JP2004255380A - Treating method for gas containing fluorine compound - Google Patents

Treating method for gas containing fluorine compound Download PDF

Info

Publication number
JP2004255380A
JP2004255380A JP2004116314A JP2004116314A JP2004255380A JP 2004255380 A JP2004255380 A JP 2004255380A JP 2004116314 A JP2004116314 A JP 2004116314A JP 2004116314 A JP2004116314 A JP 2004116314A JP 2004255380 A JP2004255380 A JP 2004255380A
Authority
JP
Japan
Prior art keywords
catalyst
hours
compound
gas
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004116314A
Other languages
Japanese (ja)
Inventor
Shuichi Sugano
周一 菅野
Toshiaki Arato
利昭 荒戸
Shinzo Ikeda
伸三 池田
Takeshi Yasuda
健 安田
Hisao Yamashita
寿生 山下
Shigeru Azuhata
茂 小豆畑
Shin Tamada
慎 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004116314A priority Critical patent/JP2004255380A/en
Publication of JP2004255380A publication Critical patent/JP2004255380A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating method for decomposition and a catalyst wherein a gas containing a fluorine compound such as C<SB>2</SB>F<SB>6</SB>is effectively decomposed. <P>SOLUTION: F in a gas flow is converted to HF by contacting the gas flow with the catalyst having at least one kind of alumina, titania, silica and zirconia at ca. 400-800 °C in the presence of an effective amount of steam. The gas flow is composed of at least one of a compound having C of two or more and F such as C<SB>2</SB>F<SB>6</SB>, or a compound having N and F. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、C26などのフッ素化合物含有ガスを低温で効率良く分解する分解処理方法及び触媒材料に関する。 The present invention relates to a decomposition treatment method and a catalyst material for efficiently decomposing a fluorine compound-containing gas such as C 2 F 6 at a low temperature.

26などのフッ素化合物ガスは、半導体エッチング材料,半導体洗浄用などに大量に使用されている。しかし、これらの物質は大気中に放出されると、地球の温暖化を引き起こす温暖化物質であることがわかってきた。今後、これらの化合物の使用後の処理に対して、厳しい規制が行われると予想される。 Fluorine compound gases such as C 2 F 6 are used in large quantities for semiconductor etching materials, semiconductor cleaning, and the like. However, these substances have been found to be warming substances that, when released into the atmosphere, cause global warming. It is expected that strict regulations will be imposed on the treatment of these compounds after use.

ところで、C26などのガスは、分子構成成分としてフッ素(F)を多く含有している。フッ素はすべての元素の中で最も電気陰性度が大きく、化学的に非常に安定な物質を形成する。特にC26などは分子内力が強く、反応性に乏しい物質である。この性質から、分解するには高温が必要であり、大量のエネルギを消費する。また、高温での分解反応は生成するフッ化水素などのガスによる装置材料の腐食速度が大きく、適切な分解処理方法がないのが現状である。 Incidentally, gases such as C 2 F 6 contain a large amount of fluorine (F) as a molecular component. Fluorine has the highest electronegativity of all elements and forms a very chemically stable substance. In particular, C 2 F 6 and the like are substances having strong intramolecular forces and poor reactivity. Due to this property, a high temperature is required for decomposition, and a large amount of energy is consumed. Further, in the decomposition reaction at a high temperature, the rate of corrosion of the apparatus material by the generated gas such as hydrogen fluoride is high, and at present, there is no appropriate decomposition treatment method.

分解処理方法として、現在、提案されつつあるのは、高温での燃焼技術である。しかしながらこの方法では、大量の燃料を使用するためエネルギー効率が低く、また、燃焼に伴って生成する1000℃以上のハロゲン化合物による炉壁の損傷の問題もある。従って、より低温で分解できる技術が必要である。   As a decomposition treatment method, a combustion technique at a high temperature is currently being proposed. However, in this method, a large amount of fuel is used, so that the energy efficiency is low, and there is also a problem of damage to the furnace wall due to a halogen compound of 1000 ° C. or more generated during combustion. Therefore, a technology that can decompose at lower temperatures is needed.

触媒については、これまでに、TiO2−WO3触媒が有機ハロゲン化合物の分解用触媒として、特公平6−59388 号公報に報告されている。この触媒はTiO2 の0.1 〜20
wt%のWを含む触媒(原子比にすると、Tiが92%以上99.96 %以下、Wが8%以下0.04%以上)であり、ppm オーダーのCCl4を処理するのに375℃で分解率
99%を1500時間保持していた。有機ハロゲン化合物中で触媒毒としての影響はClだけでなく、むしろFの方が大きい。該公報では、炭素数1の有機ハロゲン化合物、すなわちCF4 ,Cl22等が分解できるとしているが、フッ素化合物に関する分解結果の実施例はない。また、炭素数1の有機ハロゲン化合物の分解に比べ、一般に炭素数2の有機ハロゲン化合物は分解しにくい。別の例としては、Al23−ZrO2−WO3触媒がフッ素化合物ガスの分解触媒として、特開平7−80303号公報に報告されている。この触媒は、フロン類を燃焼分解する触媒であり、フロン−115(C2ClF5)を処理するのに600℃で燃焼分解反応を行い、分解率98%を10時間保持していた。この方法は燃焼助剤として、n−ブタン等の炭化水素を添加するため、処理コストが大きくなる。また、C26等の炭素とフッ素のみの化合物の分解は、フロン−115に比べ、さらに難しいが、これらの物質に関する分解結果の実施例はない。
As for the catalyst, a TiO 2 -WO 3 catalyst has been reported as a catalyst for decomposing an organic halogen compound in Japanese Patent Publication No. 6-59388. This catalyst has a TiO 2 content of 0.1 to 20.
(If the atomic ratio, Ti is 99.96% or more 92% or less, W 8% or less 0.04% or more) catalyst containing wt% of W is, 375 ° C. to process CCl 4 order of ppm , A decomposition rate of 99% was maintained for 1500 hours. In organic halogen compounds, the effect as a catalyst poison is larger not only for Cl but also for F. The publication states that organic halogen compounds having 1 carbon atom, that is, CF 4 , Cl 2 F 2, etc., can be decomposed, but there is no example of the decomposition result relating to fluorine compounds. In general, an organic halogen compound having 2 carbon atoms is harder to decompose than an organic halogen compound having 1 carbon atom. As another example, an Al 2 O 3 —ZrO 2 —WO 3 catalyst is reported in JP-A-7-80303 as a decomposition catalyst for a fluorine compound gas. This catalyst burns and decomposes CFCs, and performs a combustion decomposition reaction at 600 ° C. to treat CFC-115 (C 2 ClF 5 ), and maintains a decomposition rate of 98% for 10 hours. In this method, since a hydrocarbon such as n-butane is added as a combustion aid, the processing cost increases. Decomposition of a compound consisting only of carbon and fluorine, such as C 2 F 6 , is more difficult than that of CFC-115, but there is no example of a decomposition result relating to these substances.

本発明の目的は、炭素を2つ以上含み、フッ素原子を含む化合物、もしくは窒素原子とフッ素原子を含む化合物の少なくとも一方を含むガスを低温で効率よく分解処理する方法及び触媒を提供するものである。   An object of the present invention is to provide a method and a catalyst for efficiently decomposing a gas containing two or more carbon atoms and containing at least one of a compound containing a fluorine atom or a compound containing a nitrogen atom and a fluorine atom at a low temperature. is there.

本発明者らは、フッ素化合物含有ガスを低温でかつ高効率で分解が可能で、しかも分解生成物として遊離されるフッ化水素による装置の腐食が生じにくい分解処理方法の検討を詳細に進めた結果、本発明に至った。   The present inventors have conducted detailed studies on a decomposition treatment method capable of decomposing a fluorine compound-containing gas at a low temperature and with high efficiency, and in which corrosion of an apparatus by hydrogen fluoride released as a decomposition product is less likely to occur. As a result, the present invention has been achieved.

即ち、炭素を2つ以上含み、かつフッ素原子を含む化合物、もしくは窒素原子とフッ素原子を含む化合物の少なくとも一方を含むガス流を、特定のフッ素化合物分解触媒と、約400〜約800℃の温度で、有効量の水蒸気の存在下で接触させることにより、ガス流中のフッ素をHFに転化できることを見い出した。分解触媒としては、アルミナ,チタニア,シリカ,ジルコニアの少なくとも一種を含む触媒を用いることができる。   That is, a gas stream containing two or more carbon atoms and containing at least one of a compound containing a fluorine atom or a compound containing a nitrogen atom and a fluorine atom is passed through a specific fluorine compound decomposition catalyst and a temperature of about 400 to about 800 ° C. It has been found that by contacting in the presence of an effective amount of water vapor, fluorine in the gas stream can be converted to HF. As the decomposition catalyst, a catalyst containing at least one of alumina, titania, silica, and zirconia can be used.

フッ素化合物としては、C26などのように炭素数が2以上のCとFとの化合物、NF3 などのNとFとの化合物などがある。 Examples of the fluorine compound include a compound of C and F having 2 or more carbon atoms such as C 2 F 6 and a compound of N and F such as NF 3 .

さらに、触媒にSi,Mg,Zr,W,Sn,Ce,Mn,Bi,Niのうちの少なくとも一成分を添加すると、フッ素化合物含有ガスをより高い活性で分解できることを見い出した。これらの触媒はアルミナ,チタニア,シリカ,ジルコニア、そしてSi,Mg,Zr,W,Sn,Ce,Mn,Bi,Ni,P,Bのうちの少なくとも一成分の酸化物を混合物、あるいは複合酸化物の形態で含有している。特にアルミナとチタニアを含む触媒では、アルミナが75wt%以上98wt%以下、チタニアが25%以下2wt%以上である場合に効果が大きい。また、Si,Mg,Zr,W,Sn,Ce,Mn,Bi,Ni,P,Bの酸化物を触媒主量に対して0.1〜10wt% で含む場合に効果が大きい。   Furthermore, it has been found that when at least one of Si, Mg, Zr, W, Sn, Ce, Mn, Bi, and Ni is added to the catalyst, the fluorine compound-containing gas can be decomposed with higher activity. These catalysts are a mixture of alumina, titania, silica, zirconia, and an oxide of at least one of Si, Mg, Zr, W, Sn, Ce, Mn, Bi, Ni, P, and B, or a composite oxide. It is contained in the form of Particularly, in the case of a catalyst containing alumina and titania, the effect is large when the alumina content is 75 wt% or more and 98 wt% or less and the titania content is 25% or less and 2 wt% or more. The effect is great when the oxides of Si, Mg, Zr, W, Sn, Ce, Mn, Bi, Ni, P, and B are contained at 0.1 to 10 wt% with respect to the main catalyst amount.

フッ素化合物含有ガスの分解触媒の開発のため種々検討した結果、触媒の性質として、フッ素と適度な強さの結合を形成する金属成分を含有する必要があることを見い出した。特に、炭素とフッ素とからなる化合物の場合、分子自体が安定であるため、フッ化物生成エンタルピーが大きい金属成分を含有する触媒が高分解活性を示すことを見い出した。あまり安定な結合を形成してしまうと触媒上からフッ素化合物が離れないため、活性が徐々に低下する。一方で結合力が弱すぎると十分な分解率が得られない。本発明の対象ガスであるC26などは、分子内力が強く、反応性の乏しい物質である。これらのガスを燃焼させる場合、1500〜2000℃の温度が必要と言われている。我枚は、本対象ガスは、アルミナ,チタニア,シリカ,ジルコニアを単独で触媒として用いても分解できることを見い出したが、より高い分解率を得る触媒としては、アルミナとチタニアを含んでなる触媒が好ましいことを見い出した。アルミナはフッ素化合物を触媒上に引き付ける働きをし、チタニアは触媒上のフッ素化合物を引き離す働きをすると思われる。 As a result of various studies for the development of a catalyst for decomposing a fluorine compound-containing gas, it was found that it is necessary to include a metal component that forms a bond with fluorine with an appropriate strength as a property of the catalyst. In particular, in the case of a compound consisting of carbon and fluorine, it has been found that a catalyst containing a metal component having a large enthalpy of formation of fluoride exhibits high decomposition activity because the molecule itself is stable. If a very stable bond is formed, the fluorine compound does not separate from the catalyst, so that the activity gradually decreases. On the other hand, if the bonding strength is too weak, a sufficient decomposition rate cannot be obtained. C 2 F 6, which is a target gas of the present invention, is a substance having a strong intramolecular force and poor reactivity. When burning these gases, it is said that a temperature of 1500 to 2000 ° C. is required. We have found that the target gas can be decomposed by using alumina, titania, silica, and zirconia alone as a catalyst, but a catalyst containing alumina and titania is a catalyst that can achieve a higher decomposition rate. I found something favorable. Alumina appears to work to attract fluorine compounds onto the catalyst, and titania appears to work to release fluorine compounds on the catalyst.

Si,Mg,Zr,W,Sn,Ce,Mn,Bi,Niの酸化物は、アルミナ,チタニア,シリカ,ジルコニアとの協奏効果を発現させると思われる。また、触媒中のチタニアの安定化に寄与していると考えられる。   It is considered that oxides of Si, Mg, Zr, W, Sn, Ce, Mn, Bi, and Ni exhibit a concerted effect with alumina, titania, silica, and zirconia. Further, it is considered that this contributes to stabilization of titania in the catalyst.

本発明のフッ素化合物含有ガスの分解処理方法では、C26などのフッ素化合物を、不活性ガスで希釈してもよいことを見い出した。フッ素化合物の濃度を希釈することで、触媒に対する負荷が小さくなり、分解活性を長時間維持することができる。希釈ガスとしては、Ar,N2 ,Heなどの不活性ガスを用いることができる。 In the method for decomposing a fluorine compound-containing gas of the present invention, it has been found that a fluorine compound such as C 2 F 6 may be diluted with an inert gas. By diluting the concentration of the fluorine compound, the load on the catalyst is reduced, and the decomposition activity can be maintained for a long time. As a diluting gas, an inert gas such as Ar, N 2 , and He can be used.

本発明の対象とするフッ素含有化合物はC26,NF3 などのPFC
(perfluorocompound)あるいはFFC(fully fluorocompound)と呼ばれるもので、代表的な反応としては次のようなものがある。
The fluorine-containing compounds targeted by the present invention are PFCs such as C 2 F 6 and NF 3.
(perfluorocompound) or FFC (fully fluorocompound), and the following are typical reactions.

26+3H2O→CO+CO2+6HF
26+2H2O+1/2O2→2CO2+6HF
NF3+3H2O→NO2+1/2O2+6HF
これらのフッ素化合物は、処理するガス中に水素原子をフッ素化合物中のF数と少なくとも同等になるよう添加することが望ましい。このことにより、化合物中のFはHFになり、分解生成物中のFは後処理しやすいハロゲン化水素の形態となる。このときの水素源としては、水蒸気のほかに、水素,炭化水素などを用いることができるが、炭化水素を用いた場合、炭化水素が触媒上で燃焼し、供給する熱エネルギを小さくすることができる。
C 2 F 6 + 3H 2 O → CO + CO 2 + 6HF
C 2 F 6 + 2H 2 O + 1 / 2O 2 → 2CO 2 + 6HF
NF 3 + 3H 2 O → NO 2 + 1 / 2O 2 + 6HF
These fluorine compounds are desirably added to the gas to be treated so that hydrogen atoms are at least equivalent to the F number in the fluorine compound. As a result, F in the compound becomes HF, and F in the decomposition product becomes a form of hydrogen halide which can be easily post-treated. As the hydrogen source at this time, in addition to steam, hydrogen, hydrocarbons, and the like can be used. When hydrocarbons are used, the hydrocarbons burn on the catalyst, and the supplied heat energy can be reduced. it can.

また、反応ガス中に酸素などの酸化ガスを含有させることで、COの酸化反応も同時に起こらせることができる。COの酸化反応が不完全な場合は、分解生成ガス中のHFを除去した後、CO酸化触媒に接触させてCOをCO2 に転換させることもできる。 Further, by including an oxidizing gas such as oxygen in the reaction gas, a CO oxidation reaction can be caused at the same time. When the oxidation reaction of CO is incomplete, after removing HF in the decomposition product gas, the CO can be brought into contact with a CO oxidation catalyst to convert CO into CO 2 .

本発明の触媒を用いれば、C2Cl33,C2Cl24,C2ClF5などのフロン類,
HFC134aなどの代替フロン類、また、SF6 等の化合物も分解できる。また、
CCl3F ,CCl22などの物質も十分分解できる。なお、塩素化合物を処理した場合の化合物中のClは、HClに転化される。
If the catalyst of the present invention is used, CFCs such as C 2 Cl 3 F 3 , C 2 Cl 2 F 4 and C 2 ClF 5 ;
CFC substitutes such as HFC134a, also, can be decomposed even compounds such as SF 6. Also,
Substances such as CCl 3 F and CCl 2 F 2 can also be sufficiently decomposed. Note that Cl in the compound when the chlorine compound is treated is converted to HCl.

本発明で用いられる反応温度は、約400〜約800℃が好ましい。これ以上の高温で使用すると、高分解率は得られるが、触媒の劣化が速い。また、装置材料の腐食速度が急激に大きくなる。逆に、これ以下の温度では、分解率が低い。   The reaction temperature used in the present invention is preferably from about 400 to about 800C. When used at higher temperatures, a high decomposition rate can be obtained, but the catalyst deteriorates quickly. Also, the corrosion rate of the device material increases rapidly. Conversely, at temperatures below this, the decomposition rate is low.

また、生成したHFを中和除去する工程としては、アルカリ溶液をスプレーして洗浄するものが効率が高く、結晶析出などによる配管の閉塞が起こりにくいので好ましい。アルカリ溶液中に分解生成ガスをバブリングする方法あるいは充填塔を用いて洗浄する方法でもよい。   As a step of neutralizing and removing the generated HF, a step of washing by spraying an alkali solution is preferred because it is highly efficient and blockage of the piping due to crystal precipitation or the like hardly occurs. A method of bubbling a decomposition product gas in an alkali solution or a method of washing using a packed tower may be used.

本発明の触媒を調製するためのAl原料としては、γ−アルミナ,γ−アルミナとδ−アルミナの混合物などを使用することができる。特にベーマイトなどをAl原料として用い、最終的な焼成により酸化物を形成するのも好ましい方法である。   As the Al raw material for preparing the catalyst of the present invention, γ-alumina, a mixture of γ-alumina and δ-alumina, and the like can be used. In particular, it is also a preferable method to use boehmite or the like as an Al raw material and form an oxide by final firing.

本発明の触媒を調製するためのTi原料としては、硫酸チタン,チタニアゾル,チタンスラリ、などを使用することができる。   As a Ti raw material for preparing the catalyst of the present invention, titanium sulfate, titania sol, titanium slurry, and the like can be used.

さらに、Si,Mg,Zrなどの第三金属成分の原料としては、各種、硝酸塩,アンモニウム塩,塩化物などを用いることができる。   Further, as a raw material of the third metal component such as Si, Mg, and Zr, various kinds of nitrates, ammonium salts, chlorides, and the like can be used.

本発明の触媒の製造法は通常触媒の製造に用いられる沈殿法,含浸法,混練法などいずれも使用できる。   As a method for producing the catalyst of the present invention, any of a precipitation method, an impregnation method, a kneading method and the like usually used for production of a catalyst can be used.

また、本発明における触媒は、そのまま粒状,ハニカム状などに成形して使用することができる。成形法としては、押し出し成形法,打錠成形法,転動造粒法などを目的に応じ任意の方法を採用できる。また、セラミックスや金属製のハニカムや板にコーティングして使用することもできる。   Further, the catalyst in the present invention can be used as it is formed into granules, honeycombs or the like. As the molding method, an arbitrary method such as an extrusion molding method, a tablet molding method, a tumbling granulation method, or the like can be adopted according to the purpose. Further, it can be used by coating on a honeycomb or a plate made of ceramics or metal.

本発明のフッ素化合物含有ガス処理方法は、他の処理方法に比べて低温でフッ素化合物を分解することができる。   The fluorine compound-containing gas treatment method of the present invention can decompose a fluorine compound at a lower temperature than other treatment methods.

フッ素化合物含有ガスを処理する場合、分解して生成するHFなどの酸成分による装置材料の腐食が問題となるが、本発明によれば、使用する温度が比較的低温であるため、腐食速度が遅く、装置のメンテナンスなどが不要となる。   When treating a gas containing a fluorine compound, corrosion of equipment materials due to acid components such as HF generated by decomposition becomes a problem. However, according to the present invention, since the temperature used is relatively low, the corrosion rate is low. Slowly, maintenance of the device becomes unnecessary.

本発明のフッ素化合物含有ガス処理方法を実施する装置は、フッ素化合物を分解する触媒反応槽と分解生成ガス中の酸成分を中和除去する設備を備えるだけでよく、装置を小型化できる。   The apparatus for carrying out the method for treating a fluorine compound-containing gas of the present invention only needs to be provided with a catalyst reaction tank for decomposing a fluorine compound and a facility for neutralizing and removing an acid component in a decomposition product gas, and the apparatus can be downsized.

