JP2010051856A - Method for treating fluorine selective separation agent and fluorine-containing compound - Google Patents

Method for treating fluorine selective separation agent and fluorine-containing compound Download PDF

Info

Publication number
JP2010051856A
JP2010051856A JP2008217179A JP2008217179A JP2010051856A JP 2010051856 A JP2010051856 A JP 2010051856A JP 2008217179 A JP2008217179 A JP 2008217179A JP 2008217179 A JP2008217179 A JP 2008217179A JP 2010051856 A JP2010051856 A JP 2010051856A
Authority
JP
Japan
Prior art keywords
fluorine
alumina
containing compound
agent
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008217179A
Other languages
Japanese (ja)
Other versions
JP5366479B2 (en
Inventor
Hideki Inagaki
秀樹 稲垣
Akihiro Takeuchi
章浩 竹内
Kenji Suzuki
憲司 鈴木
Daisuke Hirabayashi
大介 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Chubu Electric Power Co Inc
Original Assignee
Nagoya University NUC
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Chubu Electric Power Co Inc filed Critical Nagoya University NUC
Priority to JP2008217179A priority Critical patent/JP5366479B2/en
Publication of JP2010051856A publication Critical patent/JP2010051856A/en
Application granted granted Critical
Publication of JP5366479B2 publication Critical patent/JP5366479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating a fluorine selective separation agent and a fluorine-containing compound capable of absorbing in dry condition halogen dissociated from a vaporized halogen-containing compound in a processing agent on site and more selectively increasing a fixed amount of fluorine than in a conventional art so as to selectively separate fluorine from a fluorine-containing compound under dry and low-temperature conditions of less than 800°C. <P>SOLUTION: The gaseous fluorine-containing compound reacts with a fluorine selective separation agent in an environment that is controlled at a temperature of 600°C, and the fluorine in the fluoride is fixed to a catalyst of the fluorine selective separation agent and a solid alkali agent. The fluorine selective separation agent is made by coating an oxide system catalyst exhibiting solid acid coated on the solid alkali agent. This allows the halogen dissociated from the vaporized halogen-containing compound to be catalytically absorbed to the reaction processing agent on site in dry condition, thereby enabling the system to more selectively increase the fixed amount of fluorine than in the conventional art. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、1種類ないし複数のハロゲンが炭素と結合を有する含フッ素化合物と化学反応して、フッ素を選択的に化学結合して分離捕集することができるフッ素選択分離剤及び含フッ素化合物の処理方法に関する。   The present invention relates to a fluorine selective separating agent and a fluorine-containing compound that can chemically separate and collect fluorine by selectively chemically bonding fluorine by chemically reacting with one or more halogen-containing fluorine-containing compounds. It relates to the processing method.

フッ素と炭素が結合を有する含ハロゲン化合物は分子内で結合が強く、分解が極めて困難である。また、フッ素は化学や精錬などの分野で重要な物質であるため、前述の含ハロゲン化合物から、容易かつ選択的にフッ素を選択的に分離回収する技術が大いに望まれている。   A halogen-containing compound having a bond between fluorine and carbon has a strong bond in the molecule and is extremely difficult to decompose. Further, since fluorine is an important substance in fields such as chemistry and refining, a technique for selectively separating and recovering fluorine easily and selectively from the aforementioned halogen-containing compounds is highly desired.

従来、含フッ素化合物からフッ素を回収するには、含フッ素化合物を極めて高温に加熱して分解した後、排ガスを湿式中和処理し、水酸化カルシウムなどでフッ化カルシウムを含む汚泥を生成し、この汚泥を硫酸などの強酸により分解してフッ化水素として回収するという極めて複雑な工程を要する。   Conventionally, in order to recover fluorine from a fluorine-containing compound, the fluorine-containing compound is decomposed by heating to an extremely high temperature, and then the exhaust gas is subjected to wet neutralization treatment to produce sludge containing calcium fluoride with calcium hydroxide, An extremely complicated process is required in which the sludge is decomposed with a strong acid such as sulfuric acid and recovered as hydrogen fluoride.

このため、多大な費用がかかり、実稼働するプラントはほとんどないのが現況である。
ここで、従来から提案されている含フッ素化合物の燃焼法について説明する。従来の燃焼法では、廃棄物、もしくは助燃剤の燃焼熱を利用して酸化分解により含フッ素化合物を分解することから、有害物質の再結合・生成を防止するために少なくとも850℃以上の処理温度と滞留時間が必要となっていた。この高温処理を改善するために、アルカリ反応材法が提案されている。
For this reason, it is very expensive and there are few plants that are actually in operation.
Here, a conventionally proposed method for burning a fluorine-containing compound will be described. In the conventional combustion method, since the fluorine-containing compound is decomposed by oxidative decomposition using the combustion heat of the waste or the auxiliary combustor, a processing temperature of at least 850 ° C. or more is used to prevent recombination / generation of harmful substances. And residence time was needed. In order to improve this high temperature treatment, an alkali reaction material method has been proposed.

アルカリ反応材法では、アルカリと含フッ素化合物が直接反応してハロゲン成分が反応系外へ除去される。このため、アルカリ反応材法では、含フッ素化合物の分解・再合成の平衡条件に縛られず自発的に反応が進行すること、及びアルカリによるハロゲン固定化の反応熱をフッ素化合物分解に利用できることを要因として、電気加熱により必要十分な反応熱のみを補うことで反応が実現されている。このアルカリ反応材法では、700〜850℃の温度領域において、容易に含フッ素化合物の分解が実現されている(特許文献1参照)。   In the alkali reaction material method, an alkali and a fluorine-containing compound directly react to remove a halogen component from the reaction system. For this reason, the alkali reactant method is based on the fact that the reaction proceeds spontaneously without being bound by the equilibrium conditions for the decomposition and resynthesis of the fluorine-containing compound, and that the reaction heat of halogen fixation by alkali can be used for the decomposition of the fluorine compound. As described above, the reaction is realized by supplementing only necessary and sufficient reaction heat by electric heating. In this alkali reaction material method, the fluorine-containing compound is easily decomposed in a temperature range of 700 to 850 ° C. (see Patent Document 1).

一方、従来の触媒型の含フッ素化合物の分解プロセスでは、平衡論的制約の解除を目的として、大量の水蒸気を導入して、フッ素化合物の加水分解を利用して、分解処理することが行われている(特許文献2参照)。
特開2001−79344号公報 特開平8−57255号公報
On the other hand, in the conventional catalytic-type fluorine-containing compound decomposition process, a large amount of water vapor is introduced and the decomposition process is performed using the hydrolysis of the fluorine compound for the purpose of releasing the equilibrium constraint. (See Patent Document 2).
JP 2001-79344 A JP-A-8-57255

しかし、上記の方法は、大量の水蒸気を装置に導入して、大量の湿りガスを取り扱う半湿式プロセスとなり、前記湿りガスをウエットスクラバ等によって後処理することが必要となる。このため、従来の触媒型の含フッ素化合物の分解プロセスでは、プロセスのハンドリング面と熱利用の観点で難点がある。   However, the above method is a semi-wet process in which a large amount of water vapor is introduced into the apparatus and a large amount of wet gas is handled, and it is necessary to post-process the wet gas with a wet scrubber or the like. For this reason, the conventional catalytic fluorine-containing compound decomposition process has difficulties in terms of process handling and heat utilization.

