorine-containing compound
US8231851B2 (en) 1997-11-14 2012-07-31 Hitachi, Ltd. Method for processing perfluorocarbon, and apparatus therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596432B2 (en) * 1997-06-20 2010-12-08 昭和電工株式会社 Method and apparatus for decomposing fluorine-containing compounds

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426443B1 (en) 1996-06-12 2002-07-30 Guild Associates, Inc. Catalytic process for the decomposition of perfluoroalkanes
US6676913B2 (en) 1996-06-12 2004-01-13 Guild Associates, Inc. Catalyst composition and method of controlling PFC and HFC emissions
US7347980B2 (en) 1997-01-14 2008-03-25 Hitachi, Ltd. Process for treating fluorine compound-containing gas
JPH10323537A (en) * 1997-03-24 1998-12-08 Showa Denko Kk Catalytic cracking method of prefluoro compound
US7141221B2 (en) 1997-11-14 2006-11-28 Hitachi, Ltd. Apparatus for processing perfluorocarbon
US8231851B2 (en) 1997-11-14 2012-07-31 Hitachi, Ltd. Method for processing perfluorocarbon, and apparatus therefor
US7641867B2 (en) 1997-11-14 2010-01-05 Hitachi, Ltd. Apparatus for processing perfluorocarbon
KR100637884B1 (en) * 1998-08-17 2006-10-23 가부시키가이샤 에바라 세이사꾸쇼 Method and apparatus for treating waste gas containing fluorochemical
US6602480B1 (en) 1998-08-17 2003-08-05 Ebara Corporation Method for treating waste gas containing fluorochemical
WO2000009258A1 (en) * 1998-08-17 2000-02-24 Ebara Corporation Method and apparatus for treating waste gas containing fluorochemical
US6509511B1 (en) 1998-10-07 2003-01-21 Guild Associates, Inc. Process for the conversion of perfluoroalkanes, a catalyst for use therein and a method for its preparation
US7294315B1 (en) 1999-06-09 2007-11-13 Hitachi, Ltd. Method and apparatus for disposing of fluorine-containing compound by decomposition
US6689252B1 (en) 1999-07-28 2004-02-10 Applied Materials, Inc. Abatement of hazardous gases in effluent
WO2001021304A1 (en) * 1999-09-17 2001-03-29 Guild Associates Alumina-based catalyst composition and method of destruction of pfc and hfc
KR100832076B1 (en) * 1999-11-18 2008-05-27 가부시키가이샤 에바라 세이사꾸쇼 Method and apparatus for treating a waste gas containing fluorine-containing compounds
US6673323B1 (en) 2000-03-24 2004-01-06 Applied Materials, Inc. Treatment of hazardous gases in effluent
US6391146B1 (en) 2000-04-11 2002-05-21 Applied Materials, Inc. Erosion resistant gas energizer
US6468490B1 (en) 2000-06-29 2002-10-22 Applied Materials, Inc. Abatement of fluorine gas from effluent
US6673326B1 (en) 2000-08-07 2004-01-06 Guild Associates, Inc. Catalytic processes for the reduction of perfluorinated compounds and hydrofluorocarbons
US6921519B2 (en) 2001-01-24 2005-07-26 Ineos Fluor Holdings Limited Decomposition of fluorine containing compounds
EP1228800A1 (en) * 2001-02-02 2002-08-07 Ebara Corporation Process and apparatus for treating gas containing fluorine-containing compounds and CO
KR100808618B1 (en) * 2001-02-02 2008-02-29 가부시키가이샤 에바라 세이사꾸쇼 Process and apparatus for treating gas containing fluorine-containing compounds and co
US6824748B2 (en) 2001-06-01 2004-11-30 Applied Materials, Inc. Heated catalytic treatment of an effluent gas from a substrate fabrication process
US7160521B2 (en) 2001-07-11 2007-01-09 Applied Materials, Inc. Treatment of effluent from a substrate processing chamber
JP2003053137A (en) * 2001-08-17 2003-02-25 Japan Pionics Co Ltd Cleaning method of harmful gas
US7261868B2 (en) 2001-09-13 2007-08-28 Hitachi, Ltd. Process and apparatus for the decomposition of fluorine compounds
US7435394B2 (en) 2002-08-28 2008-10-14 Hitachi, Ltd. Treatment method for decomposing perfluorocompound, decomposing catalyst and treatment apparatus
CN100342952C (en) * 2003-01-29 2007-10-17 昭和电工株式会社 Process for decomposing fluorine compounds
JP2006205006A (en) * 2005-01-26 2006-08-10 Ichimura Fukuyo Catalyst material for waste gas purification, and waste gas purification apparatus having this material fixed to it
JP2007045702A (en) * 2005-08-09 2007-02-22 Linde Ag Process and apparatus for producing krypton and/or xenon
JP2007216229A (en) * 2007-06-01 2007-08-30 Ebara Corp Apparatus for treating exhaust gas including fluorine-containing compound
JP2010051856A (en) * 2008-08-26 2010-03-11 Chubu Electric Power Co Inc Method for treating fluorine selective separation agent and fluorine-containing compound

Also Published As

Publication number Publication date
JP3977887B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JPH10192653A (en) Treatment of gas containing fluorine compound
US6942841B2 (en) Process for treating fluorine compound-containing gas
JP3269456B2 (en) Method for decomposing fluorine-containing compound, catalyst and decomposition apparatus
EP0885648B1 (en) A treatment method for decomposing fluorine compounds, and apparatus and use of a catalyst therefor
JP2002224565A (en) Agent and method for decomposing fluorocarbon
KR20170101160A (en) Acid-resistant catalyst for decomposing perfluorinated compounds and use thereof
JP2001190959A (en) Reactant for decomposition of fluorine compound, decomposition method and its usage
JP2007054714A (en) Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
KR100746528B1 (en) Process and Catalyst for Decomposing Perfluoro Compound, and Apparatus for Treating Perfluoro Compound
JP3368820B2 (en) Method for treating fluorine compound-containing gas and catalyst
JP2008100229A (en) Fluorine compound-containing gas treatment method
JP4596432B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JP4394555B2 (en) Method and apparatus for treating fluorine compound-containing gas
JP2004255380A (en) Treating method for gas containing fluorine compound
JP3931563B2 (en) Method and apparatus for decomposing fluorine-containing compounds
KR101392805B1 (en) Absorption material for removing PFC and acid gas
JP2002370013A (en) Decomposition treatment agent of sulfur fluoride and decomposition treatment method using the same
JP2000225342A (en) Catalyst for decomposing fluorine-containing compound and method for decomposing fluorine-containing compound
JP2009078237A (en) Treating method for exhaust gas from semiconductor and liquid crystal manufacturing apparatus
JP2001232152A (en) Decomposition treating method of fluorine-containing compound, catalyst and decomposition treating device
JP3327099B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JP3570136B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JP2007237150A (en) Catalyst detoxifying treatment method of emission gas
KR101448475B1 (en) Absorption material for removing PFC and acid gas
JPH10137589A (en) Catalyst for decomposition of fluorocarbon

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040915

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041008

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees