JPH10188669A - Conductive material and ceramic electronic part with it - Google Patents

Conductive material and ceramic electronic part with it

Info

Publication number
JPH10188669A
JPH10188669A JP34100896A JP34100896A JPH10188669A JP H10188669 A JPH10188669 A JP H10188669A JP 34100896 A JP34100896 A JP 34100896A JP 34100896 A JP34100896 A JP 34100896A JP H10188669 A JPH10188669 A JP H10188669A
Authority
JP
Japan
Prior art keywords
powder
nio
conductive material
ceramic
external electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34100896A
Other languages
Japanese (ja)
Inventor
Yoichi Ogose
洋一 生越
Kaori Okamoto
香織 岡本
Akihiro Takami
昭宏 高見
Yasuo Wakahata
康男 若畑
Iwao Ueno
巌 上野
Kimio Kobayashi
喜美男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP34100896A priority Critical patent/JPH10188669A/en
Publication of JPH10188669A publication Critical patent/JPH10188669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the occurrence of an oxide film between Ag and Ni when this ceramic electronic part is used for an external electrode, increase its heat shock resistance, and reduce the electrode forming process by mixing NiO powder and Ag powder having specific grain sizes in an organic solvent, and coating the NiO powder with the Ag powder. SOLUTION: Ag powder having the average grain size of 2-3μm and NiO powder having the average grain size of 3μm or below are mixed via an organic solvent in a ball mill at the mixing ratio that the effective surface area of the NiO powder is made larger than that of the Ag powder, and the periphery of the NiO powder is coated with the Ag powder. This conductive material is applied to the chip of a ceramic green sheet layered product, and it is reduction-baked in N2 gas containing H2 gas after it is dried to form a Ni-Ag external electrode. Coating and baking may be applied merely once during this electrode forming process. Since silicide powder is contained in the conductive material, the coefficient of thermal expansion near that obtained when a ceramic is sintered is attained, and the occurrence of cracks is further suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は積層セラミックコン
デンサや積層セラミックバリスタなどに用いられる外部
電極用としての導電材料およびそれを用いたセラミック
電子部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive material for an external electrode used in a multilayer ceramic capacitor, a multilayer ceramic varistor, and the like, and a ceramic electronic component using the same.

【0002】[0002]

【従来の技術】一般に積層セラミックコンデンサや積層
セラミックバリスタは、NiO内部電極を印刷した複数
枚のセラミックグリーンシートを積層し、端部に外部電
極となるNiOの導電材料を塗布し還元焼成し、Agを
焼付けることにより製造されている。
2. Description of the Related Art In general, a multilayer ceramic capacitor or a multilayer ceramic varistor is formed by laminating a plurality of ceramic green sheets on which NiO internal electrodes are printed, applying a NiO conductive material as an external electrode to an end portion, and firing by reduction. It is manufactured by baking.

【0003】[0003]

【発明が解決しようとする課題】上記NiとAgとの二
重電極とした場合の加熱温度は、Ni電極のみの場合よ
り高温にできるためNi電極の粒子成長が十分に行われ
て硬度が高められるとともに、セラミック素体との接着
性が高められ、かつAgはその一部がNiに固溶してそ
の熱膨張率を減少させ、セラミック素体の熱膨張率に近
づけるという作用をなし、経時変化に対して重要な役割
を果している。また、AgはNi外部電極の面方向の抵
抗を減少させるという役割をも果している。
The heating temperature when the above-mentioned double electrode of Ni and Ag is used can be set to a higher temperature than when only the Ni electrode is used. At the same time, the adhesiveness to the ceramic body is enhanced, and Ag partially dissolves in Ni to reduce its coefficient of thermal expansion, and has the effect of approaching the coefficient of thermal expansion of the ceramic body. Plays an important role in change. Ag also plays a role in reducing the surface resistance of the Ni external electrode.

【0004】しかし、Ni外部電極を空気中で放置する
と、NiがNiOに変化してNiとAgの境界部分にN
iの酸化膜が形成され、高温加熱によりNiの酸化膜は
強化され導電性および強度に著しい劣化がみられ、工法
上でも問題を有するものであった。
However, when the Ni external electrode is left in the air, Ni changes to NiO, and N at the boundary between Ni and Ag.
An oxide film of i was formed, and the Ni oxide film was strengthened by heating at a high temperature, and the conductivity and the strength were significantly deteriorated.

【0005】本発明は以上のような従来の欠点を除去す
るものであり、NiとAgとの間の酸化膜を減少させ、
外部電極の形成時の工数削減が可能な導電材料およびそ
れを用いたセラミック電子部品を提供することを目的と
するものである。
The present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and reduces the oxide film between Ni and Ag,
It is an object of the present invention to provide a conductive material capable of reducing the number of steps when forming an external electrode and a ceramic electronic component using the same.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明の導電材料は、主成分である平均粒径2〜3μ
mのAg粉末に平均粒径3μm以下のNiO粉末を有機
溶剤を介して混合することによりNiO粉末をAg粉末
で被覆した構成である。この構成により外部電極として
使用した際にNiとAgの間の酸化膜を減少させ、外部
電極形成の工数低減が図れることになる。
Means for Solving the Problems To solve the above problems, the conductive material of the present invention has an average particle diameter of 2 to 3 μm as a main component.
The structure is such that NiO powder having an average particle size of 3 μm or less is mixed with Ag powder of m through an organic solvent to coat the NiO powder with the Ag powder. With this configuration, when used as an external electrode, the oxide film between Ni and Ag is reduced, and the number of steps for forming the external electrode can be reduced.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、主成分である平均粒径2〜3μmのAg粉末に平均
粒径3μm以下のNiO粉末を有機溶剤を介して混合す
ることによりNiO粉末をAg粉末で被覆した構成であ
り、外部電極に使用したときにNiとAgとの間に発生
する酸化膜を少なくして導電性、強度の劣化を防ぎ、外
部電極の形成工程の工数削減を図ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is to mix NiO powder having an average particle size of 3 μm or less with Ag powder having an average particle size of 2 to 3 μm via an organic solvent. In this configuration, the NiO powder is coated with Ag powder to reduce the oxide film generated between Ni and Ag when used for an external electrode, thereby preventing deterioration in conductivity and strength. Man-hours can be reduced.

【0008】請求項2に記載の発明は、請求項1に記載
の導電材料に珪化物粉末を含有させたものであり、セラ
ミック電子部品の外部電極として利用したときセラミッ
クの焼結における熱膨張率に近づけクラックの発生を防
止できる。
According to a second aspect of the present invention, the conductive material according to the first aspect contains a silicide powder, and when used as an external electrode of a ceramic electronic component, a coefficient of thermal expansion in sintering of the ceramic. And the occurrence of cracks can be prevented.

【0009】請求項3に記載の発明は、NiO内部電極
を形成したセラミックグリーンシートを積層した電子部
品素子の端部に請求項2に記載の導電材料を塗布し還元
焼成してNi−Ag外部電極を形成した構成であり、信
頼性に優れたセラミック電子部品とすることができる。
According to a third aspect of the present invention, the conductive material according to the second aspect is applied to an end of an electronic component element in which ceramic green sheets on which NiO internal electrodes are formed are laminated and reduced and fired to form a Ni-Ag exterior. With the configuration in which the electrodes are formed, a ceramic electronic component having excellent reliability can be obtained.

【0010】以下、本発明の実施の形態を具体的に説明
する。すなわち、本発明はNiO粉末の実効表面積をA
g粉末の実効表面積より大きくしてボールミルで混合を
行うとNiO粉末の周囲にAg粉末で完全に被覆され
る。
Hereinafter, embodiments of the present invention will be specifically described. That is, the present invention sets the effective surface area of NiO powder to A
When the mixing is performed by a ball mill with the effective surface area larger than the g powder, the periphery of the NiO powder is completely covered with the Ag powder.

【0011】ボールミルの混合に際しては、不純物が混
合されないように十分に注意し、ジルコニアボールを使
用する。この時、所望の効果を得るためには、Ag粉末
およびNiO粉末の粉末粒径を適当に選択する必要があ
るが、NiO粉末としての粒径を3μm、Ag粉末とし
ての粒径を3μmのものを用いた。これらの混合比は、
NiO:Ag=4:6とした。
When mixing in a ball mill, zirconia balls are used with great care so as not to mix impurities. At this time, in order to obtain a desired effect, it is necessary to appropriately select the powder particle diameters of the Ag powder and the NiO powder, but the particle diameter of the Ni powder is 3 μm, and the particle diameter of the Ag powder is 3 μm. Was used. These mixing ratios are
NiO: Ag = 4: 6.

【0012】これにメチルエチルケトンとセラミック材
料および珪化物粉末として平均粒径0.5μm、純度9
9.9%の(表1)に示すものを入れ24時間ボールミ
ルで混合して外部電極用の導電材料を作成した。
[0012] Methyl ethyl ketone, ceramic material and silicide powder have an average particle size of 0.5 µm and a purity of 9 µm.
9.9% of those shown in (Table 1) were mixed in a ball mill for 24 hours to prepare a conductive material for an external electrode.

【0013】[0013]

【表1】 [Table 1]

【0014】次に、SrTiO3を主原料とする高誘電
率セラミックペーストを作成し、それに有機バインダー
を混入させ厚さ10μmのセラミックグリーンシートを
作り、これにNiO粉末を含む内部電極を印刷し乾燥し
た。
Next, a high dielectric constant ceramic paste containing SrTiO 3 as a main raw material is prepared, and an organic binder is mixed therein to form a ceramic green sheet having a thickness of 10 μm. An internal electrode containing NiO powder is printed thereon and dried. did.

【0015】次に、上記セラミックグリーンシートの印
刷面を上にして同様のセラミックグリーンシートを内部
電極が交互にずれるように合計30層積層し、さらにこ
の積層物の上下両面に各々厚さ10μmのセラミックグ
リーンシートを20枚ずつ積層して圧着した後、これを
個々のチップ毎に裁断し、交互に対向して2組の内部電
極にそれぞれ接続できるように積層セラミック電子部品
の電子部品素子の両端面に上記外部電極用の導電材料を
約50μmの厚みで均一に塗布し乾燥した。
Next, a similar ceramic green sheet is laminated in a total of 30 layers so that the internal electrodes are alternately shifted with the printed surface of the ceramic green sheet facing upward, and a 10 μm thick layer is formed on both upper and lower surfaces of the laminate. After laminating 20 pieces of ceramic green sheets and pressing them together, they are cut into individual chips, and both ends of the electronic component elements of the laminated ceramic electronic component so that they can be connected alternately to two sets of internal electrodes. The conductive material for an external electrode was uniformly applied to a surface with a thickness of about 50 μm and dried.

【0016】続いて、この電子部品素子を2%Hガスを
含むN2ガス雰囲気中で1250℃で4時間還元焼成し
た。
Subsequently, the electronic component element was reduced and fired at 1250 ° C. for 4 hours in an N 2 gas atmosphere containing 2% H gas.

【0017】このときの外部電極内のNiとAgの挙動
は次の通りである。NiはAgを外部に押し出し、Ni
は内部電極であるNiと良好に接合し、セラミック端部
にNiがNi内部電極部分を中心に接合しそれを覆うよ
うにAgがセラミック側面に存在する。また、珪化物は
外部電極とセラミックとの良好な接合に寄与する。
The behavior of Ni and Ag in the external electrode at this time is as follows. Ni pushes Ag out and Ni
Is well bonded to Ni as an internal electrode, and Ni is bonded to the ceramic end portion around the Ni internal electrode portion and Ag is present on the ceramic side surface so as to cover the Ni internal electrode portion. Further, the silicide contributes to good bonding between the external electrode and the ceramic.

【0018】その後、この還元状態の電子部品素子を空
気中で900℃で焼成する。このとき、外部電極内のN
iとAgとの間に多量のNiOが存在しなくなる。
Thereafter, the electronic component element in the reduced state is fired at 900 ° C. in air. At this time, N in the external electrode
A large amount of NiO does not exist between i and Ag.

【0019】このようにして製造された積層セラミック
電子部品の構成を図1に示す。図1において、1はセラ
ミック素体、2はNiからなる内部電極、3はAgから
なる外部電極、4はNiからなる外部電極を示してい
る。
FIG. 1 shows the structure of the multilayer ceramic electronic component manufactured as described above. In FIG. 1, 1 is a ceramic body, 2 is an internal electrode made of Ni, 3 is an external electrode made of Ag, and 4 is an external electrode made of Ni.

【0020】この積層セラミック電子部品のtanδ、
ESRの低下が見られた従来の値と本発明の値と比較し
て(表2)に示す。
The tan δ,
Table 2 shows a comparison between the conventional value in which the ESR was reduced and the value of the present invention.

【0021】[0021]

【表2】 [Table 2]

【0022】次に上記積層セラミック電子部品における
外部電極3,4とセラミック素体1との強度について説
明する。この強度の測定は図2に示すようにセラミック
素体1の両端の外部電極3,4にNi、半田(Sn:P
b=9:1)メッキをバレルメッキで各々3μmの厚み
となるように施し、その両端面にスチールからなる金属
線5を半田付けして接続し、金属線5に荷重をかけるこ
とによって電極を引はがし、その時の力と電極欠損面積
を実測することによって引張強度(kg/cm2)を求め
た。その結果を(表3)に示す。
Next, the strength of the external electrodes 3 and 4 and the ceramic body 1 in the multilayer ceramic electronic component will be described. As shown in FIG. 2, the measurement of the strength is performed by connecting Ni and solder (Sn: P) to the external electrodes 3 and 4 at both ends of the ceramic body 1.
b = 9: 1) Plating is performed by barrel plating so as to have a thickness of 3 μm each, metal wires 5 made of steel are connected to both end surfaces by soldering, and a load is applied to the metal wires 5 to form electrodes. The tensile strength (kg / cm 2 ) was determined by actually measuring the force at that time and the electrode defect area. The results are shown in (Table 3).

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【発明の効果】以上のように本発明の導電材料は、セラ
ミック電子部品の外部電極に用いることにより、セラミ
ック素体にクラックを発生させることがなく、ヒートシ
ョックにも十分耐えるものとなる。これは、NiとAg
との間に還元焼成しても酸化膜が多く形成されないため
であり、NiO粉末をAg粉末で被覆したことに起因す
るものと考えられる。また、このような導電材料を用い
ることによってセラミック電子部品の外部電極を形成す
る工程が一度の塗布焼成で終了することになり工数の削
減に寄与するものとなる。さらにセラミック電子部品と
したとき特性的にも著しく優れたものとすることができ
る。
As described above, when the conductive material of the present invention is used for an external electrode of a ceramic electronic component, it does not cause cracks in the ceramic body and sufficiently withstands heat shock. This is Ni and Ag
This is because a large amount of an oxide film is not formed even when reduction baking is performed between the first and second steps, which is considered to be caused by coating the NiO powder with the Ag powder. In addition, by using such a conductive material, the step of forming the external electrodes of the ceramic electronic component is completed by one coating and firing, which contributes to a reduction in the number of steps. Further, when it is made into a ceramic electronic component, it can be made to be extremely excellent in characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における導電材料を外部電
極に用いた場合のセラミック電子部品の一部切欠斜視図
FIG. 1 is a partially cutaway perspective view of a ceramic electronic component when a conductive material according to an embodiment of the present invention is used for an external electrode.

【図2】同セラミック電子部品の引張強度を測定する説
明図
FIG. 2 is an explanatory view for measuring a tensile strength of the ceramic electronic component.

【符号の説明】[Explanation of symbols]

1 セラミック素体 2 内部電極 3,4 外部電極 Reference Signs List 1 ceramic body 2 internal electrode 3, 4 external electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01G 4/30 301 H01G 1/14 F (72)発明者 若畑 康男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 上野 巌 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小林 喜美男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内──────────────────────────────────────────────────の Continuing on the front page (51) Int.Cl. 6 Identification code FI H01G 4/30 301 H01G 1/14 F (72) Inventor Yasuo Wakahata 1006 Ojidoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. ( 72) Inventor Iwao Ueno 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Kimio Kobayashi 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主成分である平均粒径2〜3μmのAg
粉末に平均粒径3μm以下のNiO粉末を有機溶剤を介
して混合することによりNiO粉末をAg粉末で被覆し
た導電材料。
An Ag having an average particle diameter of 2 to 3 μm as a main component.
A conductive material in which NiO powder is coated with Ag powder by mixing the powder with NiO powder having an average particle size of 3 μm or less via an organic solvent.
【請求項2】 珪化物粉末を含有させた請求項1に記載
の導電材料。
2. The conductive material according to claim 1, further comprising a silicide powder.
【請求項3】 NiO内部電極を形成したセラミックグ
リーンシートを積層した電子部品素子の端部に請求項2
に記載の導電材料を塗布し還元焼成してNi−Ag外部
電極を形成したセラミック電子部品。
3. An electronic component element having ceramic green sheets on which NiO internal electrodes are formed is laminated on an end portion of the electronic component element.
A ceramic electronic component having a Ni-Ag external electrode formed by applying the conductive material described in 1 above and reducing and firing it.
JP34100896A 1996-12-20 1996-12-20 Conductive material and ceramic electronic part with it Pending JPH10188669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34100896A JPH10188669A (en) 1996-12-20 1996-12-20 Conductive material and ceramic electronic part with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34100896A JPH10188669A (en) 1996-12-20 1996-12-20 Conductive material and ceramic electronic part with it

Publications (1)

Publication Number Publication Date
JPH10188669A true JPH10188669A (en) 1998-07-21

Family

ID=18342364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34100896A Pending JPH10188669A (en) 1996-12-20 1996-12-20 Conductive material and ceramic electronic part with it

Country Status (1)

Country Link
JP (1) JPH10188669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170345564A1 (en) * 2016-05-24 2017-11-30 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170345564A1 (en) * 2016-05-24 2017-11-30 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
US10312020B2 (en) * 2016-05-24 2019-06-04 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
US4082906A (en) Low temperature fired ceramic capacitors
JP4744609B2 (en) Ceramic component element, ceramic component and manufacturing method thereof
CN100527289C (en) Laminate type ceramic electronic component and method of producing the same
US6984543B2 (en) Method of producing laminated PTC thermistor
JP2003318059A (en) Layered ceramic capacitor
JP3359522B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JPH10144561A (en) Terminal electrode paste and multilayered ceramic capacitor
JPH11307312A (en) Laminated varistor and manufacture thereof
JPH11214240A (en) Laminated ceramic electronic component and their manufacture
JPH10188669A (en) Conductive material and ceramic electronic part with it
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JPH07263272A (en) Manufacture of laminated electronic component
JPH04260314A (en) Ceramic laminate
JPH0512997Y2 (en)
JP2773314B2 (en) Multilayer ceramic capacitors
JPS63219115A (en) Manufacture of laminated semiconductor porcelain electronic component
JPH07201637A (en) Multilayer ceramic electronic device
JPH04154104A (en) Laminated ceramic capacitor
JP3078375B2 (en) Multilayer ceramic capacitors
JPH08222468A (en) Ceramic element and manufacture thereof
JP2886724B2 (en) Manufacturing method of laminated voltage non-linear resistor
JP2002231561A (en) Multilayer ceramic electronic component and its manufacturing method
JPH07297073A (en) Multilayered ceramic capacitor and its manufacture
JPH0982560A (en) Multilayer ceramic capacitor