又、ハロン類、パーフルオロカーボン類、一部の特定フロン類など難分解性フッ素化合物の場合、熱力学的反応促進による限界温度が高く、依然として、850〜1300℃付近での高温操作が必要となっている。   Further, in the case of refractory fluorine compounds such as halons, perfluorocarbons, and some specific chlorofluorocarbons, the limit temperature due to the thermodynamic reaction is high, and it is still necessary to operate at a high temperature around 850 to 1300 ° C. ing.

本発明の目的は、従来の問題を解消して、乾式で、かつ、800℃未満の低温条件で含フッ素化合物からフッ素を高効率に選択分離するべく、ガス状の含ハロゲン化合物を反応処理剤にオンサイトで乾式吸収を可能とし、フッ素の固定化量を従来のものよりも選択的に高くすることができるフッ素選択分離剤を提供することにある。   An object of the present invention is to solve a conventional problem and to convert a gaseous halogen-containing compound into a reaction treatment agent in order to selectively separate fluorine from a fluorine-containing compound with high efficiency under a low temperature condition of less than 800 ° C. It is another object of the present invention to provide a fluorine selective separation agent that enables on-site dry absorption and can selectively increase the amount of fluorine immobilized compared to conventional ones.

又、本発明の他の目的は、乾式で、かつ、800℃未満の低温条件で含フッ素化合物から高効率に選択分離すべく、ガス状の含ハロゲン化合物を反応処理剤にオンサイトで乾式吸収を可能とし、選択分離されたフッ素の固定化量を従来のものよりも高くすることができる含フッ素化合物の処理方法を提供することにある。   In addition, another object of the present invention is to dry-absorb gaseous halogen-containing compounds on-site in a reaction treatment agent in order to selectively separate from fluorine-containing compounds with high efficiency under low temperature conditions of less than 800 ° C. It is an object of the present invention to provide a method for treating a fluorine-containing compound capable of increasing the amount of selectively separated and immobilized fluorine as compared with the conventional one.

前記問題点を解消するために、本発明のフッ素選択分離剤は、固体アルカリ剤に固体酸性を示す酸化物系触媒をコーティングしてなることを特徴とするものである。
前記固体アルカリ剤としては、酸化カルシウム、又は酸化マグネシウムを含むアルカリ土類化合物のうち少なくとも1つが主成分として含まれていることが好ましい。
In order to solve the above problems, the fluorine selective separating agent of the present invention is characterized in that a solid alkaline agent is coated with an oxide-based catalyst exhibiting solid acidity.
The solid alkali agent preferably contains at least one of alkaline earth compounds containing calcium oxide or magnesium oxide as a main component.

又、記酸化物系触媒は、γ−アルミナ又はθ−アルミナが含まれているアルミナ化合物、アナターゼ型チタニア又はルチル型チタニアが含まれているチタニア化合物の中から少なくとも1つ選ばれていることが好ましい。   Further, the oxide-based catalyst is selected from at least one of alumina compounds containing γ-alumina or θ-alumina, titania compounds containing anatase-type titania or rutile-type titania. preferable.

上記のようなフッ素選択分離剤を使用して、含フッ素化合物を処理する場合、無加湿雰囲気で、常圧下で気化させた前記含フッ素化合物を、400℃以上、800℃未満の範囲で加熱された前記フッ素選択分離剤に通して処理する。   When the fluorine-containing compound is treated using the fluorine selective separating agent as described above, the fluorine-containing compound vaporized under normal pressure in a non-humidified atmosphere is heated in a range of 400 ° C. or higher and lower than 800 ° C. And processing through the fluorine selective separating agent.

温度が400℃未満では、反応開始直後から十分な分解率を継続することはできない。この理由は、400℃未満の低温では、触媒若しくは固体アルカリ剤粒子内の固相内部の拡散速度等の影響が大きくなるため反応が進まないためである。又、反応温度が800℃以上であると、反応速度が高速化するためハロゲン固定化率は向上するものの、プロセス操作におけるハンドリング性の悪化が課題となるため、本発明の目的を達成することができない。   When the temperature is less than 400 ° C., a sufficient decomposition rate cannot be continued immediately after the start of the reaction. This is because the reaction does not proceed at a low temperature of less than 400 ° C. because the influence of the diffusion rate inside the solid phase in the catalyst or solid alkaline agent particles becomes large. In addition, when the reaction temperature is 800 ° C. or higher, the reaction rate is increased and the halogen immobilization rate is improved. However, since the handling property is deteriorated in the process operation, the object of the present invention can be achieved. Can not.

本発明のフッ素選択分離剤によれば、乾式で、かつ、800℃未満の低温条件で含フッ素化合物からフッ素を高効率に選択分離するべく、気化した含ハロゲン化合物から解離したハロゲンを反応処理剤にオンサイトで乾式吸収を可能とすることができ、フッ素の固定化量を従来のものよりも選択的に高くすることができる。   According to the fluorine selective separating agent of the present invention, the halogen dissociated from the vaporized halogen-containing compound is a reaction treatment agent in order to selectively separate fluorine from the fluorine-containing compound with high efficiency under a low temperature condition of less than 800 ° C. In addition, dry absorption can be performed on-site, and the amount of fluorine immobilized can be selectively increased over the conventional one.

又、本発明の含フッ素化合物の処理方法によれば、乾式で、かつ、800℃未満の低温条件で含フッ素化合物からフッ素を高効率に選択分離するべく、ガス状の含ハロゲン化合物を反応処理剤にオンサイトで乾式吸収を可能とすることができ、付加価値の高いフッ素の固定化量を従来のものよりも選択的に高くすることができる。   Further, according to the method for treating a fluorine-containing compound of the present invention, a gaseous halogen-containing compound is subjected to a reaction treatment in order to selectively separate fluorine from the fluorine-containing compound with high efficiency under a low temperature condition of less than 800 ° C. The agent can be dry-absorbed on-site, and the amount of fluorine added with high added value can be selectively increased from that of the conventional one.

以下、本発明の実施形態を説明する。
(フッ素選択分離剤)
本実施形態のフッ素選択分離剤は、固体アルカリ剤に固体酸性を示す酸化物系触媒をコーティングして焼成し、ハロゲンの固定化性を有する固体塩基性と、フッ素選択的解離に触媒活性を有する固体酸性を近接場に両立させたものである。
Embodiments of the present invention will be described below.
(Fluorine selective separating agent)
The fluorine selective separating agent of the present embodiment is coated with an oxide-based catalyst exhibiting solid acidity on a solid alkaline agent and calcined, and has a solid basicity having halogen fixing property and catalytic activity for fluorine selective dissociation. Solid acidity is compatible with near field.

固体アルカリ剤としては、酸化カルシウム又は酸化マグネシウムを成分として含む焼成ドロマイト、焼成カルサイトを挙げることができる。焼成ドロマイト、焼成カルサイトは、ハロゲン固定に有用な固体反応剤である。なお、従来技術においては、気化させた含ハロゲン化合物を、焼成ドロマイト、焼成カルサイトに触れさせて反応処理させる場合、850℃以上の高温条件又は、大量の水蒸気が必要であり、かつ特定のハロゲンを選択的に固定化分離できなかった。   Examples of the solid alkali agent include calcined dolomite and calcined calcite containing calcium oxide or magnesium oxide as a component. Firing dolomite and calcined calcite are solid reactants useful for halogen fixation. In the prior art, when the vaporized halogen-containing compound is subjected to a reaction treatment by being brought into contact with calcined dolomite or calcined calcite, a high-temperature condition of 850 ° C. or higher or a large amount of water vapor is required, and a specific halogen is used. Could not be selectively immobilized.

酸化物系触媒としては、γ−アルミナ又はθ−アルミナが含まれているアルミナ化合物、アナターゼ型チタニア又はルチル型チタニアが含まれているチタニア化合物の少なくともいずれ1つの触媒、或いは、これらを混合したものが好ましい。これらの酸化物系触媒は、単元系酸化物として比較的高い酸強度を有する。   As the oxide catalyst, at least one catalyst of alumina compound containing γ-alumina or θ-alumina, titania compound containing anatase type titania or rutile type titania, or a mixture thereof Is preferred. These oxide-based catalysts have a relatively high acid strength as unitary oxides.

前記固体アルカリ剤に対する酸化物系触媒の重量比は、0.2〜6が好ましく、好ましくは、0.5〜5、さらに好ましいのは1.3〜4である。
(フッ素選択分離剤の製造方法)
本発明のフッ素選択分離剤の製造方法は限定されるものではないが、以下には、下記の包摂法で製造する方法を説明する。
The weight ratio of the oxide catalyst to the solid alkali agent is preferably 0.2 to 6, preferably 0.5 to 5, and more preferably 1.3 to 4.
(Method for producing fluorine selective separating agent)
Although the manufacturing method of the fluorine selective separation agent of this invention is not limited, Below, the method to manufacture by the following inclusion method is demonstrated.

触媒前駆体となる、酸化物系触媒のゾルを適度な粘性となるように蒸留水で希釈し、このゾル粘性液のなかに破砕して造粒した固体アルカリ剤を混合する。混合比率は合成したフッ素選択分離剤に含まれる触媒(酸化物系触媒)と固体アルカリ剤の重量比(触媒/固体アルカリ剤比)が0.2〜6となるように調整する。   The oxide catalyst sol that becomes the catalyst precursor is diluted with distilled water so as to have an appropriate viscosity, and the pulverized and granulated solid alkali agent is mixed in the sol viscous liquid. The mixing ratio is adjusted so that the weight ratio (catalyst / solid alkali agent ratio) of the catalyst (oxide-based catalyst) and solid alkali agent contained in the synthesized fluorine selective separating agent is 0.2-6.

混合操作は、耐熱性容器(例えば、磁器、陶器)の中で行い、その後、混合物からの揮発分の十分な拡散を行わせるために、前記容器のふたをせずに、電気炉中で500℃にて3時間、空気雰囲気で焼成する。なお、電気炉中の温度及び焼成時間は前述の数値に限定されるものではないが、焼成できる温度域及び時間であればよい。又、室温から加温する焼成時の昇温速度は、例えば、0.5℃/minとし、放冷も同様に0.5℃/minで室温まで除冷し、結晶成長を促すことが好ましい。   The mixing operation is performed in a heat-resistant container (for example, porcelain, earthenware), and then in an electric furnace without a lid on the container in order to allow sufficient diffusion of volatiles from the mixture. Bake in an air atmosphere at 3 ° C. for 3 hours. In addition, the temperature in an electric furnace and baking time are not limited to the above-mentioned numerical value, However, What is necessary is just the temperature range and time which can be baked. Also, it is preferable that the heating rate at the time of firing to be heated from room temperature is, for example, 0.5 ° C./min, and cooling is similarly performed at 0.5 ° C./min to room temperature to promote crystal growth. .

このようにして焼成されたフッ素選択分離剤の粒子を可視観察すると、触媒の粒子を介して固体アルカリ剤の粒子同士が結びついて大きな二次粒子を構成することが観察できる。これは、フッ素選択分離剤が、触媒の微粒子をバインダとして固体アルカリ剤の粒子が二次粒子を構成し、多孔質構造を形成していることを示している。   When the particles of the fluorine selective separating agent thus calcined are visually observed, it can be observed that the solid alkali agent particles are connected to each other via the catalyst particles to form large secondary particles. This indicates that the fluorine selective separation agent forms a porous structure by forming particles of the solid alkali agent as secondary particles using fine particles of the catalyst as a binder.

又、包摂法では、バインダ成分により微細粒子を包摂(すなわち、コーティング)し、バインダを介して各々破砕粒子が接着するため、シンプルな方法で容易に現状のアルカリ反応装置に適合する大粒子(二次粒子)を造粒することができる。なお、焼成された後に、適度に微粒化してもよい。   In the inclusion method, fine particles are included (that is, coated) with a binder component, and each crushed particle is adhered via the binder. Therefore, a large particle (two types) that can be easily adapted to the current alkaline reactor by a simple method. Secondary particles) can be granulated. In addition, you may atomize moderately after baking.

(分離処理装置)
本発明のフッ素選択分離剤を使用して含フッ素化合物からフッ素を分離処理する分離処理装置は、図2に示すように、連続ガス流通式固定層反応装置(以下、単に反応装置という)である。
(Separation processing device)
A separation apparatus for separating fluorine from a fluorine-containing compound using the fluorine selective separation agent of the present invention is a continuous gas flow fixed-bed reactor (hereinafter simply referred to as a reactor) as shown in FIG. .

反応装置10は、フッ素選択分離剤を固定層20として反応管22内に充填し、連続的にガスを固定層20内に流通させて、反応管22外に設けられた電気ヒータ23にて加熱された固定層20と反応させるものである。   The reactor 10 fills the reaction tube 22 with a fluorine selective separating agent as a fixed layer 20, continuously circulates the gas in the fixed layer 20, and heats it with an electric heater 23 provided outside the reaction tube 22. It is made to react with the fixed layer 20 made.

反応管22へのガス経路24〜26には、キャリアガス(例えばアルゴン等の不活性ガス、又は窒素)、酸素、含フッ素化合物用のガスポート31〜33を備えるとともに、マスフローメータ34〜36、流量調整弁37〜39からなる流量調整部40〜42が設けられている。そして、それぞれのガスポート31〜33より導入した純ガスは、流量調整部40〜42により反応管22の入口ガスの調整が行われ、所定濃度、所定量となるように調整された混合ガスが反応管22内の固定層20に経路27を介して供給できるようされている。又、固定層20の下端と反応管22の底部間にはアルミナウール等からなる耐熱性の支持材29が充填されている。   The gas paths 24 to 26 to the reaction tube 22 are provided with gas ports 31 to 33 for carrier gas (for example, inert gas such as argon or nitrogen), oxygen, and fluorine-containing compounds, and mass flow meters 34 to 36, Flow rate adjusting units 40 to 42 including flow rate adjusting valves 37 to 39 are provided. And the pure gas introduced from each gas port 31-33 adjusts the inlet gas of the reaction tube 22 by the flow volume adjustment parts 40-42, and the mixed gas adjusted so that it may become predetermined concentration and predetermined amount The fixed layer 20 in the reaction tube 22 can be supplied via a path 27. Further, a heat-resistant support material 29 made of alumina wool or the like is filled between the lower end of the fixed layer 20 and the bottom of the reaction tube 22.

又、反応管22の入り口側の経路27には、圧力計28が設けられている。なお、図示はしないが、固定層20内には温度検出のための温度センサ(例えば熱電対)が設けられ、該温度センサの温度検出に基づいて電気ヒータ23は、図示しない制御装置により、固定層20内の反応温度を400℃以上、800℃未満の範囲とするように温度制御される。   A pressure gauge 28 is provided in the passage 27 on the inlet side of the reaction tube 22. Although not shown, a temperature sensor (for example, a thermocouple) for temperature detection is provided in the fixed layer 20, and the electric heater 23 is fixed by a control device (not shown) based on the temperature detection of the temperature sensor. The temperature in the layer 20 is controlled to be in the range of 400 ° C. or higher and lower than 800 ° C.

従って、ガス状の含フッ素化合物は、400℃以上、800℃未満の範囲に温度管理された環境下で、反応管22内の固定層20(フッ素選択分離剤)と反応し、フッ素化合物のフッ素がフッ素選択分離剤の触媒及び固体アルカリ剤に固定化される。上記のように反応装置10が使用されて、含フッ素化合物の処理が行われる。   Accordingly, the gaseous fluorine-containing compound reacts with the fixed layer 20 (fluorine selective separating agent) in the reaction tube 22 in an environment where the temperature is controlled in the range of 400 ° C. or more and less than 800 ° C., and fluorine of the fluorine compound Is immobilized on the catalyst of the fluorine selective separation agent and the solid alkali agent. As described above, the reaction apparatus 10 is used to treat the fluorine-containing compound.

さて、上記のように構成されたフッ素選択分離剤は、下記の効果がある。
(1) 本実施形態のフッ素選択分離剤は、固体アルカリ剤に固体酸性を示す酸化物系触媒をコーティングしてなる。この結果、乾式で、かつ、800℃未満の低温条件で含フッ素化合物を高効率からフッ素を選択分離するべく、気化させた含ハロゲン化合物から解離したハロゲンを反応処理剤にオンサイトで乾式吸収を可能とすることができ、フッ素の固定化量を従来のものよりも選択的に高くすることができる。
Now, the fluorine selective separation agent comprised as mentioned above has the following effect.
(1) The fluorine selective separating agent of the present embodiment is formed by coating a solid alkaline agent with an oxide catalyst exhibiting solid acidity. As a result, in order to selectively separate fluorine from a fluorine-containing compound with high efficiency under a low temperature condition of less than 800 ° C., dry absorption is performed on-site with the halogen dissociated from the vaporized halogen-containing compound as a reaction treatment agent. And the amount of fluorine immobilized can be selectively made higher than the conventional one.

以下、難分解性フッ素化合物(含フッ素化合物)であるハロン1301からフッ素を分離する分離処理を、フッ素選択分離剤を使用した実施例1〜3と、従来形の反応処理剤を使用した比較例1〜3で説明する。   Hereinafter, separation treatments for separating fluorine from halon 1301, which is a hardly decomposable fluorine compound (fluorine-containing compound), are performed in Examples 1 to 3 using a fluorine selective separating agent and comparative examples using a conventional reaction treatment agent. 1-3.

(実施例1〜3)
まず、以下の実施例1〜3のフッ素選択分離剤は、包摂法により製造した。包摂法は、装置設計を変えずに目的とする反応系を構築でき、触媒とガス固定化剤(反応処理材)である固体アルカリ剤の物理的距離を最小化できる利点がある。
(Examples 1-3)
First, the fluorine selective separating agents of Examples 1 to 3 below were produced by an inclusion method. The inclusion method has an advantage that the target reaction system can be constructed without changing the device design, and the physical distance between the catalyst and the solid alkali agent as the gas fixing agent (reaction treatment material) can be minimized.

図1(a)に示すように、触媒前駆体となるアルミナゾル(日産化学製)を適度な粘性となるように蒸留水で希釈し、この希釈されたアルミナゾル粘性液のなかに破砕して造粒した焼成ドロマイトを混合した。この混合により、触媒(触媒前駆体)の微粒子がバインダとして焼成ドロマイトにコーティングされる。   As shown in FIG. 1 (a), alumina sol (manufactured by Nissan Chemical Co., Ltd.) as a catalyst precursor is diluted with distilled water so as to have an appropriate viscosity, and granulated by crushing into the diluted alumina sol viscous liquid. The baked dolomite was mixed. By this mixing, fine particles of the catalyst (catalyst precursor) are coated on the calcined dolomite as a binder.

混合比率は合成したフッ素選択分離剤に含まれるAlと焼成ドロマイトの重量比(Al/dolomite比)が3.76,2.00,1.37となるように調整した。なお、重量比の測定は、XRF(蛍光X線分析装置)を使用した。 The mixing ratio was adjusted so that the weight ratio (Al 2 O 3 / dolomite ratio) of Al 2 O 3 and calcined dolomite contained in the synthesized fluorine selective separating agent was 3.76, 2.00, 1.37. The weight ratio was measured using XRF (fluorescence X-ray analyzer).

以下、重量比3.76のものを実施例1とし、重量比2.00のものを実施例2とし、重量比1.37のものを実施例3とする。
図6は、実施例1(Al/dolomite比=3.76)、実施例2(Al/dolomite比=2.00)、及び実施例3(Al/dolomite比=1.37)の混合物を、CuKα線を使用したX線回折で分析した結果のチャートである。図6に示すように、これらの混合物には、γ−Al(γ−アルミナ)を示すピーク(点線110,120上に現れるピーク)が大きく見られた。
Hereinafter, the one with a weight ratio of 3.76 is designated as Example 1, the one with a weight ratio of 2.00 is designated as Example 2, and the one with a weight ratio of 1.37 is designated as Example 3.
6 shows Example 1 (Al 2 O 3 / dolomite ratio = 3.76), Example 2 (Al 2 O 3 / dolomite ratio = 2.00), and Example 3 (Al 2 O 3 / dolomite ratio). = 1.37) is a chart showing the result of analysis by X-ray diffraction using CuKα rays. As shown in FIG. 6, in these mixtures, a peak indicating γ-Al 2 O 3 (γ-alumina) (peaks appearing on dotted lines 110 and 120) was greatly observed.

さらに、θ−Al(θ−アルミナ)を示すピーク(点線130〜170上に現れるピーク)としては、一部のみ(例えば、点線140、150、160)が観察された。なお、実施例1〜実施例3に使用した触媒前駆体となるアルミナゾルは同じものである。このことから、混合されている触媒には、γ−Alと、θ−Alを含むことが確認された。又、θ−Al(θ−アルミナ)のピークは、ピークが大きく現れたγ−Alと異なり、その分量はγ−Alよりも少ないものと推察される。 Further, as the peaks indicating θ-Al 2 O 3 (θ- alumina) (peak appearing on the dotted line 130 to 170), only a portion (e.g., a dotted line 140, 150, 160) was observed. In addition, the alumina sol used as the catalyst precursor used in Examples 1 to 3 is the same. From this, it was confirmed that the mixed catalyst contains γ-Al 2 O 3 and θ-Al 2 O 3 . Also, the peak of θ-Al 2 O 3 (θ-alumina) is different from γ-Al 2 O 3 in which a large peak appears, and the amount is estimated to be less than that of γ-Al 2 O 3 .

混合操作は磁製るつぼ50の中で行い、その後、混合物からの揮発分の十分な拡散を行わせるために、前記磁製るつぼ50のふたをせずに、電気炉52中で500℃にて3時間、空気雰囲気で焼成した。この際の、室温から昇温速度を3℃/miで加温し、放冷も同様に3℃/minで室温まで除冷し、結晶成長を促した。   The mixing operation is carried out in a magnetic crucible 50, and then in the electric furnace 52 at 500 ° C. without the lid of the magnetic crucible 50 in order to allow sufficient diffusion of volatiles from the mixture. Firing was performed in an air atmosphere for 3 hours. At this time, the temperature was increased from room temperature at a rate of 3 ° C./mi, and the cooling was similarly performed at 3 ° C./min to room temperature to promote crystal growth.

得られた、粒子を可視観察すると、図1(b)に示すようにγ−アルミナとして見られる白色粒子を介して、焼成ドロマイトとしてみられる灰色粒子が結びつき大きな二次粒子を構成していることが確認できた。これは、触媒添加型反応処理剤が、γ−アルミナ微粒子及びθ−アルミナ微粒子をバインダとして焼成ドロマイト粒子が二次粒子を構成し、多孔質構造を形成していることを示している。   When the obtained particles are visually observed, gray particles seen as baked dolomite are connected to form large secondary particles through white particles seen as γ-alumina as shown in FIG. 1 (b). Was confirmed. This indicates that the catalyst-added reaction treatment agent has a porous structure in which the calcined dolomite particles constitute secondary particles using γ-alumina fine particles and θ-alumina fine particles as a binder.

このようにして、高比表面積を有するγ−アルミナ、及びθ−アルミナを焼成ドロマイト粒子(破砕粒子)と包摂法により複合化し、両者の形成する反応場を近接させることで、共存効果を強調させる。   In this way, γ-alumina having a high specific surface area and θ-alumina are combined with the calcined dolomite particles (crushed particles) by the inclusion method, and the coexistence effect is emphasized by bringing the reaction fields formed by both into close proximity. .

なお、アルミナゾルはコロイダルアルミナに分類され、400〜500℃程度で焼成されることにより、γ−アルミナ、及びθ−アルミナの高比表面積多孔質体とすることができる。アルミナゾルは、焼成時に針状結晶が成長するため、高比表面積の構造体を得やすく触媒材料や、触媒担体材料として好適である。   In addition, alumina sol is classified into colloidal alumina, and can be made into a high specific surface area porous body of γ-alumina and θ-alumina by firing at about 400 to 500 ° C. Alumina sol is suitable as a catalyst material or a catalyst carrier material because a needle-like crystal grows during firing, so that a structure having a high specific surface area can be easily obtained.

実施例1〜3は、図2に示す反応装置10の反応管22に固定層20として充填し、反応温度600℃でハロン1301を処理したものである。
具体的には、実施例及び比較例において、流量調整部40により、所定濃度(ハロン1301:4.2vol%)、所定量(50ml/min)となるように混合し、この混合ガスを充填層(固定層20)に供給できるようにした。反応管22の充填層出口から排出された出口ガスは、図示しない分析系に導かれ、それぞフッ素化合物を測定するためのFID−GCで測定した。
In Examples 1 to 3, the reaction tube 22 of the reaction apparatus 10 shown in FIG. 2 is filled as the fixed layer 20, and Halon 1301 is treated at a reaction temperature of 600 ° C.
Specifically, in the example and the comparative example, the flow rate adjusting unit 40 mixes the mixture so as to have a predetermined concentration (halon 1301: 4.2 vol%) and a predetermined amount (50 ml / min), and this mixed gas is filled. (Fixed layer 20) can be supplied. The outlet gas discharged from the packed bed outlet of the reaction tube 22 was led to an analysis system (not shown) and measured by FID-GC for measuring the fluorine compound.

反応管22は、内径10mmの石英硝子管を用いた。固定層20は、図2に示すように、反応管22の絞りに、アルミナウール製の支持材29を圧損とならないように実施例、比較例毎に同一重量で同一高さ(約10mm)となるように導入し、前記支持材29上面を長い棒で水平、かつおおよそ平になるように形状を調整した後、実施例及び比較例の反応処理剤を充填し、固定層20を形成した。   As the reaction tube 22, a quartz glass tube having an inner diameter of 10 mm was used. As shown in FIG. 2, the fixed layer 20 has the same weight (about 10 mm) at the same weight for each of the Examples and Comparative Examples so that the support material 29 made of alumina wool does not cause pressure loss at the throttle of the reaction tube 22. Then, the shape of the support material 29 was adjusted so that the upper surface of the support material 29 was horizontal and approximately flat with a long rod, and then the reaction treatment agents of Examples and Comparative Examples were filled to form the fixed layer 20.

この固定層20に供給される混合ガスは、全ガス流量50mlに調整されることから、この円筒形固定層体積(φ10mm、高さ15−37mm)から平均SV(空間速度)値を算出すると、約2000h−1の値となる。これは、商用スケールの実装置より、10倍程度の大きさの値であり、本試験例での条件は、同一時間あたり、固定層20に供給される風量が10倍量程度であり、反応時間経過で見ると同一風量当たりの評価では、本装置の1分が実装置の約10分相当に見積もられる。 Since the mixed gas supplied to the fixed layer 20 is adjusted to a total gas flow rate of 50 ml, the average SV (space velocity) value is calculated from the cylindrical fixed layer volume (φ10 mm, height 15-37 mm). The value is about 2000h- 1 . This is a value about 10 times larger than that of an actual commercial scale device. The condition in this test example is that the amount of air supplied to the fixed layer 20 is about 10 times the same time, and the reaction When viewed over time, one minute of this device is estimated to be equivalent to about 10 minutes of the actual device in the evaluation per same air volume.

(比較例1)
比較例1の反応処理剤は、γ−アルミナと焼成ドロマイトを重量比1:1で単に物理混合したものを、反応装置10の反応管22に固定層20として充填し、反応温度600℃でハロン1301を処理したものである。
(Comparative Example 1)
The reaction treatment agent of Comparative Example 1 was prepared by simply mixing physically mixed γ-alumina and calcined dolomite at a weight ratio of 1: 1 into the reaction tube 22 of the reaction apparatus 10 as a fixed layer 20, and having a reaction temperature of 600 ° C. 1301 is processed.

(比較例2)
比較例2の反応処理剤は、焼成ドロマイトのみを反応装置10の反応管22に固定層20として充填し、反応温度800℃でハロン1301を処理したものである。
(Comparative Example 2)
The reaction treatment agent of Comparative Example 2 is obtained by filling only the calcined dolomite into the reaction tube 22 of the reaction apparatus 10 as the fixed layer 20 and treating halon 1301 at a reaction temperature of 800 ° C.

(比較例3)
比較例3の反応処理剤は、焼成ドロマイトのみを反応装置10の反応管22に固定層20として充填し、反応温度600℃でハロン1301を処理したものである。
(Comparative Example 3)
The reaction treatment agent of Comparative Example 3 is obtained by filling only the calcined dolomite into the reaction tube 22 of the reaction apparatus 10 as the fixed layer 20 and treating halon 1301 at a reaction temperature of 600 ° C.

(分解率の測定)
実施例1〜3、及び比較例1〜3を各実施例毎に前記温度条件で行い、処理開始から120分経過する迄の間、5分ごとに、ハロン1301の分解率を測定した。実施例1〜3、及び比較例1〜3の分解率を、図3に示す。
(Measurement of decomposition rate)
Examples 1 to 3 and Comparative Examples 1 to 3 were performed under the above temperature conditions for each example, and the decomposition rate of halon 1301 was measured every 5 minutes until 120 minutes had elapsed from the start of the treatment. The decomposition rates of Examples 1 to 3 and Comparative Examples 1 to 3 are shown in FIG.

比較例3は、600℃では、十分な分解率を得ることはできず、反応経過を通して、10%以下の分解率であった。そのため、従来型のアルカリ反応方式は、ハロン1301のような難分解性のフッ素化合物では、800℃程度の高温操作で反応する必要がある。反応温度800℃で処理した比較例2は、事実そのことを示し、ハロン1301の分解率は、食活性でおよそ74%程度まで向上する。比較例2の場合、120分経過後の分解率は、およそ25%まで低下した。一方、物理混合の比較例1では、初期活性が98%迄向上するのに対し、触媒機能の劣化により、反応開始直後から急激に分解率が減少した。   In Comparative Example 3, a sufficient decomposition rate could not be obtained at 600 ° C., and the decomposition rate was 10% or less throughout the course of the reaction. Therefore, in the conventional alkaline reaction method, it is necessary to react at a high temperature operation of about 800 ° C. with a hardly decomposable fluorine compound such as halon 1301. Comparative Example 2 treated at a reaction temperature of 800 ° C. shows that fact, and the decomposition rate of halon 1301 is improved to about 74% in the phagocytic activity. In the case of Comparative Example 2, the decomposition rate after 120 minutes had decreased to approximately 25%. On the other hand, in the comparative example 1 of physical mixing, the initial activity was improved to 98%, but the decomposition rate decreased rapidly immediately after the start of the reaction due to the deterioration of the catalyst function.

