JP2006083009A - Inorganic compound material including or occluding active oxygen and method of manufacturing the same - Google Patents

Inorganic compound material including or occluding active oxygen and method of manufacturing the same Download PDF

Info

Publication number
JP2006083009A
JP2006083009A JP2004269054A JP2004269054A JP2006083009A JP 2006083009 A JP2006083009 A JP 2006083009A JP 2004269054 A JP2004269054 A JP 2004269054A JP 2004269054 A JP2004269054 A JP 2004269054A JP 2006083009 A JP2006083009 A JP 2006083009A
Authority
JP
Japan
Prior art keywords
inorganic compound
compound material
anion
active oxygen
peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004269054A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
憲司 鈴木
Shiho Nagano
志保 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004269054A priority Critical patent/JP2006083009A/en
Publication of JP2006083009A publication Critical patent/JP2006083009A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic compound material capable of including or occluding a substance developing active oxygen; a method for manufacturing the same; and applications of the inorganic compound. <P>SOLUTION: An inorganic compound material including or occluding superoxide anion (O<SB>2</SB><SP>-</SP>) and/or peroxide anion (O<SB>2</SB><SP>2-</SP>), characterized by containing no quicklime (CaO) as a by-product is provided. The inorganic compound material having a chemical composition expressed by following formula: Ca<SB>12</SB>(Al<SB>14-x</SB>Si<SB>x</SB>)O<SB>33+0.5x</SB>(wherein, 0≤X≤4) and including or occluding active oxygen is manufactured by only heating a raw material mixture at a temperature of ≥350°C. The inorganic compound material and its formed article are useful, for example, as constitutive components of a member of an oxidation catalyst, a solid electrolyte, an oxygen occlusion carrier or the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、活性酸素を包含した無機化合物材料及びその製造方法に関するものであり、更に詳しくは、スーパーオキサイドアニオン(O )及びパーオキサイドアニオン(O 2−)の両者を包含あるいは吸蔵する活性酸素発現物質とその製造方法及びその用途に関するものである。従来、スーパーオキサイドアニオン及びパーオキサイドアニオンの両者を包含あるいは吸蔵する無機化合物は、前駆物質であるハイドロガーネットを高圧容器を用いて、200℃、5時間以上の水熱処理して製造し、次に、該前駆物質を更に700℃以上1200℃以下の高温で加熱することで製造することが知られていた(特許文献1)。この製造法は、前駆物質の製造、及び前駆物質の高温を要する加熱処理の少なくとも2工程を必要とすることから、工程の簡素化及び加熱温度の低温化による省エネルギー化が求められていた。 The present invention relates to an inorganic compound material including active oxygen and a method for producing the same, and more specifically, includes or occludes both a superoxide anion (O 2 ) and a peroxide anion (O 2 2− ). The present invention relates to an active oxygen-expressing substance, its production method and its use. Conventionally, an inorganic compound that includes or occludes both a superoxide anion and a peroxide anion is produced by hydrothermally treating the precursor hydrogarnet at 200 ° C. for 5 hours or more using a high-pressure vessel, It has been known that the precursor is further heated at a high temperature of 700 ° C. or higher and 1200 ° C. or lower (Patent Document 1). Since this manufacturing method requires at least two steps of manufacturing the precursor and heat treatment that requires a high temperature of the precursor, energy saving has been demanded by simplifying the process and lowering the heating temperature.

また、得られた無機化合物材料は、生石灰が副生することから純度が低いという問題点を有していた。しかるに、本発明は、前駆物質の製造を必要とせず、原料を350〜1000℃の低温で加熱するだけの簡便かつ省エネルギーの製造工程で、生石灰の副生もなく、しかもスーパーオキサイドアニオン及びパーオキサイドアニオンの両者又は一方を包含あるいは吸蔵する純度の高い無機化合物を製造し、提供するものである。   Moreover, the obtained inorganic compound material has a problem that purity is low because quick lime is by-produced. However, the present invention does not require the production of a precursor, is a simple and energy-saving production process in which the raw material is heated at a low temperature of 350 to 1000 ° C., has no byproduct of quick lime, and has superoxide anions and peroxides. A high-purity inorganic compound that contains or occludes or occludes both or one of the anions is produced and provided.

本発明の無機化合物材料は、副生成物としての生石灰を含まず、活性酸素発現作用を有する物質であり、その用途は、例えば、酸化触媒、固体電解質燃料電池用電極、イオン導電体などの構成成分として有用であり、更に、本発明の無機化合物材料の成形体は、例えば、新しいタイプの二輪車の排ガス浄化用触媒、及び酸素吸蔵担体などを提供するものとして有用である。   The inorganic compound material of the present invention is a substance that does not contain quicklime as a by-product and has an active oxygen expression effect, and uses thereof include, for example, configurations such as an oxidation catalyst, a solid electrolyte fuel cell electrode, and an ionic conductor. The molded body of the inorganic compound material of the present invention is useful as a component for providing, for example, a new type exhaust gas purifying catalyst for two-wheeled vehicles, an oxygen storage carrier, and the like.

都市部を中心に大気汚染が深刻化する中で、光化学スモッグの原因とされる炭化水素、及び呼吸器疾患を起こす窒素酸化物の大幅な削減基準が、環境省の中央環境審議会でまとめられ、大気汚染防止法に基づき2004年に告示されようとしている。具体的には、2006〜2007年以降に販売されるオートバイなど二輪車の排ガス規制が大幅に強化される予定である。新基準は、例えば、50cc以下の原動機付自転車では、炭化水素が走行1km当たり0.5g(現行値比で削減率75%)、窒素酸化物が0.15g(同50%)であり、2006年から適用予定であり、また、250ccを超えるオートバイでは、炭化水素が0.3g(同85%)、窒素酸化物が0.15g(同50%)であり、2007年から適用予定である。   As air pollution becomes serious, especially in urban areas, the central environmental council of the Ministry of the Environment has compiled a major reduction standard for hydrocarbons that cause photochemical smog and nitrogen oxides that cause respiratory diseases. According to the Air Pollution Control Law, it is about to be announced in 2004. Specifically, exhaust gas regulations for motorcycles such as motorcycles sold after 2006-2007 will be significantly strengthened. For example, in a motorbike with a motor of 50cc or less, the new standards are 0.5g of hydrocarbon per 1km of travel (75% reduction rate compared to the current value), 0.15g of nitrogen oxide (50%), 2006 It is scheduled to be applied from 2007, and in motorcycles over 250 cc, hydrocarbons are 0.3 g (85%) and nitrogen oxides are 0.15 g (50%).

炭化水素は、ガソリンの不完全燃焼により排出されるが、二輪車では乗用車の十倍以上排出され、四輪者と二輪車の全排出量の約20%を占めている。こうした状況下、二輪車でも乗用車で使用されている触媒の使用が検討されているが、既存の触媒は、コストの安い二輪車には割高となり、より安価な排出ガス浄化用触媒の開発が切望されている。   Hydrocarbons are emitted by incomplete combustion of gasoline, but in motorcycles, they are emitted more than ten times as much as passenger cars, accounting for about 20% of the total emissions of automobiles and motorcycles. Under such circumstances, the use of catalysts used in passenger cars is also being considered for two-wheeled vehicles, but existing catalysts are expensive for cheaper two-wheeled vehicles, and the development of a cheaper exhaust gas purification catalyst is eagerly desired. Yes.

自動車用触媒については、今日、Pt、Pd、Pt/Rh、Pd/Rh、Pt/Pd/Rhなどが、コーディエライトで造られたモノリス型の担体上に担持され、三元触媒として使用されている。更に、空燃比の変動を吸収するために、酸素貯蔵物質セリアが助触媒成分として用いられている。これらの貴金属は、触媒活性が高いが、コストが高く、しかも大量に使用されるため、回収して再利用されている。   As for automobile catalysts, today, Pt, Pd, Pt / Rh, Pd / Rh, Pt / Pd / Rh, etc. are supported on monolithic supports made of cordierite and used as three-way catalysts. ing. In addition, oxygen storage material ceria is used as a co-catalyst component to absorb air-fuel ratio fluctuations. These noble metals have high catalytic activity, but are expensive and are used in large quantities, so they are recovered and reused.

従来、活性酸素発現物質として知られ、実用化されている物質としては、例えば、酸化チタンに代表される光触媒がある。光(紫外線)が酸化チタンに吸収されると、電子と正孔が形成される。酸化チタンの場合、励起電子による還元力よりも正孔による酸化力が大きいため、触媒表面の吸着水が正孔によって酸化され、ヒドロキシラジカル(・OH)が生成する。その一方において、空気中の酸素の還元反応が進行し、活性酸素(O )が生成される。活性酸素は、酸化反応の中間体に付いて過酸化物の形成あるいは過酸化水素(H)を経て水になると考えられている。また、活性酸素は、炭素―炭素結合に直接作用して有機系有害物質を分解する場合もある。 Conventionally, as a substance known as an active oxygen expression substance and put into practical use, for example, there is a photocatalyst represented by titanium oxide. When light (ultraviolet light) is absorbed by titanium oxide, electrons and holes are formed. In the case of titanium oxide, since the oxidizing power due to holes is greater than the reducing power due to excited electrons, the adsorbed water on the catalyst surface is oxidized by holes and hydroxy radicals (.OH) are generated. On the other hand, the reduction reaction of oxygen in the air proceeds to generate active oxygen (O 2 ). It is considered that active oxygen becomes water through the formation of peroxides or hydrogen peroxide (H 2 O 2 ) as an intermediate in the oxidation reaction. In addition, active oxygen may directly act on a carbon-carbon bond to decompose organic harmful substances.

活性酸素を発現する酸化チタン以外の物質としては、活性酸素種を包含又は吸蔵するCa12(Al14−XSi)O33+0.5x(0<X≦4)化合物(特許文献1)や、12CaO・7Al化合物が知られている(特許文献2)。前者のCa12(Al14−XSi)O33+0.5x化合物は、200℃の温度で5時間以上水熱処理を施して前駆物質であるハイドロガーネットを合成し、更に、ハイドロガーネットを空気雰囲気にて700℃以上1200℃以下で加熱することにより、製造される。この製造法では、ハイドロガーネットの熱分解で生じる生石灰(CaO)が副生物として混在するため、Ca12(Al14−XSi)O33+0.5x化合物の純度は低いという問題点を抱えている。 Examples of substances other than titanium oxide that express active oxygen include Ca 12 (Al 14 -X Si X ) O 33 + 0.5x (0 <X ≦ 4) compounds (Patent Document 1) that include or occlude active oxygen species, A 12CaO · 7Al 2 O 3 compound is known (Patent Document 2). The former Ca 12 (Al 14-X Si X) O 33 + 0.5x compound is subjected to a hydrothermal treatment for 5 hours or more at a temperature of 200 ° C. to synthesize hydrogarnet a precursor, further, the hydrogarnet air atmosphere It is manufactured by heating at 700 ° C. or higher and 1200 ° C. or lower. In this production method, quick lime (CaO) generated by thermal decomposition of hydrogarnet is mixed as a by - product, so that the purity of the Ca 12 (Al 14 -X Si X ) O 33 + 0.5x compound is low. .

一方、後者の12CaO・7Al化合物は、カルシウムとアルミニウムを原子当量比で12:14とした混合原料を、酸素分圧10Pa以上、好ましくは10Pa以上、水蒸気分圧1Pa以下に厳密に制御した乾燥酸化雰囲気で、焼成温度1000℃以上、好ましくは1350℃の高温条件下で固相反応させることにより製造されるが、製造条件が厳しいために安定した製造が困難であるという問題を有する。 On the other hand, in the latter 12CaO · 7Al 2 O 3 compound, a mixed raw material having an atomic equivalent ratio of calcium and aluminum of 12:14 is an oxygen partial pressure of 10 4 Pa or more, preferably 10 5 Pa or more, and a water vapor partial pressure of 1 Pa or less. It is manufactured by a solid phase reaction under a high temperature condition of a firing temperature of 1000 ° C. or more, preferably 1350 ° C. in a strictly controlled dry oxidation atmosphere, but stable production is difficult due to severe manufacturing conditions. Have a problem.

特開2004−99430号公報JP 2004-99430 A 特開2002−3218号公報Japanese Patent Laid-Open No. 2002-3218

本発明者らは、上記従来技術に鑑みて、スーパーオキサイドアニオン(O )及びパーオキサイドアニオン(O 2−)の両者を包含あるいは吸蔵することで知られているCa12(Al14−XSi)O33+0.5xと表記される無機化合物を、簡便で、生石灰を副生することなく、高い純度で製造することを可能とする該無機化合物の製造法を開発することを目標として鋭意研究を積み重ねた結果、本発明を成すに至った。 In view of the above prior art, the present inventors have known Ca 12 (Al 14−) which is known to include or occlude both the superoxide anion (O 2 ) and the peroxide anion (O 2 2− ). the X Si X) inorganic compounds, denoted O 33 + 0.5x, convenient, without by-produced quicklime, the goal of developing a method for producing high inorganic compound makes it possible to produce a purity As a result of intensive studies, the present invention has been achieved.

本発明は、強い酸化力を有するスーパーオキサイドアニオン(O )及びパーオキサイドアニオン(O 2−)の両者又は一方を包含あるいは吸蔵する活性酸素発現物質を簡便に高純度で製造することを可能とする該活性酸素発現物質の製造法を提供することを目的とするものである。また、本発明は、スーパーオキサイドアニオン及び/又はパーオキサイドアニオンを構造中に包含又は吸蔵し、副生成物としての生石灰を含まないことを特徴とする活性酸素発現作用を有する無機化合物材料を提供することを目的とするものである。 The present invention provides a simple and highly pure active oxygen-expressing substance that contains or occludes or occludes one or both of a superoxide anion (O 2 ) and a peroxide anion (O 2 2− ) having strong oxidizing power. It is an object of the present invention to provide a method for producing the active oxygen-expressing substance that can be made. In addition, the present invention provides an inorganic compound material having an active oxygen expression effect characterized in that it contains or occludes a superoxide anion and / or peroxide anion in the structure and does not contain quicklime as a by-product. It is for the purpose.

更に、本発明は、活性酸素発現物質であるアルミノシリケートからなる無機化合物材料の成形体を作製し、二輪車などの排ガス浄化用触媒、二次電池用固体電解質、及び酸素吸蔵担体などに有用な該無機化合物材料からなる部材を提供することを目的とするものである。   Furthermore, the present invention produces a molded body of an inorganic compound material made of aluminosilicate, which is an active oxygen-expressing substance, and is useful for exhaust gas purification catalysts such as motorcycles, solid electrolytes for secondary batteries, and oxygen storage carriers. The object is to provide a member made of an inorganic compound material.

上記課題を解決するための本発明は、スーパーオキサイドアニオン(O )及び/又はパーオキサイドアニオン(O 2−)を包含あるいは吸蔵したCa12(Al14−XSi)O33+0.5x(0≦X≦4)と表記される組成を有する無機化合物からなる無機化合物材料であって、副生成物としての生石灰(CaO)を含まないことを特徴とするスーパーオキサイドアニオン(O )及び/又はパーオキサイドアニオン(O 2−)を包含あるいは吸蔵した無機化合物材料である。本無機化合物材料は、無機化合物材料を構成する無機化合物が、マイエナイト構造を有すること、無機化合物材料を構成する無機化合物の構造が、(Al、Si)O四面体がフレームワーク状に結合してゼオライト様構造を形成し、ナノサイズの空隙を有しており、その空隙に活性酸素のO 及びO 2−が存在すること、を特徴としている。また、本発明では、前記無機化合物材料又はその成形体からなる酸化触媒が提供される。また、本発明では、前記該無機化合物材料の成形体からなる活性酸素発現作用を有する部材が提供される。前記部材は、排ガス浄化用触媒であること、固体電解質であること、酸素吸蔵担体であること、を特徴としている。また、本発明は、スーパーオキサイドアニオン(O )及び/又はパーオキサイドアニオン(O 2−)を包含あるいは吸蔵したCa12(Al14−XSi)O33+0.5x(0≦X≦4)と表記される組成を有する無機化合物を製造する方法において、Ca12(Al14−XSi)O33+0.5x0≦X≦4)と表記される組成に合わせて、カルシア源、アルミナ源、シリカ源を混合し、次に、加熱することで上記無機化合物を製造することを特徴とするスーパーオキサイドアニオン(O )及び/又はパーオキサイドアニオン(O 2−)を包含あるいは吸蔵した無機化合物の製造方法、である。本方法は、カトアイト構造を経由し、マイエナイト構造を有する無機化合物を製造すること、好適には、加熱温度700℃以下で加熱して、結晶性が良い無機化合物を製造すること、350℃以上1000℃以下で加熱すること、を特徴としている。 The present invention for solving the above-mentioned problems is a Ca 12 (Al 14 -X Si X ) O 33 + 0.5x containing or occluding a superoxide anion (O 2 ) and / or a peroxide anion (O 2 2− ). Superoxide anion (O 2 ), which is an inorganic compound material composed of an inorganic compound having a composition expressed as (0 ≦ X ≦ 4), and does not contain quicklime (CaO) as a by-product And / or an inorganic compound material that includes or occludes peroxide anions (O 2 2− ). In this inorganic compound material, the inorganic compound constituting the inorganic compound material has a mayenite structure, and the structure of the inorganic compound constituting the inorganic compound material is that (Al, Si) O 4 tetrahedrons are bonded in a framework shape. It forms a zeolite-like structure and has nano-sized voids, and the active oxygen O 2 and O 2 2− are present in the voids. Moreover, in this invention, the oxidation catalyst which consists of the said inorganic compound material or its molded object is provided. Moreover, in this invention, the member which has the active oxygen expression effect | action which consists of a molded object of the said inorganic compound material is provided. The member is characterized by being an exhaust gas purifying catalyst, a solid electrolyte, and an oxygen storage carrier. In addition, the present invention includes Ca 12 (Al 14 -X Si X ) O 33 + 0.5x (0 ≦ X ≦) that includes or occludes a superoxide anion (O 2 ) and / or a peroxide anion (O 2 2− ). a method of producing an inorganic compound having a composition denoted 4), in accordance with the composition, denoted Ca 12 (Al 14-X Si X) O 33 + 0.5x 0 ≦ X ≦ 4), calcia source, alumina A superoxide anion (O 2 ) and / or a peroxide anion (O 2 2− ) characterized in that the inorganic compound is produced by mixing a source and a silica source and then heating. And a method for producing the inorganic compound. In this method, an inorganic compound having a mayenite structure is produced via a katoite structure, preferably an inorganic compound having good crystallinity is produced by heating at a heating temperature of 700 ° C. or lower, and 350 ° C. or higher and 1000 ° C. or higher. It is characterized by heating at a temperature not higher than ° C.

次に、本発明について更に詳細に説明する。
本発明の無機化合物の製造法は、ハイドロガーネットなどの前駆物質を高圧容器を用いて、加熱しながら長時間かけて製造することを必要とせず、また、酸素分圧や水蒸気分圧の厳密な制御を必要とせず、加熱温度も350℃から1000℃の低温でよく、簡便かつ省エネルギーで該無機化合物を製造できることに大きな特徴を有する。以下に、その製造例を説明するが、本発明の活性酸素発現物質の製造法は、以下の方法のみに限定されるものではない。
Next, the present invention will be described in more detail.
The method for producing an inorganic compound of the present invention does not require a precursor such as hydrogarnet to be produced over a long period of time using a high-pressure vessel, and the oxygen partial pressure and water vapor partial pressure are strictly limited. Control is not required, the heating temperature may be as low as 350 ° C. to 1000 ° C., and the present invention has a great feature that the inorganic compound can be produced simply and with energy saving. Although the example of manufacture is demonstrated below, the manufacturing method of the active oxygen expression substance of this invention is not limited only to the following method.

本発明の無機化合物は、Ca12(Al14−XSi)O33+0.5x(0≦X≦4)と表記される組成に合わせて、カルシア源、アルミナ源、シリカ源を混合し、空気雰囲気下の電気炉等を用いて350℃以上で加熱することのみにより製造される。より詳しく、カルシア源に消石灰、アルミナ源にアルミナゾル、シリカ源に粉末状シリカを用いた製造法について説明すると、製造したい無機化合物のX値(0≦X≦4)を決めた後、その組成に見合う消石灰、アルミナゾル、シリカをそれぞれ秤量し、それらを容器に入れて攪拌・混合する。例えば、X=1を選んだ場合の化学組成はCa12(Al13Si)O33.5、X=4を選んだ場合のそれはCa12(Al10Si)O35となる。攪拌・混合の操作は、攪拌棒を用いても、攪拌機を使用しても、攪拌・混合できる方法であれば、いずれの方法でも構わない。また、攪拌時に水を添加しても良いが、攪拌終了後に乾燥することが望ましい。この乾燥物がカトアイト構造であるCaAl(OH)12又は、CaAl(SiO)(OH)を有している。 The inorganic compound of the present invention is prepared by mixing a calcia source, an alumina source, and a silica source in accordance with a composition expressed as Ca 12 (Al 14-X Si X ) O 33 + 0.5x (0 ≦ X ≦ 4), and air. It is manufactured only by heating at 350 ° C. or higher using an electric furnace or the like in an atmosphere. More specifically, the production method using slaked lime as the calcia source, alumina sol as the alumina source, and powdered silica as the silica source will be described. After determining the X value (0 ≦ X ≦ 4) of the inorganic compound to be produced, Appropriate slaked lime, alumina sol, and silica are weighed, placed in a container, and stirred and mixed. For example, when X = 1 is selected, the chemical composition is Ca 12 (Al 13 Si) O 33.5 , and when X = 4 is selected, it is Ca 12 (Al 10 Si 4 ) O 35 . The stirring / mixing operation may be carried out by any method as long as it can be stirred / mixed by using a stirring bar or a stirrer. Further, water may be added during stirring, but it is desirable to dry after the stirring. This dried product has Ca 3 Al 2 (OH) 12 or Ca 3 Al 2 (SiO 4 ) (OH) 8 having a cataite structure.

次に、攪拌・混合後の原料を酸素分圧及び水蒸気圧などを制御することなく、空気雰囲気下の電気炉等を用いて350℃以上で加熱することのみによりマイエナイト構造を有する無機化合物を製造する。350℃より低い温度で加熱すると、反応が不十分であり好ましくない。また、1000℃より高い温度で加熱しても良いが、余分な熱エネルギーを消費することになるため、1000℃以下の温度で十分である。本製造法で使用することのできる他の原料として、カルシア源には生石灰、炭酸カルシウム、石膏等、アルミナ源にはカオリン、ベーマイト、水酸化アルミニウム、酸化アルミニウム等、シリカ源にはカオリン、非晶質シリカ、珪藻土、ケイ砂、石英等を用いることができる。また、原料にカルシア源、アルミナ源、シリカ源を含む廃棄物を利用することも可能である。   Next, an inorganic compound having a mayenite structure is manufactured only by heating the raw material after stirring and mixing at 350 ° C. or higher using an electric furnace in an air atmosphere without controlling the oxygen partial pressure and water vapor pressure. To do. Heating at a temperature lower than 350 ° C. is not preferable because the reaction is insufficient. Moreover, although it may heat at a temperature higher than 1000 degreeC, since the extra thermal energy will be consumed, the temperature of 1000 degrees C or less is enough. Other raw materials that can be used in this production method include quick lime, calcium carbonate, gypsum, etc. for calcia sources, kaolin, boehmite, aluminum hydroxide, aluminum oxide, etc. for alumina sources, kaolin, amorphous for silica sources, etc. Silica, diatomaceous earth, silica sand, quartz and the like can be used. It is also possible to use a waste material containing a calcia source, an alumina source, and a silica source as raw materials.

上記方法により、活性酸素発現物質である無機化合物を製造することができる。上記方法で製造した無機化合物が、スーパーオキサイドアニオン(O )及び/又はパーオキサイドアニオン(O )等の活性酸素を包含又は吸蔵するか否かを調べる手段としては、ESR測定法あるいはラマン分光測定法が一般的である。一例として、後記する実施例に示したCa12Al10Si35の室温におけるESR及びラマン分光測定の結果をそれぞれ図1及び図2に示す。ESR測定結果を図1に示すが、g=2.074、g=2.012、g=2.007に発現するスペクトルは、スーパーオキサイドアニオンの存在を示す。図2は、室温におけるラマン分光測定結果を示すが、ESR測定結果と同様に、スーパーオキサイドアニオンの存在が1075cm−1のピークから確認され、更に853cm−1のピークからパーオキサイドアニオンの存在も確認される。以上の結果は、本発明の無機化合物は、構造中にスーパーオキサイドアニオン及びパーオキサイドアニオンを包含又は吸蔵していることを結論する。 By the above method, an inorganic compound that is a substance that expresses active oxygen can be produced. As a means for examining whether the inorganic compound produced by the above method includes or occludes active oxygen such as superoxide anion (O 2 ) and / or peroxide anion (O 2 ), ESR measurement method or Raman spectroscopy is common. As an example, the results of ESR and Raman spectroscopic measurements at room temperature of Ca 12 Al 10 Si 4 O 35 shown in Examples described later are shown in FIGS. 1 and 2, respectively. The ESR measurement results are shown in FIG. 1, and the spectrum expressed at g 1 = 2.074, g 2 = 2.012, g 3 = 2.007 indicates the presence of a superoxide anion. Figure 2 is a check shows the Raman spectroscopic measurements at room temperature, similar to the results ESR measurements, the presence of superoxide anion was confirmed from the peak of 1075 cm -1, even the presence of peroxide anion further from the peak of 853cm -1 Is done. The above results conclude that the inorganic compound of the present invention includes or occludes a superoxide anion and a peroxide anion in the structure.

700℃以下で加熱したCa12Al10Si35の構造は、立方晶系、格子定数:a=11.982Å、空間群:I43dであり、非常に結晶性が良い。その構造は、(Al、Si)O四面体がフレームワーク状に結合してゼオライト様構造を形成し、ナノサイズの空隙(約4Å程度の空間)を有しており、その空隙に活性酸素のO 及びO 2−が存在する。本方法で合成された該無機化合物からなる生成物は、本発明の無機化合物材料として使用できる。従来法では、副生成物の生石灰を含む該無機化合物材料が合成されていたが、生石灰を含まない該無機化合物材料が合成された例はない。本発明では、本方法で合成された生成物をそのまま各種部材の有効成分として利用できる点で従来技術にない利点が得られる。また、本発明の方法で得られる生成物は、副生成物としての生石灰を含まないことで、従来法で得られる生成物と明確に区別することが可能である。 The structure of Ca 12 Al 10 Si 4 O 35 heated at 700 ° C. or lower is cubic, lattice constant: a = 11.98211, space group: I - 43d, and has very good crystallinity. The structure is such that (Al, Si) O 4 tetrahedrons are combined in a framework to form a zeolite-like structure, and have nano-sized voids (a space of about 4 mm). O 2 and O 2 2− are present. The product composed of the inorganic compound synthesized by this method can be used as the inorganic compound material of the present invention. In the conventional method, the inorganic compound material containing the by-product quick lime has been synthesized. However, there is no example in which the inorganic compound material not containing quick lime has been synthesized. In this invention, the advantage which is not in a prior art is acquired by the point that the product synthesize | combined by this method can be utilized as an active ingredient of various members as it is. Moreover, the product obtained by the method of the present invention can be clearly distinguished from the product obtained by the conventional method by not containing quicklime as a by-product.

本発明の無機化合物が包含又は吸蔵する活性酸素は、強い酸化力を有しており、400℃以上に加熱すると構造内部から排出され、有機化合物の酸化反応に寄与する。例えば、本発明で製造した無機化合物は600℃の反応温度でベンゼンやトルエンなどの揮発性有機化合物(VOCs)をCOやHOにまで完全に酸化分解する性能を有する。また、本発明の無機化合物が包含又は吸蔵する活性酸素は、400℃以上の温度で構造内を移動する特徴を有する。 The active oxygen contained or occluded by the inorganic compound of the present invention has a strong oxidizing power, and when heated to 400 ° C. or higher, it is discharged from the inside of the structure and contributes to the oxidation reaction of the organic compound. For example, the inorganic compound produced in the present invention has the ability to completely oxidize and decompose volatile organic compounds (VOCs) such as benzene and toluene to CO 2 and H 2 O at a reaction temperature of 600 ° C. In addition, the active oxygen contained or occluded by the inorganic compound of the present invention has a feature of moving within the structure at a temperature of 400 ° C. or higher.

以上のことから、本発明で製造した無機化合物は、例えば、酸化触媒及び酸素イオン導電体の有効成分として使用することができる。スーパーオキサイドアニオン及びパーオキサイドアニオン等の活性酸素は、強い酸化作用を有することから、VOCs等の有害化学物質を分解することが可能であり、例えば、環境分野でこれらの有害化学物質を酸化分解する用途開発が期待される。   From the above, the inorganic compound produced in the present invention can be used, for example, as an effective component of an oxidation catalyst and an oxygen ion conductor. Active oxygen such as superoxide anion and peroxide anion has a strong oxidizing action, so it is possible to decompose harmful chemical substances such as VOCs. For example, in the environmental field, these harmful chemical substances are oxidatively decomposed. Application development is expected.

本発明の無機化合物材料は、上記無機化合物からなり、副生成物としての生石灰を含まないことを特徴としており、その製造法において粉末として得ることができる。粉末としての利用以外に、成形体としての利用では多くの利便性と新たな機能発現が期待される。成形体の形状は使用目的に合わせて決定され、成形方法としてはセラミックス成形体の製造において使用される方法を用いることができる。成形体の形状は、例えば、顆粒、平板、柱状、円筒管、中空糸、モノリシス、ハニカムなどがあり、成形法としては、鋳込み成形、加圧成形、乾式CIP成形、射出成形、シート成形などを使用することができる。また、形状と共に成形体の緻密さ、あるいは多孔質化が求められ、成形時にはこれらも考慮して成形がなされることは当然のことである。一例として、各種成形体のうち、ペレット状試料の酸化触媒機能をプロピレン、ベンゼン、メタンについて調べると、いずれの炭化水素も400℃以上の温度で分解することが認められる。   The inorganic compound material of the present invention is characterized by being composed of the above-mentioned inorganic compound and not containing quicklime as a by-product, and can be obtained as a powder in the production method. In addition to the use as a powder, the use as a molded body is expected to have many conveniences and new functions. The shape of the formed body is determined according to the purpose of use, and a method used in the production of a ceramic formed body can be used as a forming method. The shape of the molded body includes, for example, granule, flat plate, columnar shape, cylindrical tube, hollow fiber, monolysis, honeycomb, etc., and molding methods include casting molding, pressure molding, dry CIP molding, injection molding, sheet molding, etc. Can be used. In addition, the molded body is required to be dense or porous as well as the shape, and it is a matter of course that the molding is performed in consideration of these. As an example, when the oxidation catalyst function of a pellet-like sample among various molded bodies is examined for propylene, benzene, and methane, it is recognized that any hydrocarbon is decomposed at a temperature of 400 ° C. or higher.

本発明は、活性酸素(スーパーオキサイドアニオン:O 、パーオキサイドアニオン:O 2−)をカプセル化したゼオライト様構造を有する無機化合物、即ち、活性酸素発現物質及びその成形体に係るものであり、本発明により、(1)構造中に包含あるいは吸蔵された活性酸素により炭化水素酸化反応(例えば、エポキシ化、完全酸化、部分酸化、カップリング)が生じ、本発明の活性酸素発現物質は、環境、エネルギー、化学工業(製造プロセス)等、広い分野で利用される、(2)本発明の該無機化合物材料の成形体は、例えば、二輪車の排ガス浄化用触媒、及び酸素吸蔵担体などとして有用である、という格別の効果が奏される。 The present invention relates to an inorganic compound having a zeolite-like structure encapsulating active oxygen (superoxide anion: O 2 , peroxide anion: O 2 2− ), that is, an active oxygen-expressing substance and a molded product thereof. According to the present invention, (1) a hydrocarbon oxidation reaction (for example, epoxidation, complete oxidation, partial oxidation, coupling) occurs due to active oxygen included or occluded in the structure, and the active oxygen-expressing substance of the present invention is Used in a wide range of fields such as environment, energy, chemical industry (manufacturing process), etc. (2) The molded body of the inorganic compound material of the present invention is, for example, a catalyst for exhaust gas purification of a motorcycle, an oxygen storage carrier, etc. The special effect of being useful is produced.

次に、実施例により本発明を具体的に説明するが、本発明は以下の実施例により何ら限
定されるものではない。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited at all by the following examples.

Ca12Al10Si35(X=4)の製造を以下の操作により実施した。カルシア源として消石灰17.78g、アルミナ源としてアルミナゾル(Alとしての含有量;20重量%)50.98g、シリカ源として非晶質シリカ4.80gを秤量し、150mlの水を添加して混合物(懸濁液)を調製した。懸濁液を攪拌器にて常温15分間攪拌した。その後、100℃で乾燥することによりCaAl(SiO)(OH)で表されるカトアイト構造を有するカルシウムアルミニウムシリケートハイドロオキサイドを合成した。次いで、カルシウムアルミニウムシリケートハイドロオキサイドを空気雰囲気下の電気炉で600℃、5時間加熱することによりCa12Al10Si35を合成した。本製造法によるCa12Al10Si35のESR及びラマン分光測定の結果を図1及び図2に示す。また、X線回折測定結果を図3に示す。このX線回折測定結果より求められた格子定数は、a=11.982Åである。 The production of Ca 12 Al 10 Si 4 O 35 (X = 4) was carried out by the following operation. 17.78 g of slaked lime as the calcia source, 50.98 g of alumina sol (content as Al 2 O 3 ; 20 wt%) as the alumina source, and 4.80 g of amorphous silica as the silica source were weighed, and 150 ml of water was added. To prepare a mixture (suspension). The suspension was stirred at room temperature for 15 minutes with a stirrer. Thereafter, by drying at 100 ° C., a calcium aluminum silicate hydroxide having a cathoite structure represented by Ca 3 Al 2 (SiO 4 ) (OH) 8 was synthesized. Next, Ca 12 Al 10 Si 4 O 35 was synthesized by heating calcium aluminum silicate hydroxide in an electric furnace in an air atmosphere at 600 ° C. for 5 hours. The results of ESR and Raman spectroscopic measurement of Ca 12 Al 10 Si 4 O 35 by this production method are shown in FIGS. The X-ray diffraction measurement results are shown in FIG. The lattice constant determined from the X-ray diffraction measurement result is a = 11.982Å.

Ca12Al12Si34(X=2)の製造を以下の操作により実施した。カルシア源として消石灰17.78g、アルミナ源としてアルミナゾル(Alとしての含有量;20重量%)61.18g、シリカ源として非晶質シリカ2.40gを秤量し、150mlの水を添加して混合物(懸濁液)を調製した。懸濁液を攪拌器にて常温15分間攪拌した。その後、100℃で乾燥することによりCaAl(SiO)(OH)で表されるカトアイト構造を有するカルシウムアルミニウムシリケートハイドロオキサイドを合成した。次いで、カルシウムアルミニウムシリケートハイドロオキサイドを空気雰囲気下の電気炉で600℃、5時間加熱することによりCa12Al12Si34を合成した。本製造法によるCa12Al12Si34のESR及びラマン分光測定の結果を図4及び図5に示す。また、X線回折測定結果を図6に示す。このX線回折測定結果より求められた格子定数は、a=11.981Åである。 The production of Ca 12 Al 12 Si 2 O 34 (X = 2) was carried out by the following operation. 17.78 g of slaked lime as a calcia source, 61.18 g of alumina sol (content as Al 2 O 3 ; 20% by weight) as an alumina source, 2.40 g of amorphous silica as a silica source, and 150 ml of water were added. To prepare a mixture (suspension). The suspension was stirred at room temperature for 15 minutes with a stirrer. Thereafter, by drying at 100 ° C., a calcium aluminum silicate hydroxide having a cathoite structure represented by Ca 3 Al 2 (SiO 4 ) (OH) 8 was synthesized. Next, Ca 12 Al 12 Si 2 O 34 was synthesized by heating calcium aluminum silicate hydroxide in an electric furnace under an air atmosphere at 600 ° C. for 5 hours. The results of ESR and Raman spectroscopic measurements of Ca 12 Al 12 Si 2 O 34 by this production method are shown in FIGS. The X-ray diffraction measurement results are shown in FIG. The lattice constant determined from the X-ray diffraction measurement result is a = 11.981Å.

Ca12Al1433(X=0)の製造を以下の操作により実施した。カルシア源として消石灰17.78g、アルミナ源としてアルミナゾル(Alとしての含有量;20重量%)71.37gを秤量し、150mlの水を添加して混合物(懸濁液)を調製した。懸濁液を攪拌器にて常温15分間攪拌した。その後、100℃で乾燥することによりCaAl(OH)12で表されるカトアイト構造を有するカルシウムアルミニウムハイドロオキサイドを合成した。次いで、カルシウムアルミニウムハイドロオキサイドを空気雰囲気下の電気炉で600℃、5時間加熱することによりCa12Al1433を合成した。本製造法によるCa12Al1433のESR及びラマン分光測定の結果を図7及び図8に示す。また、X線回折測定結果を図9に示す。このX線回折測定結果より求められた格子定数は、a=11.972Åである。 Production of Ca 12 Al 14 O 33 (X = 0) was performed by the following operation. 17.78 g of slaked lime as a calcia source and 71.37 g of alumina sol (content as Al 2 O 3 ; 20 wt%) as an alumina source were weighed and 150 ml of water was added to prepare a mixture (suspension). The suspension was stirred at room temperature for 15 minutes with a stirrer. Was then synthesized calcium aluminum hydroxide having a Katoaito structure represented by Ca 3 Al 2 (OH) 12 and dried at 100 ° C.. Next, Ca 12 Al 14 O 33 was synthesized by heating calcium aluminum hydroxide in an electric furnace under an air atmosphere at 600 ° C. for 5 hours. The results of ESR and Raman spectroscopic measurement of Ca 12 Al 14 O 33 by this production method are shown in FIGS. The X-ray diffraction measurement results are shown in FIG. The lattice constant determined from the X-ray diffraction measurement result is a = 11.972Å.

粒径300〜500μmのペレットに成形したCa12Al10Si35の1.0gを電気炉に設置された石英ガラス製反応管に充填し、反応管温度を200〜900℃の希望する温度にした後、空気とプロピレンの混合ガス(プロピレン濃度=500ppm)を流量100ml/minで反応管に導入した。反応管の出口ガスをガスクロマトグラフィーに導入し、ガス分析を行った。分解率は、反応温度が高くなると共に上昇し、400℃で5%、500℃で70%、550℃で100%であった。プロピレンが分解して生成するガスは、CO及びHOのみであり、プロピレンの酸化分解反応が起きていることが示された。 1.0 g of Ca 12 Al 10 Si 4 O 35 formed into pellets having a particle size of 300 to 500 μm is filled into a quartz glass reaction tube installed in an electric furnace, and the reaction tube temperature is set to a desired temperature of 200 to 900 ° C. After that, a mixed gas of air and propylene (propylene concentration = 500 ppm) was introduced into the reaction tube at a flow rate of 100 ml / min. The outlet gas of the reaction tube was introduced into gas chromatography and gas analysis was performed. The decomposition rate increased as the reaction temperature increased and was 5% at 400 ° C, 70% at 500 ° C, and 100% at 550 ° C. The gases produced by the decomposition of propylene are only CO 2 and H 2 O, indicating that the oxidative decomposition reaction of propylene has occurred.

実施例4と同じ条件にて、ベンゼンの酸化分解反応について調べた。空気とベンゼンの混合ガス(ベンゼン濃度=500ppm)を流量100ml/minで反応管に導入した。反応管の出口ガスをガスクロマトグラフィーに導入し、ガス分析を行った。400℃で3%の分解率が認められ、分解率は、反応温度が高くなると共に上昇し、450℃で15%、500℃で57%、550℃で86%、600℃で100%であった。ベンゼンが分解して生成するガスは、CO、CO及びHOのみであり、ベンゼンの酸化分解反応が起きていることが示された。 Under the same conditions as in Example 4, the oxidative decomposition reaction of benzene was examined. A mixed gas of air and benzene (benzene concentration = 500 ppm) was introduced into the reaction tube at a flow rate of 100 ml / min. The outlet gas of the reaction tube was introduced into gas chromatography and gas analysis was performed. A degradation rate of 3% was observed at 400 ° C., and the degradation rate increased with increasing reaction temperature, 15% at 450 ° C., 57% at 500 ° C., 86% at 550 ° C., and 100% at 600 ° C. It was. The gases produced by the decomposition of benzene are only CO 2 , CO, and H 2 O, indicating that the benzene oxidative decomposition reaction has occurred.

実施例4と同じ測定条件で、ガス種をメタン(500ppm)に替えて測定した。反応温度が450℃から分解が始まり、その後、反応温度とメタン分解率の関係は500℃で8%、600℃で62%、700℃で100%であった。   Under the same measurement conditions as in Example 4, the gas type was changed to methane (500 ppm) and measured. The decomposition started from a reaction temperature of 450 ° C., and thereafter, the relationship between the reaction temperature and the methane decomposition rate was 8% at 500 ° C., 62% at 600 ° C., and 100% at 700 ° C.

以上詳述したように、本発明は、活性酸素(スーパーオキサイド:O 、パーオキサイド:O 2−)をカプセル化したゼオライト様構造を有する無機化合物、即ち、活性酸素発現物質及びその成形体及びその製造法に係るものであり、本発明により、上記無機化合物の簡便かつ省エネルギーの新規製造方法が提供される。本発明の無機化合物材料は、副生成物としての生石灰を含まず、構造中に包含あるいは吸蔵された活性酸素により炭化水素酸化反応(例えば、エポキシ化、完全酸化、部分酸化、カップリング)用触媒として有効である。本発明の無機化合物材料は、環境、エネルギー、化学工業(製造プロセス)等、広い分野で利用可能である。また、本発明の該無機化合物材料の成形体は、例えば、二輪車の排ガス浄化用触媒、及び酸素吸蔵担体などとして有用である。 As described above in detail, the present invention relates to an inorganic compound having a zeolite-like structure encapsulating active oxygen (superoxide: O 2 , peroxide: O 2 2− ), that is, an active oxygen-expressing substance and its molding. The present invention provides a simple and energy-saving new method for producing the inorganic compound. The inorganic compound material of the present invention does not contain quicklime as a by-product, and is a catalyst for hydrocarbon oxidation reaction (for example, epoxidation, complete oxidation, partial oxidation, coupling) by active oxygen included or occluded in the structure. It is effective as The inorganic compound material of the present invention can be used in a wide range of fields such as environment, energy, chemical industry (manufacturing process) and the like. In addition, the molded body of the inorganic compound material of the present invention is useful as, for example, a catalyst for exhaust gas purification of motorcycles and an oxygen storage carrier.

Ca12Al10Si35の600℃加熱時のESR測定結果を示す。Shows the Ca 12 Al 10 Si 4 O 35 600 ℃ heating time of ESR measurement result of. Ca12Al10Si35の600℃加熱時の室温におけるラマン分光測定結果を示す。Shows the Ca 12 Al 10 Si 4 O 35 Raman spectroscopic measurements at room temperature during 600 ° C. heating. Ca12Al10Si35の未加熱時と600℃加熱時のXRD測定結果を示す。Shows the Ca 12 Al 10 Si 4 O 35 unheated state and 600 ° C. during heating of the XRD measurement results of. Ca12Al12Si34の600℃加熱時のESR測定結果を示す。Shows the Ca 12 Al 12 Si 2 600 ℃ heating time of ESR measurement result of O 34. Ca12Al12Si34の600℃加熱時の室温におけるラマン分光測定結果を示す。Shows the Ca 12 Al 12 Si 2 O 34 Raman spectroscopic measurements at room temperature during 600 ° C. heating. Ca12Al12Si34の未加熱時と600℃加熱時のXRD測定結果を示す。Shows the Ca 12 Al 12 Si 2 unheated state and 600 ° C. during heating XRD measurement result of the O 34. Ca12Al1433の600℃加熱時のESR測定結果を示す。Ca shows a 12 Al 14 600 ° C. during heating ESR measurement result of O 33. Ca12Al1433の600℃加熱時の室温におけるラマン分光測定結果を示す。Shows the Raman spectroscopic measurements at room temperature of the Ca 12 Al 14 600 ℃ during heating of O 33. Ca12Al1433の未加熱時と600℃加熱時のXRD測定結果を示す。Shows the Ca 12 Al 14 XRD measurement results of the unheated state and 600 ° C. during heating of O 33.

Claims (12)

スーパーオキサイドアニオン(O )及び/又はパーオキサイドアニオン(O 2−)を包含あるいは吸蔵したCa12(Al14−XSi)O33+0.5x(0≦X≦4)と表記される組成を有する無機化合物からなる無機化合物材料であって、副生成物としての生石灰(CaO)を含まないことを特徴とするスーパーオキサイドアニオン(O )及び/又はパーオキサイドアニオン(O 2−)を包含あるいは吸蔵した無機化合物材料。 It is expressed as Ca 12 (Al 14 -X Si X ) O 33 + 0.5x (0 ≦ X ≦ 4) including or occluded superoxide anion (O 2 ) and / or peroxide anion (O 2 2− ). A superoxide anion (O 2 ) and / or a peroxide anion (O 2 2− ), which is an inorganic compound material comprising an inorganic compound having a composition and does not contain quicklime (CaO) as a by-product. ) Inorganic compound materials that contain or occlude. 無機化合物材料を構成する無機化合物が、マイエナイト構造を有する請求項1に記載の無機化合物材料。   The inorganic compound material according to claim 1, wherein the inorganic compound constituting the inorganic compound material has a mayenite structure. 無機化合物材料を構成する無機化合物の構造が、(Al、Si)O四面体がフレームワーク状に結合してゼオライト様構造を形成し、ナノサイズの空隙を有しており、その空隙に活性酸素のO 及びO 2−が存在する請求項1に記載の無機化合物材料。 The structure of the inorganic compound constituting the inorganic compound material is that (Al, Si) O 4 tetrahedrons are combined in a framework shape to form a zeolite-like structure and have nano-sized voids. The inorganic compound material according to claim 1, wherein oxygen O 2 and O 2 2− are present. 請求項1から3のいずれかに記載の無機化合物材料又はその成形体からなることを特徴とする酸化触媒。   An oxidation catalyst comprising the inorganic compound material according to any one of claims 1 to 3 or a molded body thereof. 請求項1から3のいずれかに記載の無機化合物材料の成形体からなることを特徴とする活性酸素発現作用を有する部材。   A member having an active oxygen expression effect, comprising a molded body of the inorganic compound material according to any one of claims 1 to 3. 部材が、排ガス浄化用触媒である請求項5に記載の部材。   The member according to claim 5, wherein the member is an exhaust gas purifying catalyst. 部材が、固体電解質である請求項5に記載の部材。   The member according to claim 5, wherein the member is a solid electrolyte. 部材が、酸素吸蔵担体である請求項5に記載の部材。   The member according to claim 5, wherein the member is an oxygen storage carrier. スーパーオキサイドアニオン(O )及び/又はパーオキサイドアニオン(O 2−)を包含あるいは吸蔵したCa12(Al14−XSi)O33+0.5x(0≦X≦4)と表記される組成を有する無機化合物を製造する方法において、Ca12(Al14−XSi)O33+0.5x0≦X≦4)と表記される組成に合わせて、カルシア源、アルミナ源、シリカ源を混合し、次に、加熱することで上記無機化合物を製造することを特徴とするスーパーオキサイドアニオン(O )及び/又はパーオキサイドアニオン(O 2−)を包含あるいは吸蔵した無機化合物の製造方法。 It is expressed as Ca 12 (Al 14 -X Si X ) O 33 + 0.5x (0 ≦ X ≦ 4) including or occluded superoxide anion (O 2 ) and / or peroxide anion (O 2 2− ). mixing a process for preparing an inorganic compound having a composition, in accordance with the composition, denoted Ca 12 (Al 14-X Si X) O 33 + 0.5x 0 ≦ X ≦ 4), calcia source, an alumina source, a silica source Then, the above-mentioned inorganic compound is produced by heating, and a method for producing an inorganic compound containing or occluding a superoxide anion (O 2 ) and / or a peroxide anion (O 2 2− ) . カトアイト構造を経由し、マイエナイト構造を有する無機化合物を製造する請求項9に記載の無機化合物の製造方法。   The manufacturing method of the inorganic compound of Claim 9 which manufactures the inorganic compound which has a mayenite structure via a katoite structure. 加熱温度を所定のレベルに調整して無機化合物の結晶性を制御する請求項9に記載の無機化合物の製造方法。   The method for producing an inorganic compound according to claim 9, wherein the crystallinity of the inorganic compound is controlled by adjusting the heating temperature to a predetermined level. 加熱温度が350℃以上1000℃以下である請求項9に記載の無機化合物の製造方法。   The method for producing an inorganic compound according to claim 9, wherein the heating temperature is 350 ° C. or higher and 1000 ° C. or lower.
JP2004269054A 2004-09-15 2004-09-15 Inorganic compound material including or occluding active oxygen and method of manufacturing the same Pending JP2006083009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004269054A JP2006083009A (en) 2004-09-15 2004-09-15 Inorganic compound material including or occluding active oxygen and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004269054A JP2006083009A (en) 2004-09-15 2004-09-15 Inorganic compound material including or occluding active oxygen and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006083009A true JP2006083009A (en) 2006-03-30

Family

ID=36161829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269054A Pending JP2006083009A (en) 2004-09-15 2004-09-15 Inorganic compound material including or occluding active oxygen and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006083009A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208987A (en) * 2008-03-03 2009-09-17 Sumitomo Osaka Cement Co Ltd Active oxygen storage substance and combustion catalyst, and fuel additive using them, composite fuel, coating material for forming combustion-promoting film, combustion-promoting film, combustion apparatus, antibacterial agent, member, and ultraviolet absorber
WO2013145807A1 (en) * 2012-03-28 2013-10-03 日立造船株式会社 Continuous production method for hydrogen
WO2013145805A1 (en) * 2012-03-28 2013-10-03 日立造船株式会社 Hydrogen production method
WO2013145806A1 (en) * 2012-03-28 2013-10-03 日立造船株式会社 Mayenite production method
WO2014034473A1 (en) * 2012-08-30 2014-03-06 国立大学法人東京工業大学 Method for producing conductive mayenite compound powder
WO2021010167A1 (en) * 2019-07-12 2021-01-21 学校法人 東洋大学 Fuel cell catalyst composition and fuel cell containing same
CN113751034A (en) * 2021-09-30 2021-12-07 江苏理工学院 Heavy metal doped chlorine-containing calcium-aluminum-containing photocatalytic material for degrading wastewater pollutants and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003218A (en) * 2000-04-18 2002-01-09 Japan Science & Technology Corp 12CaO.7Al2O3 COMPOUND INCLUDING ACTIVE OXYGEN SEED AND ITS PRODUCTION METHOD
JP2003040697A (en) * 2001-07-26 2003-02-13 Japan Science & Technology Corp Active oxygen source calthrate calcia alumina single crystal and manufacturing the same
JP2004099430A (en) * 2002-08-21 2004-04-02 National Institute Of Advanced Industrial & Technology Inorganic compound containing active oxygen and method of manufacturing the same
JP2005008428A (en) * 2003-06-16 2005-01-13 Denki Kagaku Kogyo Kk Synthetic method of active oxygen species-including clathrate substance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003218A (en) * 2000-04-18 2002-01-09 Japan Science & Technology Corp 12CaO.7Al2O3 COMPOUND INCLUDING ACTIVE OXYGEN SEED AND ITS PRODUCTION METHOD
JP2003040697A (en) * 2001-07-26 2003-02-13 Japan Science & Technology Corp Active oxygen source calthrate calcia alumina single crystal and manufacturing the same
JP2004099430A (en) * 2002-08-21 2004-04-02 National Institute Of Advanced Industrial & Technology Inorganic compound containing active oxygen and method of manufacturing the same
JP2005008428A (en) * 2003-06-16 2005-01-13 Denki Kagaku Kogyo Kk Synthetic method of active oxygen species-including clathrate substance

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208987A (en) * 2008-03-03 2009-09-17 Sumitomo Osaka Cement Co Ltd Active oxygen storage substance and combustion catalyst, and fuel additive using them, composite fuel, coating material for forming combustion-promoting film, combustion-promoting film, combustion apparatus, antibacterial agent, member, and ultraviolet absorber
US9216901B2 (en) 2012-03-28 2015-12-22 Hitachi Zosen Corporation Method for preparing hydrogen
CN104364199B (en) * 2012-03-28 2016-08-24 日立造船株式会社 The preparation method of mayenite
US20150056130A1 (en) * 2012-03-28 2015-02-26 Kyoto University Continuous production method of hydrogen
JP2013203589A (en) * 2012-03-28 2013-10-07 Hitachi Zosen Corp Continuous method for producing hydrogen
JP2013203587A (en) * 2012-03-28 2013-10-07 Hitachi Zosen Corp Method for producing hydrogen
JP2013203588A (en) * 2012-03-28 2013-10-07 Hitachi Zosen Corp Mayenite production method
WO2013145807A1 (en) * 2012-03-28 2013-10-03 日立造船株式会社 Continuous production method for hydrogen
CN104364199A (en) * 2012-03-28 2015-02-18 日立造船株式会社 Mayenite production method
WO2013145806A1 (en) * 2012-03-28 2013-10-03 日立造船株式会社 Mayenite production method
WO2013145805A1 (en) * 2012-03-28 2013-10-03 日立造船株式会社 Hydrogen production method
US9266746B2 (en) 2012-03-28 2016-02-23 Hitachi Zosen Corporation Production method of mayenite
US9255004B2 (en) 2012-03-28 2016-02-09 Hitachi Zosen Corporation Continuous production method of hydrogen
JPWO2014034473A1 (en) * 2012-08-30 2016-08-08 国立大学法人東京工業大学 Method for producing conductive mayenite type compound powder
US9573822B2 (en) 2012-08-30 2017-02-21 Tokyo Institute Of Technology Method for producing conductive mayenite compound powder
RU2647290C2 (en) * 2012-08-30 2018-03-15 Токио Инститьют Оф Текнолоджи Method for producing powder of conducting connection of mayenite type
US10124319B2 (en) 2012-08-30 2018-11-13 Tokyo Institute Of Technology Method for producing conductive mayenite compound powder having large specific surface area
WO2014034473A1 (en) * 2012-08-30 2014-03-06 国立大学法人東京工業大学 Method for producing conductive mayenite compound powder
WO2021010167A1 (en) * 2019-07-12 2021-01-21 学校法人 東洋大学 Fuel cell catalyst composition and fuel cell containing same
CN113751034A (en) * 2021-09-30 2021-12-07 江苏理工学院 Heavy metal doped chlorine-containing calcium-aluminum-containing photocatalytic material for degrading wastewater pollutants and preparation method thereof

Similar Documents

Publication Publication Date Title
Dasireddy et al. Selective catalytic reduction of NOx by CO over bimetallic transition metals supported by multi-walled carbon nanotubes (MWCNT)
Yao et al. Investigation of the physicochemical properties and catalytic activities of Ce 0.67 M 0.33 O 2 (M= Zr 4+, Ti 4+, Sn 4+) solid solutions for NO removal by CO
KR101431919B1 (en) Composition comprising cerium oxide and zirconium oxide having a specific porosity, preparation method thereof and use of same in catalysis
JP5169779B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
JP4635197B2 (en) Oxidation catalyst for exhaust gas purification and method for producing the same
WO2010084930A1 (en) Catalyst for removing nitrogen oxides and method for producing same
Zhang et al. MnO x–CeO 2 supported on a three-dimensional and networked SBA-15 monolith for NO x-assisted soot combustion
EP2876086A1 (en) Fe(II)-SUBSTITUTED BETA-TYPE ZEOLITE, PRODUCTION METHOD THEREFOR AND GAS ADSORBENT INCLUDING SAME, AND NITRIC OXIDE AND HYDROCARBON REMOVAL METHOD
Levasseur et al. Interactions of NO2 at ambient temperature with cerium–zirconium mixed oxides supported on SBA-15
KR20180066053A (en) Molecular sieves SSZ-105, its synthesis and use
Peng et al. Alkali/alkaline-earth metal-modified MnOx supported on three-dimensionally ordered macroporous–mesoporous TixSi1-xO2 catalysts: Preparation and catalytic performance for soot combustion
WO1998000223A1 (en) Nitrogen oxide adsorbing material
JP4210750B2 (en) Inorganic compound containing active oxygen and process for producing the same
CN110621397A (en) Has enhanced tolerance and NOXMixed oxides for storage capacity
US9101916B2 (en) Exhaust gas treatment catalyst
JP2006083009A (en) Inorganic compound material including or occluding active oxygen and method of manufacturing the same
JP2018510837A (en) Stabilized microporous crystalline material, process for making it, and its use for selective catalytic reduction of NOx
Yan et al. Hierarchical Cu-Mn/ZSM-5 with boosted activity and selectivity for n-butylamine destruction: Synergy of pore structure and surface acidity
WO2014202149A1 (en) Composite oxide based on cerium oxide, silicon oxide and titanium oxide
US7514384B2 (en) Inorganic compound containing active oxygen and process for producing the same
JP4281061B2 (en) Active oxygen storage material and method for producing the same
KR100372202B1 (en) Catalyst for removing the volatile organic compounds and it&#39;s preparation method
JP5140823B2 (en) Oxidation catalyst, exhaust gas treatment method and exhaust gas treatment device
JP4217784B2 (en) Cobalt oxide supported aluminosilicate catalyst and process for producing the same
JP2003284927A (en) High temperature denitration catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111003