本発明によれば、C26,NF3 などのフッ素含有ガスを効率良く分解処理することができる。 According to the present invention, a fluorine-containing gas such as C 2 F 6 and NF 3 can be efficiently decomposed.

以下、実施例にて本発明をさらに詳細に説明する。本発明は、これら実施例にのみ限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention is not limited to only these examples.

図1は、本発明の分解処理方法を半導体生産プロセスのプラズマCVD装置のクリーニング工程で用いる場合の実施例を示す。   FIG. 1 shows an embodiment in which the decomposition treatment method of the present invention is used in a cleaning step of a plasma CVD apparatus in a semiconductor production process.

プラズマCVD装置は、半導体ウェハー表面にSiO2 膜を蒸着法で形成させる装置である。しかし、SiO2 膜は装置内全体に付着してしまうので、不必要な箇所に付いた
SiO2 を除去する必要がある。このSiO2 をクリーニングするためにC26が用いられる。C26を含むクリーニングガスは、CVDチャンバへ送られ、プラズマで励起してSiO2 を除去する。その後、チャンバ内をN2 で置換し、C26濃度を約3〜5%に希釈して約15l/min でチャンバから排出している。
A plasma CVD apparatus is an apparatus for forming a SiO 2 film on a semiconductor wafer surface by a vapor deposition method. However, since the SiO 2 film adheres to the entire inside of the apparatus, it is necessary to remove SiO 2 attached to unnecessary portions. C 2 F 6 is used to clean this SiO 2 . The cleaning gas containing C 2 F 6 is sent to a CVD chamber and excited by plasma to remove SiO 2 . Thereafter, the inside of the chamber is replaced with N 2 , the C 2 F 6 concentration is diluted to about 3 to 5%, and the chamber is discharged at about 15 l / min.

この排出ガスに空気3を添加しC26を希釈した。この希釈ガスに、さらに水蒸気4を添加した反応ガス5を分解工程に送る。反応ガス中のC26濃度は約0.5% である。分解工程では、反応ガス5を、空間速度3000毎時(空間速度(h~1)=反応ガス流量
(ml/h)/触媒量(ml))の条件でAl23系触媒と700℃で接触させる。この場合、反応ガスを加熱してもよく、電気炉などにより触媒を加熱してもよい。分解ガス6は、排ガス洗浄工程に送られる。排ガス洗浄工程では、分解ガス6にアルカリ水溶液がスプレーされ、分解ガス中の酸成分が除去された排ガス7が系外に放出される。C26の分解率は、反応ガス5と排ガス7をFID(Flame Ionization Detector の略称)ガスクロマトグラフ,TCD(Thermal Conductivity Detector の略称)ガスクロマトグラフを用いて分析し、入り口及び出口の物質収支により求める。
Air 3 was added to the exhaust gas to dilute C 2 F 6 . The reaction gas 5 obtained by further adding steam 4 to the dilution gas is sent to a decomposition step. The concentration of C 2 F 6 in the reaction gas is about 0.5%. In the decomposition step, the reaction gas 5 is mixed with the Al 2 O 3 catalyst at 700 ° C. under the condition of a space velocity of 3000 per hour (space velocity (h ( 1 ) = reaction gas flow rate (ml / h) / catalyst amount (ml)). Make contact. In this case, the reaction gas may be heated, or the catalyst may be heated by an electric furnace or the like. The decomposition gas 6 is sent to an exhaust gas cleaning step. In the exhaust gas cleaning step, an alkaline aqueous solution is sprayed on the decomposition gas 6, and the exhaust gas 7 from which the acid component in the decomposition gas has been removed is discharged out of the system. The decomposition rate of C 2 F 6 is determined by analyzing the reaction gas 5 and the exhaust gas 7 using FID (abbreviation of Flame Ionization Detector) gas chromatograph and TCD (abbreviation of Thermal Conductivity Detector) gas chromatograph, and calculating the material balance at the entrance and exit. Ask.

以下、各種フッ素化合物分解触媒の活性を調べた結果について説明する。   Hereinafter, the results of examining the activities of various fluorine compound decomposition catalysts will be described.

[実施例1]
純度99%以上のC26ガスに空気を添加して希釈した。この希釈ガスに、さらに水蒸気を添加した。水蒸気は純水を0.11ml/minで反応管上部へマイクロチューブポンプを用いて供給しガス化させた。反応ガス中のC26濃度は約0.5% であった。この反応ガスを、電気炉により反応管外部から700℃に加温した触媒と空間速度3000毎時で接触させた。
[Example 1]
And diluted by adding air to the C 2 F 6 gas having 99% or more. Steam was further added to this dilution gas. Water vapor was supplied to the upper portion of the reaction tube at 0.11 ml / min by using a micro tube pump to gasify the water. The C 2 F 6 concentration in the reaction gas was about 0.5%. The reaction gas was brought into contact with the catalyst heated to 700 ° C. from the outside of the reaction tube by an electric furnace at a space velocity of 3000 per hour.

反応管は内径19mmのインコネル製の反応管で、触媒層を反応管中央に有しており、内部に外径3mmのインコネル製の熱電対保護管を有している。触媒層を通過した分解生成ガスは水酸化ナトリウム溶液中にバブリングさせ、系外に放出した。C26の分解率は、
FIDガスクロマトグラフ,TCDガスクロマトグラフにより、次式で求めた。
The reaction tube is an Inconel reaction tube having an inner diameter of 19 mm, has a catalyst layer at the center of the reaction tube, and has an Inconel thermocouple protection tube having an outer diameter of 3 mm inside. The decomposition product gas that passed through the catalyst layer was bubbled into a sodium hydroxide solution and released outside the system. The decomposition rate of C 2 F 6 is
It was determined by the following equation using a FID gas chromatograph and a TCD gas chromatograph.

Figure 2004255380
Figure 2004255380

以下に上記条件における試験に供した各触媒の調製法を示す。   The preparation method of each catalyst used in the test under the above conditions is shown below.

触媒1;Al23
住友化学製粒状アルミナ(NKHD−24)を粉砕し、0.5−1mm 粒径に篩い分けし、120℃で2時間乾燥し、700℃で2時間焼成したものを試験に供した。
Catalyst 1; Al 2 O 3
Granular alumina (NKHD-24) manufactured by Sumitomo Chemical Co., Ltd. was pulverized, sieved to a particle size of 0.5-1 mm, dried at 120 ° C. for 2 hours, and calcined at 700 ° C. for 2 hours and subjected to a test.

触媒2;TiO2
堺化学製粒状チタニア(CS−200−24)を粉砕し、0.5−1mm 粒径に篩い分けし、120℃で2時間乾燥し、700℃で2時間焼成したものを試験に供した。
Catalyst 2; TiO 2
Granular titania (CS-200-24) manufactured by Sakai Chemical Co., Ltd. was pulverized, sieved to a particle size of 0.5-1 mm, dried at 120 ° C. for 2 hours, and calcined at 700 ° C. for 2 hours and subjected to a test.

触媒3;ZrO2
硝酸ジルコニル200gを120℃で2時間乾燥し、700℃で2時間焼成した。得られた粉末を金型に入れ、500kgf/cm2 の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm 粒径のジルコニアに造粒し、試験に供した。
Catalyst 3; ZrO 2
200 g of zirconyl nitrate was dried at 120 ° C. for 2 hours and calcined at 700 ° C. for 2 hours. The obtained powder was put into a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved, granulated into zirconia having a particle size of 0.5-1 mm, and subjected to a test.

触媒4;SiO2
Fuji Silysia製粒状シリカ(CARIACT−10)を粉砕し、0.5−1mm 粒径に篩い分けし、120℃で2時間乾燥し、700℃で2時間焼成したものを試験に供した。
Catalyst 4; SiO 2
Granulated silica (CARIACT-10) manufactured by Fuji Silysia was crushed, sieved to a particle size of 0.5-1 mm, dried at 120 ° C. for 2 hours, and calcined at 700 ° C. for 2 hours and subjected to a test.

触媒5;TiO2−ZrO2
堺化学製粒状チタニア(CS−200−24)を0.5mm 以下に粉砕した。この粉末
100gに対し硝酸ジルコニル78.3g を加え、純水を添加しながら混練した。混練後、120℃で2時間乾燥し、700℃で2時間焼成した。得られた粉末を金型に入れ、
500kgf/cm2 の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm 粒径に造粒し、試験に供した。
Catalyst 5; TiO 2 -ZrO 2
Granular titania (CS-200-24) manufactured by Sakai Chemical was pulverized to 0.5 mm or less. 78.3 g of zirconyl nitrate was added to 100 g of this powder, and kneaded while adding pure water. After kneading, the mixture was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. Put the obtained powder in a mold,
Compression molding was performed at a pressure of 500 kgf / cm 2 . The molded product was pulverized, sieved, granulated to a particle size of 0.5-1 mm, and subjected to a test.

触媒6;Al23−MgO
住友化学製粒状アルミナ(NKHD−24)を0.5mm 以下の粒径に粉砕した。この粉末100gに対し、硝酸マグネシウム56.4g を加え、純水を添加しながら混練した。混練後、120℃で2時間乾燥し、700℃で2時間焼成した。得られた粉末を金型に入れ、500kgf/cm2の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm粒径として試験に供した。
Catalyst 6; Al 2 O 3 -MgO
Granular alumina (NKHD-24) manufactured by Sumitomo Chemical was pulverized to a particle size of 0.5 mm or less. 56.4 g of magnesium nitrate was added to 100 g of this powder, and kneaded while adding pure water. After kneading, the mixture was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. The obtained powder was put into a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved to give a test particle size of 0.5-1 mm.

触媒7;Al23−TiO2
住友化学製粒状アルミナ(NKHD−24)を0.5mm 以下の粒径に粉砕した。この粉末100gに対し、メタチタン酸スラリの乾燥粉末56.4g を加え、純水を添加しながら混練した。混練後、120℃で2時間乾燥し、700℃で2時間焼成した。得られた粉末を金型に入れ、500kgf/cm2 の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm 粒径として試験に供した。
Catalyst 7; Al 2 O 3 —TiO 2
Granular alumina (NKHD-24) manufactured by Sumitomo Chemical was pulverized to a particle size of 0.5 mm or less. 56.4 g of a dry powder of metatitanate slurry was added to 100 g of this powder, and kneaded while adding pure water. After kneading, the mixture was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. The obtained powder was put into a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved and subjected to a test with a particle size of 0.5-1 mm.

触媒8;Al23−SiO2
住友化学製粒状アルミナ(NKHD−24)を0.5mm 以下の粒径に粉砕した。この粉末100gに対し、SiO2 ゾルの乾燥粉末13.2g を加え、純水を添加しながら混練した。混練後、120℃で2時間乾燥し、700℃で2時間焼成した。得られた粉末を金型に入れ、500kgf/cm2の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm 粒径として試験に供した。
Catalyst 8; Al 2 O 3 —SiO 2
Granular alumina (NKHD-24) manufactured by Sumitomo Chemical was pulverized to a particle size of 0.5 mm or less. 13.2 g of a dry powder of SiO 2 sol was added to 100 g of this powder, and kneaded while adding pure water. After kneading, the mixture was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. The obtained powder was put into a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved and subjected to a test with a particle size of 0.5-1 mm.

上記触媒1〜8の試験結果を図2に示す。   FIG. 2 shows the test results of the catalysts 1 to 8.

[実施例2]
本実施例は、実施例1と同様の条件で、第三成分添加の効果を調べたものである。各触媒は以下のように調製した。
[Example 2]
In this example, the effect of the addition of the third component was examined under the same conditions as in Example 1. Each catalyst was prepared as follows.

触媒9;Al23−TiO2
住友化学製粒状アルミナ(NKHD−24)を粉砕し、0.5−1mm 粒径に篩い分けし、120℃で2時間乾燥した。これに、30%硫酸チタン溶液176gを含浸した。含浸後、250〜300℃で約5時間乾燥し、700℃で2時間焼成した。これを試験に供した。
Catalyst 9; Al 2 O 3 —TiO 2
Granular alumina (NKHD-24) manufactured by Sumitomo Chemical Co., Ltd. was pulverized, sieved to a particle size of 0.5-1 mm, and dried at 120 ° C. for 2 hours. This was impregnated with 176 g of a 30% titanium sulfate solution. After impregnation, it was dried at 250 to 300 ° C. for about 5 hours and baked at 700 ° C. for 2 hours. This was subjected to a test.

触媒10;Al23−TiO2−ZrO2
住友化学製粒状アルミナ(NKHD−24)を粉砕し、0.5−1mm 粒径に篩い分けし、120℃で2時間乾燥した。これに、30%硫酸チタン溶液176gを含浸した。含浸後、250〜300℃で約5時間乾燥し、700℃で2時間焼成し、触媒Aを作製した。続いて、触媒A50gに、硝酸ジルコニル2水和物6.7gを90gのH2Oに溶かした水溶液を含浸した。含浸後、120℃で2時間乾燥し、700℃で2時間焼成した。これを試験に供した。
Catalyst 10; Al 2 O 3 —TiO 2 —ZrO 2
Granular alumina (NKHD-24) manufactured by Sumitomo Chemical Co., Ltd. was pulverized, sieved to a particle size of 0.5-1 mm, and dried at 120 ° C. for 2 hours. This was impregnated with 176 g of a 30% titanium sulfate solution. After the impregnation, the catalyst was dried at 250 to 300 ° C. for about 5 hours and calcined at 700 ° C. for 2 hours to prepare Catalyst A. Subsequently, 50 g of the catalyst A was impregnated with an aqueous solution in which 6.7 g of zirconyl nitrate dihydrate was dissolved in 90 g of H 2 O. After impregnation, it was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. This was subjected to a test.

触媒11;Al23−TiO2−WO3
触媒10と同様の方法で触媒Aを作製した。続いて、触媒A50gに、パラタングステン酸アンモニウム6.5gをH2Oに溶かした90gの水溶液を含浸した。含浸後、120℃で2時間乾燥し、700℃で2時間焼成した。これを試験に供した。
Catalyst 11; Al 2 O 3 —TiO 2 —WO 3
Catalyst A was prepared in the same manner as for catalyst 10. Subsequently, 50 g of the catalyst A was impregnated with 90 g of an aqueous solution obtained by dissolving 6.5 g of ammonium paratungstate in H 2 O. After impregnation, it was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. This was subjected to a test.

触媒12;Al23−TiO2−SiO2
触媒10と同様の方法で触媒Aを作製した。続いて、触媒A50gに、20wt%シリカゾル7.5gをH2Oに溶かした90gの水溶液を含浸した。含浸後、120℃で2時間乾燥し、700℃で2時間焼成した。これを試験に供した。
Catalyst 12; Al 2 O 3 —TiO 2 —SiO 2
Catalyst A was prepared in the same manner as for catalyst 10. Subsequently, 50 g of the catalyst A was impregnated with 90 g of an aqueous solution in which 7.5 g of 20 wt% silica sol was dissolved in H 2 O. After impregnation, it was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. This was subjected to a test.

触媒13;Al23−TiO2−SnO2
触媒10と同様の方法で触媒Aを作製した。続いて、触媒A50gに、塩化すず2水和物5.6gをH2Oに溶かした90gの水溶液を含浸した。含浸後、120℃で2時間乾燥し、700℃で2時間焼成した。これを試験に供した。
Catalyst 13; Al 2 O 3 —TiO 2 —SnO 2
Catalyst A was prepared in the same manner as for catalyst 10. Subsequently, 50 g of Catalyst A was impregnated with 90 g of an aqueous solution in which 5.6 g of tin chloride dihydrate was dissolved in H 2 O. After impregnation, it was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. This was subjected to a test.

触媒14;Al23−TiO2−CeO2
触媒10と同様の方法で触媒Aを作製した。続いて、触媒A50gに、硝酸セリウム6水和物10.9gをH2Oに溶かした90gの水溶液を含浸した。含浸後、120℃で2時間乾燥し、700℃で2時間焼成した。これを試験に供した。
Catalyst 14; Al 2 O 3 —TiO 2 —CeO 2
Catalyst A was prepared in the same manner as for catalyst 10. Subsequently, 50 g of the catalyst A was impregnated with 90 g of an aqueous solution obtained by dissolving 10.9 g of cerium nitrate hexahydrate in H 2 O. After impregnation, it was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. This was subjected to a test.

触媒15;Al23−TiO2−MnO2
触媒10と同様の方法で触媒Aを作製した。続いて、触媒A50gに、硝酸マンガン6水和物7.2gをH2Oに溶かした90gの水溶液を含浸した。含浸後、120℃で2時間乾燥し、700℃で2時間焼成した。これを試験に供した。
Catalyst 15; Al 2 O 3 —TiO 2 —MnO 2
Catalyst A was prepared in the same manner as for catalyst 10. Subsequently, 50 g of Catalyst A was impregnated with 90 g of an aqueous solution in which 7.2 g of manganese nitrate hexahydrate was dissolved in H 2 O. After impregnation, it was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. This was subjected to a test.

触媒16;Al23−TiO2−Bi23
触媒10と同様の方法で触媒Aを作製した。続いて、触媒A50gに、硝酸ビスマス6水和物7.4gをH2Oに溶かした90gの水溶液を含浸した。含浸後、120℃で2時間乾燥し、700℃で2時間焼成した。これを試験に供した。
Catalyst 16; Al 2 O 3 —TiO 2 —Bi 2 O 3
Catalyst A was prepared in the same manner as for catalyst 10. Subsequently, 50 g of the catalyst A was impregnated with 90 g of an aqueous solution in which 7.4 g of bismuth nitrate hexahydrate was dissolved in H 2 O. After impregnation, it was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. This was subjected to a test.

触媒17;Al23−TiO2−NiO
触媒10と同様の方法で触媒Aを作製した。続いて、触媒A50gに、硝酸ニッケル6水和物7.3gをH2Oに溶かした90gの水溶液を含浸した。含浸後、120℃で2時間乾燥し、700℃で2時間焼成した。これを試験に供した。
Catalyst 17; Al 2 O 3 —TiO 2 —NiO
Catalyst A was prepared in the same manner as for catalyst 10. Subsequently, 50 g of the catalyst A was impregnated with 90 g of an aqueous solution in which 7.3 g of nickel nitrate hexahydrate was dissolved in H 2 O. After impregnation, it was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. This was subjected to a test.

触媒18;Al23−TiO2−BO4
触媒10と同様の方法で触媒Aを作製した。続いて、触媒A50gに、ほう酸アンモニウム8水和物12.0gをH2Oに溶かした90gの水溶液を含浸した。含浸後、120℃で2時間乾燥し、700℃で2時間焼成した。これを試験に供した。
Catalyst 18; Al 2 O 3 —TiO 2 —BO 4
Catalyst A was prepared in the same manner as for catalyst 10. Subsequently, 50 g of the catalyst A was impregnated with 90 g of an aqueous solution obtained by dissolving 12.0 g of ammonium borate octahydrate in H 2 O. After impregnation, it was dried at 120 ° C. for 2 hours and fired at 700 ° C. for 2 hours. This was subjected to a test.

上記触媒9〜18と、実施例1中の触媒1の活性を図3に示す。   FIG. 3 shows the activities of the catalysts 9 to 18 and the catalyst 1 in Example 1.

[実施例3]
本実施例は、アルミナ原料及びチタニア原料を変化させて各種触媒を調製し、実施例1と同様の方法で活性を調べた例である。
[Example 3]
In this example, various catalysts were prepared by changing the alumina raw material and the titania raw material, and the activity was examined in the same manner as in Example 1.

触媒19;Al23
CONDEA製ベーマイト粉末(PURAL SB)を120℃で2時間乾燥した。この乾燥粉末200gを300℃で0.5 時間焼成し、さらに焼成温度を700℃にあげ2時間焼成した。得られた粉末を金型に入れ、500kgf/cm2 の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm 粒径として試験に供した。
Catalyst 19; Al 2 O 3
The boehmite powder (PURAL SB) manufactured by CONDEA was dried at 120 ° C. for 2 hours. 200 g of the dried powder was fired at 300 ° C. for 0.5 hour, and the firing temperature was raised to 700 ° C. for 2 hours. The obtained powder was put into a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved and subjected to a test with a particle size of 0.5-1 mm.

触媒20;Al23−TiO2
CONDEA製ベーマイト粉末(PURAL SB)を120℃で1時間乾燥した。この乾燥粉末200gと30%硫酸チタン溶液248.4g を純水約200gを添加しながら混練した。混練後、250〜300℃で約5時間乾燥し、700℃で2時間焼成した。得られた粉末を金型に入れ、500kgf/cm2 の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm 粒径として試験に供した。
Catalyst 20; Al 2 O 3 —TiO 2
The boehmite powder (PURAL SB) manufactured by CONDEA was dried at 120 ° C. for 1 hour. 200 g of this dry powder and 248.4 g of a 30% titanium sulfate solution were kneaded while adding about 200 g of pure water. After kneading, the mixture was dried at 250 to 300 ° C. for about 5 hours and fired at 700 ° C. for 2 hours. The obtained powder was put into a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved and subjected to a test with a particle size of 0.5-1 mm.

触媒21;Al23−TiO2
CONDEA製ベーマイト粉末(PURAL SB)を120℃で1時間乾燥した。この乾燥粉末200gと、30%チタニアゾル78.6g に純水を加えた約100gの水溶液を混練した。混練後、120℃で約2時間乾燥し、700℃で2時間焼成した。得られた粉末を金型に入れ、500kgf/cm2 の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm 粒径として試験に供した。
Catalyst 21; Al 2 O 3 —TiO 2
The boehmite powder (PURAL SB) manufactured by CONDEA was dried at 120 ° C. for 1 hour. 200 g of this dry powder and about 100 g of an aqueous solution obtained by adding pure water to 78.6 g of 30% titania sol were kneaded. After kneading, the mixture was dried at 120 ° C. for about 2 hours and fired at 700 ° C. for 2 hours. The obtained powder was put into a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved and subjected to a test with a particle size of 0.5-1 mm.

上記の触媒19〜21の活性を実施例1と同様の方法で調べた結果を図4に示す。   FIG. 4 shows the results obtained by examining the activities of the catalysts 19 to 21 in the same manner as in Example 1.

[実施例4]
本実施例は、実施例3の触媒20中のAlとTiの組成を変化させた触媒を調製し、活性を調べた結果である。
[Example 4]
This example is a result of preparing a catalyst in which the composition of Al and Ti in the catalyst 20 of Example 3 was changed and examining the activity.

触媒22;Al23−TiO2
CONDEA製ベーマイト粉末(PURAL SB)を120℃で1時間乾燥した。この乾燥粉末100gと30%硫酸チタン溶液48.8g を純水約150gを添加しながら混練した。混練後、250〜300℃で約5時間乾燥し、700℃で2時間焼成した。得られた粉末を金型に入れ、500kgf/cm2 の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm 粒径として試験に供した。
Catalyst 22; Al 2 O 3 —TiO 2
The boehmite powder (PURAL SB) manufactured by CONDEA was dried at 120 ° C. for 1 hour. 100 g of this dry powder and 48.8 g of a 30% titanium sulfate solution were kneaded while adding about 150 g of pure water. After kneading, the mixture was dried at 250 to 300 ° C. for about 5 hours and fired at 700 ° C. for 2 hours. The obtained powder was put into a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved and subjected to a test with a particle size of 0.5-1 mm.

触媒23;Al23−TiO2
CONDEA製ベーマイト粉末(PURAL SB)を120℃で1時間乾燥した。この乾燥粉末100gと30%硫酸チタン溶液82.4g を純水約120gを添加しながら混練した。混練後、250〜300℃で約5時間乾燥し、700℃で2時間焼成した。得られた粉末を金型に入れ、500kgf/cm2 の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm 粒径として試験に供した。
Catalyst 23; Al 2 O 3 —TiO 2
The boehmite powder (PURAL SB) manufactured by CONDEA was dried at 120 ° C. for 1 hour. 100 g of this dry powder and 82.4 g of a 30% titanium sulfate solution were kneaded while adding about 120 g of pure water. After kneading, the mixture was dried at 250 to 300 ° C. for about 5 hours and fired at 700 ° C. for 2 hours. The obtained powder was put into a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved and subjected to a test with a particle size of 0.5-1 mm.

触媒24;Al23−TiO2
CONDEA製ベーマイト粉末(PURAL SB)を120℃で1時間乾燥した。この乾燥粉末100gと30%硫酸チタン溶液174.4g を純水約70gを添加しながら混練した。混練後、250〜300℃で約5時間乾燥し、700℃で2時間焼成した。得られた粉末を金型に入れ、500kgf/cm2 の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm 粒径として試験に供した。
Catalyst 24; Al 2 O 3 —TiO 2
The boehmite powder (PURAL SB) manufactured by CONDEA was dried at 120 ° C. for 1 hour. 100 g of this dry powder and 174.4 g of a 30% titanium sulfate solution were kneaded while adding about 70 g of pure water. After kneading, the mixture was dried at 250 to 300 ° C. for about 5 hours and fired at 700 ° C. for 2 hours. The obtained powder was put into a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved and subjected to a test with a particle size of 0.5-1 mm.

触媒25;Al23−TiO2
CONDEA製ベーマイト粉末(PURAL SB)を120℃で1時間乾燥した。この乾燥粉末100gと30%硫酸チタン溶液392gを添加しながら混練した。混練後、250〜300℃で約5時間乾燥し、700℃で2時間焼成した。得られた粉末を金型に入れ、500kgf/cm2の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm粒径として試験に供した。
Catalyst 25; Al 2 O 3 —TiO 2
The boehmite powder (PURAL SB) manufactured by CONDEA was dried at 120 ° C. for 1 hour. The mixture was kneaded while adding 100 g of this dry powder and 392 g of a 30% titanium sulfate solution. After kneading, the mixture was dried at 250 to 300 ° C. for about 5 hours and fired at 700 ° C. for 2 hours. The obtained powder was put into a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved to give a test particle size of 0.5-1 mm.

上記の触媒22〜25の活性を実施例1と同様の方法で調べた結果を図5に示す。
[実施例5]
本実施例は、触媒調製時に硫酸を添加した場合の例である。
FIG. 5 shows the results obtained by examining the activities of the catalysts 22 to 25 in the same manner as in Example 1.
[Example 5]
This embodiment is an example in which sulfuric acid is added during catalyst preparation.

触媒26;Al23−TiO2
CONDEA製ベーマイト粉末(PURAL SB)を120℃で1時間乾燥した。この乾燥粉末150gに、石原産業製CS−N30%チタニアゾル溶液58.8g と、97%硫酸溶液44.8g を純水250mlで希釈した水溶液を添加し混練した。混練後、
250〜300℃で約5時間乾燥し、700℃で2時間焼成した。得られた粉末を金型に入れ、500kgf/cm2の圧力で圧縮成型した。成型品を粉砕,篩い分けして0.5−1mm粒径として試験に供した。試験条件は、空間速度を1000毎時とした以外は実施例1と同様である。試験の結果、反応温度650℃でC26の分解率80%が得られた。
Catalyst 26; Al 2 O 3 —TiO 2
The boehmite powder (PURAL SB) manufactured by CONDEA was dried at 120 ° C. for 1 hour. To 150 g of the dried powder, an aqueous solution obtained by diluting 58.8 g of a 30% titania sol solution of CS-N manufactured by Ishihara Sangyo and 44.8 g of a 97% sulfuric acid solution with 250 ml of pure water was added and kneaded. After kneading,
It was dried at 250-300 ° C. for about 5 hours and baked at 700 ° C. for 2 hours. The obtained powder was put into a mold and compression-molded under a pressure of 500 kgf / cm 2 . The molded product was pulverized and sieved to give a test particle size of 0.5-1 mm. The test conditions were the same as in Example 1 except that the space velocity was set to 1000 per hour. As a result of the test, a decomposition rate of C 2 F 6 of 80% was obtained at a reaction temperature of 650 ° C.

本発明の一実施例による処理プロセスを示す工程図である。FIG. 4 is a process chart showing a processing process according to an embodiment of the present invention. 各種フッ素化合物分解触媒の性能を示すグラフである。It is a graph which shows the performance of various fluorine compound decomposition catalysts. 各種フッ素化合物分解触媒の性能を示すグラフである。It is a graph which shows the performance of various fluorine compound decomposition catalysts. 各種フッ素化合物分解触媒の性能を示すグラフである。It is a graph which shows the performance of various fluorine compound decomposition catalysts. 各種フッ素化合物分解触媒の性能を示すグラフである。It is a graph which shows the performance of various fluorine compound decomposition catalysts.

符号の説明Explanation of reference numerals

1…C26、2…N2 、3…空気、4…水蒸気、5…反応ガス、6…分解ガス、7…排ガス。
1 ... C 2 F 6, 2 ... N 2, 3 ... air, 4 ... steam, 5 ... reaction gas, 6 ... cracked gas, 7 ... exhaust gas.

Claims (6)

炭素を2つ以上含み、かつフッ素原子を含む化合物、もしくは窒素原子とフッ素原子を含む化合物の少なくとも一方を含むガス流を、アルミナ,チタニア,シリカ,ジルコニアの少なくとも一種を含む触媒と約400〜800℃の温度で、有効量の水蒸気の存在下で接触させて、前記ガス流中のFをHFに転化する工程を含んでなることを特徴とするフッ素化合物含有ガスの処理方法。   A gas stream containing at least one of a compound containing two or more carbon atoms and containing a fluorine atom or a compound containing a nitrogen atom and a fluorine atom is mixed with a catalyst containing at least one of alumina, titania, silica, and zirconia by about 400 to 800. A method for treating a fluorine compound-containing gas, comprising the step of contacting at a temperature of ° C in the presence of an effective amount of steam to convert F in said gas stream to HF. 請求項1記載の方法において、前記フッ素化合物含有ガスが、炭素を2つ以上含むCとFとの化合物、もしくはNとFとの化合物であることを特徴とするフッ素化合物含有ガスの処理方法。   The method according to claim 1, wherein the fluorine compound-containing gas is a compound of C and F or a compound of N and F containing two or more carbon atoms. 請求項1記載の方法において、前記触媒が、さらにSi,Mg,Zr,W,Sn,Ce,Mn,Bi,Niのうちの少なくとも一成分を含むことを特徴とするフッ素化合物含有ガスの処理方法。   2. The method according to claim 1, wherein the catalyst further contains at least one of Si, Mg, Zr, W, Sn, Ce, Mn, Bi, and Ni. . 炭素を2つ以上含むCとFとの化合物、もしくはNとFとの化合物を少なくとも一方を含むガス流を処理する触媒であって、アルミナとチタニアを含み、アルミナが75wt%以上98wt%以下、チタニアが25wt%以下2wt%以上であることを特徴とするフッ素化合物分解触媒。   A catalyst for treating a gas stream containing at least one of a compound of C and F or a compound of N and F containing two or more carbons, comprising alumina and titania, wherein the alumina is 75 wt% or more and 98 wt% or less; A fluorine compound decomposition catalyst, wherein titania is 25 wt% or less and 2 wt% or more. 請求項4記載の触媒において、さらにSi,Mg,Zr,W,Sn,Ce,Mn,Bi,Ni,P,Bのうちの少なくとも一成分を含むことを特徴とするフッ素化合物分解触媒。   5. The catalyst according to claim 4, further comprising at least one of Si, Mg, Zr, W, Sn, Ce, Mn, Bi, Ni, P and B. 請求項5記載の触媒において、Si,Mg,Zr,W,Sn,Ce,Mn,Bi,Ni,P,Bの酸化物を、アルミナーチタニア触媒主量に対し、0.1wt% 〜10wt%で含むことを特徴とするフッ素化合物分解触媒。   The catalyst according to claim 5, wherein the oxides of Si, Mg, Zr, W, Sn, Ce, Mn, Bi, Ni, P, and B are contained in an amount of 0.1 wt% to 10 wt% based on the main amount of the alumina-titania catalyst. A fluorine compound decomposition catalyst, characterized by comprising
JP2004116314A 2004-04-12 2004-04-12 Treating method for gas containing fluorine compound Pending JP2004255380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116314A JP2004255380A (en) 2004-04-12 2004-04-12 Treating method for gas containing fluorine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116314A JP2004255380A (en) 2004-04-12 2004-04-12 Treating method for gas containing fluorine compound

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP00434997A Division JP3977887B2 (en) 1997-01-14 1997-01-14 Treatment method for fluorine compound-containing gas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007298776A Division JP2008100229A (en) 2007-11-19 2007-11-19 Fluorine compound-containing gas treatment method

Publications (1)

Publication Number Publication Date
JP2004255380A true JP2004255380A (en) 2004-09-16

Family

ID=33128477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116314A Pending JP2004255380A (en) 2004-04-12 2004-04-12 Treating method for gas containing fluorine compound

Country Status (1)

Country Link
JP (1) JP2004255380A (en)

Similar Documents

Publication Publication Date Title
JP3977887B2 (en) Treatment method for fluorine compound-containing gas
US6942841B2 (en) Process for treating fluorine compound-containing gas
EP0885648B1 (en) A treatment method for decomposing fluorine compounds, and apparatus and use of a catalyst therefor
JP3269456B2 (en) Method for decomposing fluorine-containing compound, catalyst and decomposition apparatus
US5877391A (en) Method for treating gas containing organohalogen compounds, and catalyst for decomposing the organohalogen compounds
JP2002224565A (en) Agent and method for decomposing fluorocarbon
KR20170101160A (en) Acid-resistant catalyst for decomposing perfluorinated compounds and use thereof
JP2001190959A (en) Reactant for decomposition of fluorine compound, decomposition method and its usage
JP2007054714A (en) Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
KR100746528B1 (en) Process and Catalyst for Decomposing Perfluoro Compound, and Apparatus for Treating Perfluoro Compound
JP2008100229A (en) Fluorine compound-containing gas treatment method
JP2004255380A (en) Treating method for gas containing fluorine compound
KR20180121730A (en) Acid-resistant catalyst for decomposing perfluorinated compounds having increased forming strength and use thereof
JP4596432B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JP3931563B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JPH11244656A (en) Treatment of fluorine compound-containing gas and catalyst
JP3570136B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JP2006095486A (en) Method and apparatus for treating fluorine compound-containing gas
JP2000225342A (en) Catalyst for decomposing fluorine-containing compound and method for decomposing fluorine-containing compound
JP3327099B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JP2007237150A (en) Catalyst detoxifying treatment method of emission gas
JP2009078237A (en) Treating method for exhaust gas from semiconductor and liquid crystal manufacturing apparatus
TWI352616B (en) Method for treating gas containing fluorine compou
KR20210020982A (en) Tungsten-zirconium metal oxide catalyst for decomposing large-capacity perfluorinated compounds and method for decomposing perfluorinated compounds using the catalyst
JP2001232152A (en) Decomposition treating method of fluorine-containing compound, catalyst and decomposition treating device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080116

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080208