これに対して、実施例1〜3に示すように、添加されるアルミナ量が増加すると、ハロン1301の分解率が向上する傾向が認められた。すなわち、アルミナと焼成ドロマイトの重量比(Al/dolomite)が1.37の実施例3のように比較的アルミナ含有率の少ない場合、分解活性は、触媒を物理混合した比較例3と比べて低いものの、重量比2.00の実施例2、重量比3.76の実施例1のようにアルミナ含有が増加すると分解活性が向上する。特に、γ−アルミナ、及びθ−アルミナと焼成ドロマイトの重量比が3.76と焼成ドロマイトよりもアルミナが過剰の場合、初期の分解率がほぼ100%となり、従来の反応条件よりも低温と優れた分解活性を示す。 On the other hand, as shown in Examples 1 to 3, when the amount of added alumina was increased, the tendency of the decomposition rate of halon 1301 to be improved was recognized. That is, when the alumina content is relatively low as in Example 3 where the weight ratio of alumina to calcined dolomite (Al 2 O 3 / dolomite) is 1.37, the decomposition activity is the same as in Comparative Example 3 in which the catalyst is physically mixed. Although it is low, the decomposition activity improves when the alumina content increases as in Example 2 with a weight ratio of 2.00 and Example 1 with a weight ratio of 3.76. In particular, when the weight ratio of γ-alumina and θ-alumina to calcined dolomite is 3.76 and the alumina is excessive as compared with calcined dolomite, the initial decomposition rate is almost 100%, which is superior to conventional reaction conditions at a lower temperature. Show degradation activity.

実施例1の場合には反応開始から約50分に物理混合の比較例3と入れ替わるまで、最も優れた分解率を示した。
以上のことから、アルミナと焼成ドロマイトを実施例1〜3のように複合化した場合、明らかにハロン1301分解活性の向上が認められ。その初期活性の向上効果は、アルミナ添加量に影響されることが分かった。
In the case of Example 1, the most excellent decomposition rate was exhibited until the physical mixing was replaced with Comparative Example 3 in about 50 minutes from the start of the reaction.
From the above, when alumina and calcined dolomite are compounded as in Examples 1 to 3, an improvement in the decomposition activity of halon 1301 is clearly observed. It has been found that the effect of improving the initial activity is affected by the amount of alumina added.

(ハロゲンの固定化効果)
上記の分解処理の結果から分かるように、実施例1〜3では、従来の反応温度よりも、200〜250℃低い600℃において、高効率分解性能を有する。さらに、上記の実施例1〜3、及び比較例1〜3において、前記分解処理を120分行った後の各反応処理剤に固定化された含有ハロゲン量をイオンクロマトグラフィにより計測した。その結果を、図4に示す。図4において、縦軸は、反応処理剤単位重量(1.0g)当たりのハロゲン含有量(×10−3mol)を示す。又、図4において、Aは臭化物イオン(Br)の量であり、Bはフッ化物イオン(F)量を示している。
(Halogen immobilization effect)
As can be seen from the results of the above decomposition treatment, Examples 1 to 3 have high efficiency decomposition performance at 600 ° C., which is 200 to 250 ° C. lower than the conventional reaction temperature. Furthermore, in said Examples 1-3 and Comparative Examples 1-3, the content halogen content fixed to each reaction processing agent after performing the said decomposition process for 120 minutes was measured by the ion chromatography. The result is shown in FIG. In FIG. 4, the vertical axis indicates the halogen content (× 10 −3 mol) per unit weight (1.0 g) of the reaction treatment agent. In FIG. 4, A represents the amount of bromide ions (Br ), and B represents the amount of fluoride ions (F ).

反応温度600℃で行った比較例3では、反応後回収試料には臭素イオンは認められるもののフッ化物イオンは確認できなかった。これは、ハロン1301は加熱により臭素が自然脱離するため、これが比較例3の反応処理剤に選択分離されて固定化されたものと考えられる。又、比較例3では、反応温度600℃という温度条件下で、触媒活性のない焼成ドロマイトを用いていることから、ハロン1301が難分解性であるために、選択分離されたハロゲンの固定化量は少ないものと認められた。   In Comparative Example 3 performed at a reaction temperature of 600 ° C., fluoride ions could not be confirmed although bromine ions were observed in the recovered sample after the reaction. This is thought to be because bromine spontaneously desorbs by heating in the halon 1301, which is selectively separated and immobilized in the reaction treatment agent of Comparative Example 3. Further, in Comparative Example 3, since calcined dolomite having no catalytic activity is used under the reaction temperature of 600 ° C., the amount of halogen that has been selectively separated is determined because Halon 1301 is hardly decomposable. Were recognized as few.

比較例2では、比較例3よりも反応温度が高温の800℃においてハロン1301の分解が行われることにより、ハロン1301の分解反応速度が十分に活性化され、それに伴うハロゲン固定化量は増加した結果が得られた。なお、比較例2においても、選択分離された臭素の固定化量はさほど変化はないが、電子吸引性の高いフッ素がハロン1301分子より選択的に引き抜かれ、選択分離されたフッ素の固定化量が飛躍的に増えていることが確認された。   In Comparative Example 2, decomposition of Halon 1301 was performed at 800 ° C., which is a higher reaction temperature than Comparative Example 3, so that the decomposition reaction rate of Halon 1301 was sufficiently activated, and the amount of halogen immobilization associated therewith increased. Results were obtained. In Comparative Example 2, the amount of the selectively separated bromine immobilized does not change so much, but the fluorine with high electron withdrawing property is selectively extracted from the Halon 1301 molecule, and the amount of the selectively separated separated fluorine is immobilized. It was confirmed that there was a dramatic increase.

比較例1では、比較例2よりもさらに、選択分離されたフッ素の固定化量が増加していることが確認された。この場合、ハロゲン種としてはフッ素固定化量が顕著であり、その固定化量は、比較例2と比較しても約2倍となった。   In Comparative Example 1, it was confirmed that the amount of selectively separated fluorine immobilized was further increased than in Comparative Example 2. In this case, the amount of fluorine immobilized as the halogen species was remarkable, and the amount immobilized was about twice that of Comparative Example 2.

重量比3.76の実施例1では、比較例1よりもさらに、2倍弱程度に選択分離されたフッ素の固定化量が増加した。反応温度600℃の実施例1〜3では、反応温度800℃の比較例2とを比較すると、およそ4〜6倍に選択分離されたフッ素の固定化量が増大したことになる。なお、実施例1〜3においては、選択分離された臭素の固定化量は、比較例2と比較すると0.6〜0.7倍程度となった。これは、γ−アルミナ、及びθ−アルミナ表面がハロン1301のフッ素化学吸着に活性なサイトを有していることが要因として考えられる。   In Example 1 having a weight ratio of 3.76, the amount of fluorine selectively separated and separated by a little less than about 2 times that in Comparative Example 1 was increased. In Examples 1 to 3 at a reaction temperature of 600 ° C., compared with Comparative Example 2 at a reaction temperature of 800 ° C., the immobilization amount of fluorine selectively separated approximately 4 to 6 times increased. In Examples 1 to 3, the amount of bromine selectively separated was about 0.6 to 0.7 times that of Comparative Example 2. This is considered due to the fact that the γ-alumina and θ-alumina surfaces have sites active for fluorine chemisorption of halon 1301.

フッ素吸着に活性なサイトとしてはγ−アルミナ、及びθ−アルミナ上のルイス酸点が寄与していると考えられ(図5参照)、すなわち、ルイス酸点はハロン1301から脱離したフッ化物イオンの電子対吸引点として働き、触媒反応が進行するものと推察される(図5では、γ−アルミナ及びθ−アルミナ上のルイス酸点(L酸点)で図示されている。)。   It is considered that γ-alumina and Lewis acid sites on θ-alumina contribute to the sites active for fluorine adsorption (see FIG. 5), that is, the Lewis acid sites are fluoride ions desorbed from halon 1301. It is inferred that the catalytic reaction proceeds as shown in FIG. 5 (indicated by Lewis acid points (L acid points) on γ-alumina and θ-alumina).

反応処理剤単位重量に含まれるこのサイト数は、反応処理剤粒子の比表面積とγ−アルミナ、及びθ−アルミナの含有量に依存していると考えられ、反応処理剤粒子の比表面積が大きく、かつγ−アルミナ含有量及びθ−アルミナ含有量の大きな反応処理剤は、比表面積が小さく、かつγ−アルミナ含有量及びθ−アルミナ含有量の少ない反応処理剤よりも、高いフッ素固定化効果を示すはずと考えられた。しかし、選択分離されたフッ素の固定化量がアルミナ含有量が少ないものほど増加する傾向を示す実施例1〜3の結果から、これは後述するように、γ−アルミナ触媒及びθ−アルミナ触媒に対し触媒毒でもあるフッ素が、焼成ドロマイトと近接場に共存しているため、吸着サイトから速やかに除去され、反応過程における吸着サイトの減少抑制がなされていたためと推察される。   The number of sites contained in the reaction processing agent unit weight is considered to depend on the specific surface area of the reaction processing agent particles and the contents of γ-alumina and θ-alumina, and the specific surface area of the reaction processing agent particles is large. In addition, a reaction treatment agent having a large γ-alumina content and θ-alumina content has a smaller specific surface area and a higher fluorine fixing effect than a reaction treatment agent having a small γ-alumina content and θ-alumina content. It was thought that it should show. However, from the results of Examples 1 to 3 in which the amount of the selectively separated fluorine immobilized tends to increase as the content of alumina decreases, as described later, this indicates that the γ-alumina catalyst and the θ-alumina catalyst. On the other hand, it is inferred that fluorine, which is also a catalyst poison, coexists in the near field with the calcined dolomite, and thus was quickly removed from the adsorption site, and the reduction of the adsorption site in the reaction process was suppressed.

実施例1〜3のフッ素選択分離剤におけるγ−アルミナ及びθ−アルミナ触媒と焼成ドロマイトの共存効果は、焼成ドロマイト含有量が大きいほど顕著となり、選択分離されたフッ素の固定化量が増加する傾向があった。一方、物理混合の比較例1の場合、焼成ドロマイトの量が比較的多いものの実施例1〜3のフッ素選択分離剤に比べ、γ−アルミナ触媒及びθ−アルミナ触媒の初期の比表面積が小さく、吸着サイト数が限られることのほか、触媒と焼成ドロマイト間の物理的距離が実施例1〜3と異なり比較的大きいため、相対的にハロゲン固定化量が減少したと考えられる。   The coexistence effect of γ-alumina and θ-alumina catalyst and calcined dolomite in the fluorine selective separating agents of Examples 1 to 3 becomes more prominent as the calcined dolomite content increases, and the immobilized amount of selectively separated fluorine tends to increase. was there. On the other hand, in the case of Comparative Example 1 of physical mixing, although the amount of calcined dolomite is relatively large, the initial specific surface areas of the γ-alumina catalyst and the θ-alumina catalyst are small compared to the fluorine selective separating agents of Examples 1 to 3, In addition to the limited number of adsorption sites, the physical distance between the catalyst and the calcined dolomite is relatively large, unlike in Examples 1 to 3, so the halogen immobilization amount is considered to have decreased relatively.

なお、本発明の実施形態は以下のように変更してもよい。
○ フッ素選択分離剤の製造方法は、基本的には、前記実施形態で説明したように造粒と焼成層の2つのステップにより行われるが、前記造粒法として工業的に用いられる方法としては、転動、流動層、攪拌、圧縮、押出、破砕、溶融、噴霧の各種方法があり、これらの方法を使用してもよい。
In addition, you may change embodiment of this invention as follows.
○ The method for producing a fluorine selective separating agent is basically performed by two steps of granulation and fired layer as described in the above embodiment, but as a method industrially used as the granulation method, There are various methods such as rolling, fluidized bed, stirring, compression, extrusion, crushing, melting and spraying, and these methods may be used.

○ 前記実施例では、触媒前駆体としてのアルミナゾルを焼成ドロマイトにコーティングした後、焼成した。この代わりに、触媒前駆体としてのルチル型チタニアゾル、又はアナターゼ型チタニアゾルを焼成ドロマイト、又は焼成カルサイトに混合して、焼成ドロマイト、又は焼成カルサイトをコーティングした後、400℃以上で焼成して、フッ素選択分離剤を形成してもよい。   In the above examples, the alumina sol as the catalyst precursor was coated on the calcined dolomite and then calcined. Instead, rutile type titania sol or anatase type titania sol as a catalyst precursor is mixed with calcined dolomite or calcined calcite, and after calcined dolomite or calcined calcite, calcined at 400 ° C. or higher, A fluorine selective separating agent may be formed.

或いは、酸化物系触媒としてγ−アルミナを単独、又はθ−アルミナを単独で含むアルミナゾルを焼成ドロマイト、又は焼成カルサイトに混合して、焼成ドロマイト、又は焼成カルサイトにコーティングした後、400℃以上、800℃未満で焼成して、フッ素選択分離剤を形成してもよい。このように、γ−アルミナを単独、又はθ−アルミナを単独で使用した場合においても、フッ素吸着に活性なサイトとして、γ−アルミナ単独、又はθ−アルミナ上のルイス酸点が寄与することになる。従って、γ−アルミナ単独、又はθ−アルミナ上のルイス酸点は含ハロゲン化合物から脱離したフッ化物イオンの電子対吸引点として働き、触媒反応を進行させることができる。   Alternatively, γ-alumina alone or oxide sol containing θ-alumina alone as an oxide-based catalyst is mixed with calcined dolomite or calcined calcite and coated onto calcined dolomite or calcined calcite, and then 400 ° C. or higher. The fluorine selective separating agent may be formed by baking at less than 800 ° C. Thus, even when γ-alumina alone or θ-alumina is used alone, the Lewis acid sites on γ-alumina alone or θ-alumina contribute as active sites for fluorine adsorption. Become. Accordingly, the Lewis acid point on the γ-alumina alone or on the θ-alumina serves as an electron pair attracting point for fluoride ions desorbed from the halogen-containing compound, and the catalytic reaction can proceed.

(a)はアルミナゾルと、焼成ドロマイトから、フッ素選択分離剤を製造する方法の概略図、(b)は、γ−アルミナ触媒と焼成ドロマイトの拡大概略図。(A) is a schematic diagram of a method for producing a fluorine selective separating agent from alumina sol and calcined dolomite, and (b) is an enlarged schematic diagram of a γ-alumina catalyst and calcined dolomite. 反応装置の概略図。Schematic of the reaction apparatus. 実施例1〜3、比較例1〜3の分解率のグラフ。The graph of the decomposition rate of Examples 1-3 and Comparative Examples 1-3. 実施例1〜3、比較例1〜3のハロゲン固定化量のグラフ。The graph of the amount of halogen fixation of Examples 1-3 and Comparative Examples 1-3. 実施例のフッ素選択分離剤によるハロン1301の分解機構の説明図。Explanatory drawing of the decomposition | disassembly mechanism of halon 1301 by the fluorine selective separation agent of an Example. (a)〜(b)は実施例1〜3で使用した混合物を、CuKα線を使用したX線回折で分析した結果を示すチャート。(A)-(b) is a chart which shows the result of having analyzed the mixture used in Examples 1-3 by the X-ray diffraction using a CuK alpha ray.

符号の説明Explanation of symbols

10…反応装置、20…固定層(充填層)、22…反応管、
34…マスフローメータ、37…流量調整弁、40…流量調整部。
10 ... reactor, 20 ... fixed bed (packed bed), 22 ... reaction tube,
34 ... Mass flow meter, 37 ... Flow rate adjusting valve, 40 ... Flow rate adjusting unit.

Claims (4)

固体アルカリ剤に固体酸性を示す酸化物系触媒をコーティングして焼成してなることを特徴とするフッ素選択分離剤。   A fluorine selective separation agent obtained by coating a solid alkaline agent with an oxide-based catalyst exhibiting solid acidity and calcining. 前記固体アルカリ剤は、酸化カルシウム、又は酸化マグネシウムを含むアルカリ土類化合物の中から少なくとも1つ選ばれてなることを特徴とする請求項1に記載のフッ素選択分離剤。   2. The fluorine selective separation agent according to claim 1, wherein the solid alkali agent is selected from at least one of an alkaline earth compound containing calcium oxide or magnesium oxide. 前記酸化物系触媒が、γ−アルミナ又はθ−アルミナを含むアルミナ化合物、アナターゼ型チタニア又はルチル型チタニアを含むチタニア化合物の中から少なくとも1つ選ばれてなることを特徴とする請求項1又は請求項2に記載のフッ素選択分離剤。   2. The oxide catalyst according to claim 1, wherein the oxide catalyst is selected from at least one of an alumina compound containing γ-alumina or θ-alumina, an titase compound containing anatase type titania or rutile type titania. Item 3. A selective fluorine separation agent according to Item 2. 無加湿雰囲気で、ガス状の含フッ素化合物を、400℃以上、800℃未満の範囲で加熱された請求項1乃至請求項3のいずれか1項に記載のフッ素選択分離剤に通すことを特徴とする含フッ素化合物の処理方法。   The gaseous fluorine-containing compound is passed through the fluorine selective separation agent according to any one of claims 1 to 3 heated in a range of 400 ° C or higher and lower than 800 ° C in a non-humidified atmosphere. A method for treating a fluorine-containing compound.
JP2008217179A 2008-08-26 2008-08-26 Fluorine selective separating agent for dry treatment and dry treatment method of fluorine-containing compound Expired - Fee Related JP5366479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008217179A JP5366479B2 (en) 2008-08-26 2008-08-26 Fluorine selective separating agent for dry treatment and dry treatment method of fluorine-containing compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008217179A JP5366479B2 (en) 2008-08-26 2008-08-26 Fluorine selective separating agent for dry treatment and dry treatment method of fluorine-containing compound

Publications (2)

Publication Number Publication Date
JP2010051856A true JP2010051856A (en) 2010-03-11
JP5366479B2 JP5366479B2 (en) 2013-12-11

Family

ID=42068349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008217179A Expired - Fee Related JP5366479B2 (en) 2008-08-26 2008-08-26 Fluorine selective separating agent for dry treatment and dry treatment method of fluorine-containing compound

Country Status (1)

Country Link
JP (1) JP5366479B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055836A (en) * 2010-09-09 2012-03-22 Chubu Electric Power Co Inc Method of treating gas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9156390B2 (en) 2012-05-01 2015-10-13 Oilmatic Systems, Llc Bulk cooking oil distribution system
US9392907B2 (en) 2012-05-01 2016-07-19 Michael Allora Bulk cooking oil distribution system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192653A (en) * 1997-01-14 1998-07-28 Hitachi Ltd Treatment of gas containing fluorine compound
JP2001190959A (en) * 1999-04-28 2001-07-17 Showa Denko Kk Reactant for decomposition of fluorine compound, decomposition method and its usage
JP2002224565A (en) * 2000-12-01 2002-08-13 Japan Pionics Co Ltd Agent and method for decomposing fluorocarbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192653A (en) * 1997-01-14 1998-07-28 Hitachi Ltd Treatment of gas containing fluorine compound
JP2001190959A (en) * 1999-04-28 2001-07-17 Showa Denko Kk Reactant for decomposition of fluorine compound, decomposition method and its usage
JP2002224565A (en) * 2000-12-01 2002-08-13 Japan Pionics Co Ltd Agent and method for decomposing fluorocarbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055836A (en) * 2010-09-09 2012-03-22 Chubu Electric Power Co Inc Method of treating gas

Also Published As

Publication number Publication date
JP5366479B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
Cai et al. Catalytic combustion of 1, 2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts
Dai et al. Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation
EP1340533B1 (en) A method of treatment for decomposing fluorine compounds, and catalyst and apparatus therefor
JP3269456B2 (en) Method for decomposing fluorine-containing compound, catalyst and decomposition apparatus
US5759504A (en) Method for treating organohalogen compounds with catalyst
US5877391A (en) Method for treating gas containing organohalogen compounds, and catalyst for decomposing the organohalogen compounds
JP2006255677A (en) Oxidation catalyst and its manufacturing method
CN1195573C (en) Reactant and method for decomposition of fluorine compounds, and use thereof
JP5366479B2 (en) Fluorine selective separating agent for dry treatment and dry treatment method of fluorine-containing compound
KR100746528B1 (en) Process and Catalyst for Decomposing Perfluoro Compound, and Apparatus for Treating Perfluoro Compound
CN105903458A (en) Preparation method and application of calcium-based adsorbent
JP4210750B2 (en) Inorganic compound containing active oxygen and process for producing the same
JP2004249285A (en) Method of decomposing fluoride compound
US20060140836A1 (en) Process for decomposing fluorine compounds
JP4711831B2 (en) Exhaust gas treatment agent, exhaust gas treatment method, and exhaust gas treatment apparatus
JP5016616B2 (en) Method for treating exhaust gas containing fluorine compound and reaction tank for treatment
JP3376789B2 (en) Method for treating organic halogen compounds with a catalyst
CN116635132A (en) Catalyst for decomposing chlorine gas, exhaust gas treatment device, and method for decomposing chlorine gas
JP2006083009A (en) Inorganic compound material including or occluding active oxygen and method of manufacturing the same
WO2018230121A1 (en) Fluorine-containing gas decomposing/removing agent, method for producing same, and fluorine-containing gas removing method and fluorine resource recovery method each using same
Hanif et al. Tailoring the properties of calcium modified fibrous mesoporous silica KCC-1 for optimized sulfur dioxide removal
JP4596432B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JP2022530052A (en) How to clean sulfur corrosive process gas
US4176165A (en) Treatment of alkyl lead-containing gas stream
JP2009078237A (en) Treating method for exhaust gas from semiconductor and liquid crystal manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Ref document number: 5366479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees