JP2773314B2 - Multilayer ceramic capacitors - Google Patents

Multilayer ceramic capacitors

Info

Publication number
JP2773314B2
JP2773314B2 JP28360089A JP28360089A JP2773314B2 JP 2773314 B2 JP2773314 B2 JP 2773314B2 JP 28360089 A JP28360089 A JP 28360089A JP 28360089 A JP28360089 A JP 28360089A JP 2773314 B2 JP2773314 B2 JP 2773314B2
Authority
JP
Japan
Prior art keywords
multilayer ceramic
powder
external electrode
weight
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28360089A
Other languages
Japanese (ja)
Other versions
JPH03145109A (en
Inventor
久直 中蔵
巖夫 石川
隆 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28360089A priority Critical patent/JP2773314B2/en
Publication of JPH03145109A publication Critical patent/JPH03145109A/en
Application granted granted Critical
Publication of JP2773314B2 publication Critical patent/JP2773314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケルで内部電極が形成された積層セラ
ミックコンデンサに関するものである。
Description: TECHNICAL FIELD The present invention relates to a multilayer ceramic capacitor having an internal electrode formed of nickel.

従来の技術 今日、積層セラミックコンデンサは、軽薄短小化の要
望を満たすため、ますますその需要が高まっており、ま
たそれに伴い改善すべき技術課題も種々上げられてい
る。その改善すべき項目の一つとして、内部電極に使用
されるパラジウムなどの材料が高価なため、それを低価
格の材料に置き換え、製品価格を低下させようとの試み
がある。そして、このような点から、Niを内部電極材料
に使用することが提案されており、一部実施されてい
る。この内部電極材料にNiを用いて場合、外部電極材料
にもNi,Cuなどの卑金属が用いられている。これは通常
用いられるAg外部電極では、Niよりなる内部電極との十
分な接合強度が得られないためである。
2. Description of the Related Art Today, multilayer ceramic capacitors have been increasingly demanded to meet demands for lighter, thinner and smaller devices, and accordingly, there have been various technical problems to be improved. As one of the items to be improved, there is an attempt to reduce the product price by replacing expensive materials such as palladium used for the internal electrodes with low-cost materials. From such a point, it has been proposed to use Ni as an internal electrode material, and some of them have been implemented. When Ni is used for the internal electrode material, base metals such as Ni and Cu are also used for the external electrode material. This is because a commonly used Ag external electrode cannot provide a sufficient bonding strength with an internal electrode made of Ni.

発明が解決しようとする課題 しかしながら、従来の積層セラミックコンデンサは、
外部電極と素体との接合強度を強くするためのガラスフ
リットを含んだ外部電極を用いているため、ガラスフリ
ットが素体に拡散し、素体に歪が生じて残り、コンデン
サをプリント基板等に半田付けした後に熱衝撃テストを
行なうと熱衝撃によりクラックが生じやすく、そのため
セラミックコンデンサの絶縁抵抗が劣化するという課題
があった。
However, the conventional multilayer ceramic capacitor is
Since an external electrode containing glass frit is used to increase the bonding strength between the external electrode and the element body, the glass frit diffuses into the element body, causing distortion in the element body and leaving the capacitor. When a thermal shock test is performed after soldering, cracks are likely to occur due to the thermal shock, so that the insulation resistance of the ceramic capacitor is deteriorated.

本発明は、このような課題を解消する積層セラミック
コンデンサを提供することを目的とするものである。
An object of the present invention is to provide a multilayer ceramic capacitor that solves such a problem.

課題を解決するための手段 この課題を解決するために本発明の積層セラミックコ
ンデンサは、ニッケルから成る複数の内部電極用導電層
がセラミック層を介して積層されて形成されたコンデン
サ素体を焼成した後、素体の両端面及びこれに連なる周
端縁部に外部電極用導電層を形成し、大気中で焼成した
積層セラミックコンデンサであって、前記外部電極用導
電層を、Ag成分1〜85重量%、Cu成分5〜89重量%、Zn
成分10〜94重量%から成りガラスフリットを含まない構
成としたものである。
Means for Solving the Problems In order to solve this problem, a multilayer ceramic capacitor of the present invention is obtained by firing a capacitor body formed by stacking a plurality of conductive layers for internal electrodes made of nickel via a ceramic layer. Thereafter, an external electrode conductive layer is formed on both end surfaces of the element body and peripheral edges connected to the element body, and the multilayer ceramic capacitor is fired in the air, wherein the external electrode conductive layer has an Ag component of 1 to 85. Wt%, Cu component 5-89 wt%, Zn
The composition is composed of 10 to 94% by weight and does not contain glass frit.

作用 外部電極のCuを大気中で焼成することにより酸化し、
その酸化銅が誘電体に拡散することにより、素体と外部
電極との接合を強固なものにする。また、内部電極のNi
と外部電極のZnが固溶し、またZnとAgが固溶してそれぞ
れNi−Zn固溶体及びAg−Zn固溶体を形成し、内部電極と
外部電極とが固溶体によって接続されることにより、強
固なものとなる。外部電極のAg,Cu,Znをそれぞれ1〜85
重量%,5〜89重量%,10〜94重量%の範囲に限定したの
は、Agの量が1重量%以下であると内部電極と外部電極
の接続に支障を来たし、熱衝撃後の絶縁抵抗に劣化を来
たすものが生じ、Cuの量が5重量%以下では外部電極と
素体との接着強度が弱くなり、Znの量が10重量%以下で
は内部電極のすべてと外部電極とが接続されなくなっ
て、静電容量が減少するからである。このガラスフリッ
トを含まないAg−Cu−Zn外部電極を大気中で焼成し形成
することにより、従来の方法によるコンデンサのように
素体に歪が生ずることがなく、本発明の方法によるコン
デンサをプリント基板に半田付けした後に熱衝撃テスト
を行なうと熱衝撃によってクラックが生じないから、絶
縁抵抗が劣化することがない。
Action Oxidizes by sintering Cu in the external electrode in the air,
The copper oxide diffuses into the dielectric, thereby strengthening the bond between the element and the external electrode. Also, the internal electrode Ni
And Zn of the external electrode form a solid solution, and Zn and Ag form a solid solution to form a Ni-Zn solid solution and an Ag-Zn solid solution, respectively. It will be. Ag, Cu, and Zn of the external electrodes are 1 to 85 each.
The range of 5% to 89% by weight and 10 to 94% by weight is that if the amount of Ag is less than 1% by weight, the connection between the internal electrode and the external electrode is hindered, and the insulation after thermal shock When the amount of Cu is less than 5% by weight, the adhesive strength between the external electrode and the element is weakened. When the amount of Zn is less than 10% by weight, all the internal electrodes are connected to the external electrode. This is because the capacitance is reduced. By sintering and forming the Ag-Cu-Zn external electrode containing no glass frit in the atmosphere, the capacitor according to the method of the present invention can be printed without distorting the element body unlike the capacitor according to the conventional method. When a thermal shock test is performed after soldering to a substrate, no crack is generated by the thermal shock, so that the insulation resistance does not deteriorate.

実施例 以下、本発明の実施例について説明する。Examples Hereinafter, examples of the present invention will be described.

Ag20重量%,Cu20重量%,Zn60重量%となるようにAg金
属粉,Cu金属粉,Zn金属粉を配合し、それにバインダ,溶
剤を入れて混合し、Ag−Cu−Znペーストを作製した。次
に、このペーストを素体の両端面に塗布し、乾燥し、80
0℃空気中で焼付を行った。次いで、電解メッキ法によ
りその上にNiメッキを行い、Niの金属層を形成し、その
後電解メッキ法によりNi金属層の上にSn−Pbメッキを行
い、Sn−Pb合金層を形成し、積層セラミックコンデンサ
とした。
Ag metal powder, Cu metal powder, and Zn metal powder were blended so as to be 20% by weight of Ag, 20% by weight of Cu, and 60% by weight of Zn, and a binder and a solvent were added and mixed to prepare an Ag-Cu-Zn paste. Next, this paste is applied to both end surfaces of the body, dried, and
Baking was performed in air at 0 ° C. Next, Ni plating is performed thereon by electrolytic plating to form a Ni metal layer, and then Sn-Pb plating is performed on the Ni metal layer by electrolytic plating to form a Sn-Pb alloy layer, and laminated. A ceramic capacitor was used.

ここで、前記素体とは、本実施例により得られた積層
セラミックコンデンサを示す第1図に示される通り、誘
電体1とNiよりなる内部電極2とが交互に積層されてな
るものであり、かつ前記内部電極2は相異なる端面のAg
−Cu−Zn合金層3に一層おきに接続されている。また、
4はNi金属層、5はSn−Pb合金層である。
Here, as shown in FIG. 1 showing the multilayer ceramic capacitor obtained by the present embodiment, the element body is formed by alternately laminating dielectrics 1 and internal electrodes 2 made of Ni. And the internal electrodes 2 are made of Ag having different end faces.
-Every other layer is connected to the Cu-Zn alloy layer 3. Also,
4 is a Ni metal layer, and 5 is a Sn-Pb alloy layer.

次に、内部電極と外部電極との接合、外部電極と素体
との接着強度を評価するために実験を行った。ここで
は、誘電体2として一般に用いられているBaTiO3系材料
を使用し、有効誘電体層を12層として実験を行った。
Next, an experiment was performed to evaluate the bonding between the internal electrode and the external electrode and the adhesive strength between the external electrode and the element body. Here, an experiment was performed using a BaTiO 3 material generally used as the dielectric 2 and 12 effective dielectric layers.

コンデンサの静電容量を30個について測定し、その後
熱衝撃試験(85℃,−45℃)を200サイクル行い、絶縁
抵抗を測定した。また、コンデンサ30個について引張り
強度試験を行った。ここで、もちろん実験は外部電極を
構成する第2層のNi金属層、第3層のSn−Pb合金層を設
けた状態でのものである。測定結果を表1に示す。表1
において、実施例1は先述の実施例の積層セラミックコ
ンデンサであり、実施例2は、Ag粉末45g,Cu粉末45g,Zn
粉末10gに変えて先述した方法で作成した積層セラミッ
クコンデンサ、実施例3は同様に、Ag粉末1g,Cu粉末40
g,Zn粉末59gとしたもの、実施例4は、Ag粉末20g,Cu粉
末5g,Zn粉末75gとしたものであり、この材料の混合量の
変更以外はいずれの実施例とも、実施例1と同じ方法及
び条件で形成した。
The capacitance of 30 capacitors was measured, and then a thermal shock test (85 ° C., −45 ° C.) was performed for 200 cycles to measure the insulation resistance. Further, a tensile strength test was performed on 30 capacitors. Here, of course, the experiment was performed in a state where the second layer of the Ni metal layer and the third layer of the Sn—Pb alloy layer constituting the external electrode were provided. Table 1 shows the measurement results. Table 1
In the first embodiment, the multilayer ceramic capacitor of the above-described embodiment is used, and the second embodiment is configured such that Ag powder 45 g, Cu powder 45 g, Zn
The multilayer ceramic capacitor prepared by the above-described method in place of the powder of 10 g, and the third embodiment is also similar to the case of the Ag powder of 1 g and the Cu powder of 40.
g, Zn powder 59 g, Example 4 was Ag powder 20 g, Cu powder 5 g, Zn powder 75 g, except that the mixing amount of this material was changed. Formed by the same method and conditions.

なお、比較例1はAg粉末は零,Cu粉末40g,Zn粉末60gと
して同様に形成した比較用の積層セラミックコンデン
サ、比較例2はAg粉末21g,Cu粉末4g,Zn粉枚75gとしたも
の、比較例3はAg粉末45g,Cu粉末50g,Zn粉末5gとしたも
ので、材料の量の変更以外は実施例1同方法及び条件で
形成した。
Comparative Example 1 was a comparative multilayer ceramic capacitor similarly formed with zero Ag powder, 40 g of Cu powder, and 60 g of Zn powder, and Comparative Example 2 had 21 g of Ag powder, 4 g of Cu powder, and 75 g of Zn powder. Comparative Example 3 used 45 g of Ag powder, 50 g of Cu powder, and 5 g of Zn powder, and was formed by the same method and conditions as in Example 1 except that the amount of the material was changed.

また、絶縁抵抗値が1010Ω以下のものを不良品とし
た。
Those having an insulation resistance value of 10 10 Ω or less were regarded as defective.

さらに、比較例4は、上記した従来の方法により実施
例1のコンデンサ素体と同じ条件で作製したものであ
る。
Further, Comparative Example 4 was manufactured by the above-described conventional method under the same conditions as those of the capacitor body of Example 1.

発明の効果 以上のように本発明によれば、熱衝撃等による絶縁抵
抗の劣化が少ないと共に、静電容量の低下がなく、ガラ
スフリットレスでも従来とほぼ同等の引張り強度が得ら
れる等の効果がある。
Advantageous Effects of the Invention As described above, according to the present invention, there is little deterioration of insulation resistance due to thermal shock and the like, there is no decrease in capacitance, and even a glass fritless can obtain almost the same tensile strength as before. There is.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例における積層セラミックコン
デンサの製造を示す断面図である。 1………誘電体材料、2……Ni内部電極、3……Ag−Cu
−Zn外部電極、4……Ni層、5……Sn−Pb層。
FIG. 1 is a sectional view showing the production of a multilayer ceramic capacitor according to one embodiment of the present invention. 1. Dielectric material 2. Ni internal electrode 3. Ag-Cu
-Zn external electrode, 4 ... Ni layer, 5 ... Sn-Pb layer.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01G 4/12 H01G 4/232──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01G 4/12 H01G 4/232

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ニッケルから成る複数の内部電極用導電層
がセラミック層を介して積層されて形成されたコンデン
サ素体を焼成した後、素体の両端面及びこれに連なる周
端縁部に外部電極用導電層を形成し、大気中で焼成した
積層セラミックコンデンサであって、前記外部電極用導
電層は、Ag成分1〜85重量%、Cu成分5〜89重量%、Zn
成分10〜94重量%から成りガラスフリットを含まないこ
とを特徴とする積層セラミックコンデンサ。
1. After firing a capacitor element formed by laminating a plurality of conductive layers for internal electrodes made of nickel via a ceramic layer, external ends are formed on both end faces of the element element and peripheral edges connected thereto. A multilayer ceramic capacitor in which a conductive layer for an electrode is formed and fired in the air, wherein the conductive layer for an external electrode comprises 1 to 85% by weight of an Ag component, 5 to 89% by weight of a Cu component, and Zn.
A multilayer ceramic capacitor comprising 10 to 94% by weight of a component and containing no glass frit.
JP28360089A 1989-10-31 1989-10-31 Multilayer ceramic capacitors Expired - Fee Related JP2773314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28360089A JP2773314B2 (en) 1989-10-31 1989-10-31 Multilayer ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28360089A JP2773314B2 (en) 1989-10-31 1989-10-31 Multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH03145109A JPH03145109A (en) 1991-06-20
JP2773314B2 true JP2773314B2 (en) 1998-07-09

Family

ID=17667605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28360089A Expired - Fee Related JP2773314B2 (en) 1989-10-31 1989-10-31 Multilayer ceramic capacitors

Country Status (1)

Country Link
JP (1) JP2773314B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206430A (en) * 2008-02-29 2009-09-10 Tdk Corp Multilayer electronic component and manufacturing method thereof

Also Published As

Publication number Publication date
JPH03145109A (en) 1991-06-20

Similar Documents

Publication Publication Date Title
CA2211259C (en) Monolithic ceramic capacitor and producing method thereof
JPH10284343A (en) Chip type electronic component
JP3528749B2 (en) Multilayer ceramic capacitors
JP2943380B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2003318059A (en) Layered ceramic capacitor
JP3514117B2 (en) Multilayer ceramic electronic component, method of manufacturing multilayer ceramic electronic component, and conductive paste for forming internal electrode
JP3855792B2 (en) Multilayer ceramic electronic components
JPH097878A (en) Ceramic electronic part and manufacture thereof
JP4380145B2 (en) Method for manufacturing conductive paste and ceramic electronic component
JPH10144561A (en) Terminal electrode paste and multilayered ceramic capacitor
JP2773314B2 (en) Multilayer ceramic capacitors
JPH11214240A (en) Laminated ceramic electronic component and their manufacture
JP2000100653A (en) Chip-type stacked electronic component
JPH0817139B2 (en) Laminated porcelain capacitors
JPH097879A (en) Ceramic electronic part and manufacture thereof
JP2969716B2 (en) Multilayer ceramic capacitors
JP2996016B2 (en) External electrodes for chip-type electronic components
JP2727651B2 (en) Ceramic substrate
JPH11232927A (en) Conductive paste
JPH10163067A (en) External electrode of chip electronic component
JPS62122103A (en) Manufacture of laminated chip varistor
JPH07201637A (en) Multilayer ceramic electronic device
JP2968316B2 (en) Multilayer ceramic capacitors
JP2996015B2 (en) External electrodes for chip-type electronic components
JPH06140278A (en) Laminated ceramic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees