JPH10185334A - Refrigerating equipment - Google Patents

Refrigerating equipment

Info

Publication number
JPH10185334A
JPH10185334A JP34184296A JP34184296A JPH10185334A JP H10185334 A JPH10185334 A JP H10185334A JP 34184296 A JP34184296 A JP 34184296A JP 34184296 A JP34184296 A JP 34184296A JP H10185334 A JPH10185334 A JP H10185334A
Authority
JP
Japan
Prior art keywords
compressor
expansion valve
time
stop
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34184296A
Other languages
Japanese (ja)
Other versions
JP3603514B2 (en
Inventor
Yoshiyasu Azuma
義康 東
Narikazu Miyake
斉和 三宅
Takashi Kawagishi
孝至 川岸
Katsuyoshi Matsuura
克好 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP34184296A priority Critical patent/JP3603514B2/en
Publication of JPH10185334A publication Critical patent/JPH10185334A/en
Application granted granted Critical
Publication of JP3603514B2 publication Critical patent/JP3603514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To start refrigerating equipment from a stopped state smoothly and quickly. SOLUTION: The capacity of a compressor 3 of refrigerating equipment 1 can be controlled in a plurality of steps by an unload device 7. At the time of starting the compressor 3 from a state of stop of operation, a control means 10 repeats an extremely low step wherein a refrigerating capacity is not present nearly at all and the lowest step at the time of an ordinary operation, for a prescribed time set by a timer 11 and in a prescribed number of times set in a counter 12. Thereby a refrigerant collected in a water-side heat exchanger 2 operating as an evaporator during the stop of operation can be transferred to an air-side heat exchanger operating as a condenser, without causing liquid compression and quickly. The number of times of repetition is increased when the period of the stop of operation is judged to be of a long time or when the frequency of the start and the stop is judged to be large, by a long time detecting means 22 or a storage means 23. Besides, a solenoid valve 20 for opening and closing an expansion valve is operated and thereby a pump-down operation is also conducted in parallel at the time of the start.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、極低ステップを有
して容量制御可能な圧縮機を備える冷凍装置に関し、特
に起動時に円滑な運転が可能な冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system having a compressor having an extremely low step and capable of controlling the capacity, and more particularly to a refrigeration system capable of operating smoothly at startup.

【0002】[0002]

【従来の技術】従来から、たとえば特公平8−1655
8号公報には、通常運転時で複数のロードステップで容
量制御が可能で、起動時用に通常時の最低ステップより
もさらに冷凍能力が小さくほとんど無能力な極低ステッ
プを有する圧縮機を用いて、通常運転時のサーモオフを
回避する技術が開示されている。冷凍装置が、運転を停
止した後で運転を開始する起動時には、圧縮機内部や蒸
発器内で冷媒が液体状態となっており、急激に圧縮する
と圧縮機を破損するおそれがある。このため、まず極低
ステップで運転した後、さらに最低ステップで圧縮機を
運転し、偏って貯留されている冷媒を充分に循環可能な
状態としてから通常の容量制御による運転を開始するよ
うにしている。
2. Description of the Related Art Conventionally, for example, Japanese Patent Publication No.
No. 8 discloses a compressor having a very low step capacity, which is capable of controlling the capacity in a plurality of load steps during normal operation and having a smaller refrigerating capacity than the lowest step during normal operation and almost incapable of starting. Thus, a technique for avoiding thermo-off during normal operation is disclosed. When the refrigerating apparatus starts operating after stopping the operation, the refrigerant is in a liquid state inside the compressor or the evaporator, and if the refrigerant is rapidly compressed, the compressor may be damaged. For this reason, after operating at the extremely low step first, the compressor is operated at the further minimum step, and the operation by the normal capacity control is started after a state in which the stored refrigerant can be sufficiently circulated unevenly is started. I have.

【0003】[0003]

【発明が解決しようとする課題】冷凍装置の起動時に、
圧縮機を極低ステップで運転した後で通常運転を行うよ
うにしても、蒸発器に多量の液冷媒が溜まっている状態
では、極低ステップでは充分に吸引することができず、
通常運転を開始するまで残存し、圧縮機内に液冷媒が吸
引されて液圧縮を起こしてしまう場合がある。このよう
な液圧縮を防ぐためには、極低ステップで運転する時間
を充分に長くしておく必要がある。
When the refrigeration system is started,
Even if normal operation is performed after the compressor is operated in the extremely low step, in a state where a large amount of liquid refrigerant is accumulated in the evaporator, it is not possible to sufficiently suck in the extremely low step,
In some cases, the liquid refrigerant remains until the normal operation is started, and the liquid refrigerant is sucked into the compressor to cause liquid compression. In order to prevent such liquid compression, it is necessary to make the operation time in the extremely low step sufficiently long.

【0004】また、冷凍装置が冷水を供給するチラーで
あり、冷水の温度を設定温度に保つような制御を行って
いる場合は、外気温が低いような条件で通常運転中の最
低ステップでも冷凍能力が過剰になって、通常運転開始
後に短時間でサーモオフ状態となり、さらに起動運転か
ら通常運転を繰返して、発停頻度が高まり、圧縮機など
の寿命を低下させるおそれもある。このような場合に、
発停頻度を低下させるためには、冷水の保有量を多くす
る必要があり、冷凍装置のユーザ側で保有水量を多くし
ておくための設備負担が大きくなってしまう。
When the refrigeration system is a chiller for supplying chilled water and controls to keep the temperature of the chilled water at a set temperature, the refrigeration is performed even at the lowest step during normal operation under a condition where the outside air temperature is low. There is a possibility that the capacity becomes excessive, the thermo-off state is set in a short time after the start of the normal operation, and the normal operation is repeated from the start-up operation, so that the frequency of starting and stopping is increased and the life of the compressor and the like is shortened. In such a case,
In order to reduce the frequency of starting and stopping, it is necessary to increase the amount of cold water, which increases the facility load on the user side of the refrigeration apparatus for increasing the amount of water.

【0005】本発明の目的は、運転停止状態からの起動
を円滑かつ効率的に行うことができ、冷水を供給するよ
うな設備でも保有水量を削減することができる冷凍装置
を提供することである。
It is an object of the present invention to provide a refrigeration apparatus which can smoothly and efficiently start up from an operation stop state and can reduce the amount of water retained even in a facility for supplying chilled water. .

【0006】[0006]

【課題を解決するための手段】本発明は、ほとんど冷凍
能力のない極低ステップと、通常運転領域で最低の冷凍
能力である最低ステップとを含む複数段階で容量制御が
可能な圧縮機(3)を備える冷凍装置(1)において、
圧縮機(3)の運転時間を計時するタイマ(11)と、
予め定める回数が設定されるカウンタ(12)と、運転
停止状態からの起動時、またはデフロスト運転開始時お
よび終了時に、タイマ(11)によって計時される所定
時間だけ圧縮機(3)を極低ステップで運転する状態
と、タイマ(11)によって計時される所定時間だけ圧
縮機(3)を最低ステップで運転する状態とを、カウン
タ(12)に設定される回数に達するまで繰返す起動運
転を行った後、通常運転領域で圧縮機(3)を動作させ
るように制御する制御手段(10)とを含むことを特徴
とする冷凍装置である。本発明に従えば、制御装置(1
0)は、冷凍装置(1)の起動時、またはデフロスト運
転開始時および終了時に、圧縮機(3)を極低ステップ
で所定時間動作させる状態と、最低ステップで所定時間
動作させる状態とを、予め定める回数繰返して行った後
で通常運転を行うように制御する。最低ステップでの運
転も所定時間だけ行うので、蒸発器などに溜まっている
冷媒も迅速に吸引し、かつ最低ステップでの運転時間が
限られているので、液圧縮などの発生を避けることがで
きる。起動運転で、所定時間ずつの最低ステップの運転
を行うことによって、冷媒およびそれに伴う潤滑油の循
環を確保し、円滑な通常運転への移行を可能とすること
ができる。
SUMMARY OF THE INVENTION The present invention provides a compressor (3) capable of controlling the capacity in a plurality of stages including an extremely low step having almost no refrigeration capacity and a minimum step having the lowest refrigeration capacity in a normal operation range. In the refrigerating apparatus (1) provided with
A timer (11) for measuring the operation time of the compressor (3);
A counter (12) in which a predetermined number of times is set, and a compressor (3) being set to an extremely low step for a predetermined time counted by a timer (11) at the time of start-up from an operation stop state or at the start and end of defrost operation. And a state in which the compressor (3) is operated at the minimum step for a predetermined time measured by the timer (11) until the number set in the counter (12) is reached. And a control means (10) for controlling the compressor (3) to operate in a normal operation range. According to the present invention, the control device (1
0) is a state in which the compressor (3) is operated for a predetermined time in an extremely low step and a state in which the compressor (3) is operated for a predetermined time in a minimum step when the refrigeration system (1) is started or when defrost operation is started and ended. Control is performed such that normal operation is performed after the operation is repeated a predetermined number of times. Since the operation at the minimum step is also performed for a predetermined time, the refrigerant accumulated in the evaporator or the like is also quickly sucked, and the operation time at the minimum step is limited, so that the occurrence of liquid compression or the like can be avoided. . In the start-up operation, by performing the operation of the minimum step at predetermined time intervals, the circulation of the refrigerant and the accompanying lubricating oil can be ensured, and a smooth transition to the normal operation can be made possible.

【0007】また本発明は、前記圧縮機(3)の運転停
止後に予め定める時間以上の長時間が経過しているか否
かを検知する長時間検知手段(22)を備え、前記制御
手段(10)は、長時間検知手段(22)を参照して、
圧縮機(3)の運転停止後に長時間が経過していると
き、前記起動運転の繰返し回数を増加させることを特徴
とする。本発明に従えば、圧縮機(3)の運転停止後に
長時間が経過しているときには、制御手段(10)は、
起動運転の繰返し回数を増加させるので、蒸発器などに
溜まっている液冷媒を確実に吸引し、循環させることが
できる。
The present invention further comprises a long-time detecting means (22) for detecting whether or not a long time equal to or longer than a predetermined time has elapsed after the operation of the compressor (3) is stopped, and the control means (10). ) Refers to the long-time detection means (22),
When a long time elapses after the operation of the compressor (3) is stopped, the number of repetitions of the start-up operation is increased. According to the present invention, when a long time has elapsed after the operation of the compressor (3) is stopped, the control means (10)
Since the number of repetitions of the start-up operation is increased, the liquid refrigerant accumulated in the evaporator or the like can be reliably sucked and circulated.

【0008】また本発明は前記圧縮機(3)の運転およ
び停止の発停状態を記憶する記憶手段(23)を備え、
前記制御手段(10)は、記憶手段(23)を参照し
て、予め定める時間内での圧縮機(3)の発停回数が予
め定める基準よりも大きいとき、前記起動運転の繰返し
回数を増加させることを特徴とする。本発明に従えば、
予め定める時間内での圧縮機(3)の発停回数が基準よ
りも大きいときには、通常運転の冷凍能力が大きすぎる
ことを意味する。制御手段(10)は、起動運転の繰返
し回数を増加させるので、極低ステップを交えて冷凍能
力が低下した状態で圧縮機(3)が運転する時間が長く
なり、圧縮機(3)がサーモオフして停止する頻度を低
下させることができる。
The present invention further comprises storage means (23) for storing the start / stop state of the operation and stop of the compressor (3),
The control means (10) refers to the storage means (23) and increases the number of repetitions of the start-up operation when the number of start / stop of the compressor (3) within a predetermined time is larger than a predetermined reference. It is characterized by making it. According to the present invention,
When the number of times of starting and stopping of the compressor (3) within the predetermined time is larger than the reference, it means that the refrigerating capacity of the normal operation is too large. Since the control means (10) increases the number of repetitions of the start-up operation, the operation time of the compressor (3) in a state where the refrigerating capacity is reduced with an extremely low step becomes longer, and the compressor (3) is turned off. And the frequency of stoppage can be reduced.

【0009】また本発明は、開閉制御可能な膨張弁
(6)を備え、前記制御手段(10)は、前記起動運転
で極低ステップと最低ステップとを繰返す間、膨張弁
(6)の開閉も繰返して行うように制御することを特徴
とする。本発明に従えば、膨張弁(6)を弁閉状態とす
れば蒸発器に冷媒が流れなくなるので、一度に蒸発器に
冷媒が流れて、さらに圧縮機(3)まで流れるのを防止
し、圧縮機(3)の液圧縮を防止することができる。一
方、膨張弁(6)の開閉を繰返すことによって、適量の
潤滑油は圧縮機(3)に戻ってくるので、圧縮機(3)
の潤滑を充分に行うことができる。
The present invention further includes an expansion valve (6) capable of opening and closing control, wherein the control means (10) opens and closes the expansion valve (6) while repeating the extremely low step and the minimum step in the starting operation. Control is also performed repeatedly. According to the present invention, when the expansion valve (6) is closed, the refrigerant does not flow to the evaporator. Therefore, the refrigerant is prevented from flowing into the evaporator at one time and further flowing to the compressor (3). Liquid compression of the compressor (3) can be prevented. On the other hand, by repeatedly opening and closing the expansion valve (6), an appropriate amount of lubricating oil returns to the compressor (3).
Can be sufficiently lubricated.

【0010】また本発明で前記膨張弁(6)は、外部均
圧方式の感温式膨張弁(6)であり、膨張弁(6)の高
圧側と均圧管(26)との間に設けられる電磁弁(2
0)と、均圧管(26)と前記圧縮機(3)の吸入側と
の間に設けられるキャピラリ(21)とを備え、前記制
御手段(10)は、前記起動運転に併せて、圧縮機
(3)の吸入側の圧力が所定範囲内となるように、電磁
弁(20)を弁開させて膨張弁(6)を弁閉状態とし、
電磁弁(20)を弁閉させて膨張弁(6)を弁開状態と
する制御を行うことを特徴とする。本発明に従えば、制
御手段(10)は起動運転に併せて電磁弁(20)を開
閉し、外部均圧方式の感温式膨張弁(6)の均圧管(2
6)にかかる圧力を制御することができる。膨張弁
(6)を弁開状態とするには、電磁弁(20)を弁閉さ
せて均圧管(26)内の冷媒をキャピラリ(21)を介
して圧縮機(3)に吸入させて低圧とし、膨張弁(6)
を弁閉状態とするには、電磁弁(20)を弁開させて、
均圧管(26)内を高圧とする制御を行う。圧縮機
(3)への急激な液冷媒の吸入による液圧縮を防いで、
冷媒および潤滑油を円滑に移行させることができる。圧
縮機の吸入圧力が、破損を招くような極端な低圧まで下
がることを、防止することもできる。
In the present invention, the expansion valve (6) is an external pressure equalizing type temperature-sensitive expansion valve (6), and is provided between the high pressure side of the expansion valve (6) and the pressure equalizing pipe (26). Solenoid valve (2
0), and a capillary (21) provided between the pressure equalizing pipe (26) and the suction side of the compressor (3), and the control means (10) controls the compressor in accordance with the start-up operation. The solenoid valve (20) is opened to close the expansion valve (6) so that the pressure on the suction side of (3) is within a predetermined range,
The electromagnetic valve (20) is closed to control the expansion valve (6) to open. According to the present invention, the control means (10) opens and closes the solenoid valve (20) in accordance with the start-up operation, and controls the pressure equalizing pipe (2) of the external pressure equalizing type temperature-sensitive expansion valve (6).
The pressure applied to 6) can be controlled. To open the expansion valve (6), the solenoid valve (20) is closed and the refrigerant in the pressure equalizing pipe (26) is sucked into the compressor (3) through the capillary (21) to reduce the pressure. And expansion valve (6)
To close the valve, the solenoid valve (20) is opened,
Control for increasing the pressure inside the pressure equalizing pipe (26) is performed. Prevents liquid compression due to sudden suction of liquid refrigerant into the compressor (3),
The refrigerant and the lubricating oil can be smoothly transferred. It is also possible to prevent the suction pressure of the compressor from dropping to an extremely low pressure that may cause damage.

【0011】[0011]

【発明の実施の形態】図1は、本発明の実施の一形態に
よる冷凍装置(1)の概略的な配管系統および制御のた
めの電気的構成を示す。冷凍装置(1)は、水側熱交換
器(2)で、冷媒を圧縮機(3)で吸引して形成する低
圧力で蒸発させ、冷水ポンプ(4)から送込まれる冷水
を冷却してユーザ側に供給する。水側熱交換器(2)内
で蒸発する冷媒は、圧縮機(3)から吐出される冷媒を
空気側熱交換器(5)を凝縮器として凝縮させて液状化
し、膨張弁(6)を通過する際に急激に減圧させて供給
する。
FIG. 1 shows a schematic piping system of a refrigeration system (1) according to an embodiment of the present invention and an electrical configuration for control. The refrigeration system (1) evaporates the refrigerant at a low pressure formed by suctioning the refrigerant with a compressor (3) in a water-side heat exchanger (2), and cools the chilled water sent from a chilled water pump (4). Supply to the user side. The refrigerant evaporating in the water-side heat exchanger (2) is liquefied by condensing the refrigerant discharged from the compressor (3) using the air-side heat exchanger (5) as a condenser. When passing, the pressure is rapidly reduced and supplied.

【0012】圧縮機(3)の能力は、アンロード装置
(7)によって複数段階に切換えられる。圧縮機(3)
は、たとえば通常使用領域では100%、70%および
40%の容量で運転可能であり、さらに最低ステップで
ある40%よりも小さな容量の約10%程度の極低ステ
ップでも動作可能である。極低ステップの運転では、冷
凍装置(1)としてはほとんど冷凍能力が生じない。
The capacity of the compressor (3) is switched in a plurality of stages by an unloading device (7). Compressor (3)
For example, the device can be operated at a capacity of 100%, 70%, and 40% in a normal use area, and can be operated at an extremely low step of about 10% of a capacity smaller than the minimum step of 40%. In the operation at the extremely low step, the refrigeration system (1) hardly generates a refrigeration capacity.

【0013】水側熱交換器(2)は、冷凍装置(1)が
冷凍運転中には蒸発器として働き、冷凍装置(1)がヒ
ートポンプによる冷水の加温の動作を行っているときに
は凝縮器として動作する。冷水ポンプ(4)から送込ま
れる水は冷温水入口(8)から水側熱交換器(2)に導
入され、冷温水出口(9)から排出されて負荷側に供給
される。冷水の温度制御を行う制御手段(10)は、予
め設定されるプログラムに従い、タイマ(11)および
カウンタ(12)を用いて、圧縮機(3)が停止状態か
ら通常運転に移る際の起動運転の過程も制御する。通常
運転時には、冷温水入口(8)および冷温水出口(9)
に設けられる入口側温度検出器(13)や出口側温度検
出器(14)の検出温度を参照し、入口温度制御、出口
温度制御あるいは可変水量制御など、所定の動作モード
に従って冷水の温度制御を行う。外気温度検出器(1
5)は、冷凍装置(1)の周囲の外気温度を検出する。
The water-side heat exchanger (2) functions as an evaporator when the refrigerating device (1) is in a freezing operation, and when the refrigerating device (1) is performing the operation of heating the cold water by the heat pump, the condenser (1). Works as Water sent from the cold water pump (4) is introduced into the water-side heat exchanger (2) from the cold / hot water inlet (8), discharged from the cold / hot water outlet (9), and supplied to the load side. The control means (10) for controlling the temperature of the chilled water uses a timer (11) and a counter (12) to start operation when the compressor (3) shifts from a stopped state to a normal operation in accordance with a preset program. Process is also controlled. During normal operation, cold / hot water inlet (8) and cold / hot water outlet (9)
The temperature of the cold water is controlled in accordance with a predetermined operation mode such as an inlet temperature control, an outlet temperature control, or a variable water amount control with reference to the detected temperatures of the inlet-side temperature detector (13) and the outlet-side temperature detector (14). Do. Outside air temperature detector (1
5) detects the outside air temperature around the refrigeration system (1).

【0014】膨張弁(6)は外部均圧型の感温式であ
り、高圧側と低圧側との間には、キャピラリ(16)と
電磁弁(17)とを直列に接続した配管路が並列に接続
される。また空気側熱交換器(5)に対して通風するた
めのファン(18)と、冷水ポンプ(4)に対して冷水
を貯留する冷水タンク(19)も設けられる。さらに膨
張弁(6)の均圧管(26)には、膨張弁(6)の高圧
側との間にポンプダウン用電磁弁(20)、圧縮機
(3)の吸入側との間にキャピラリ(21)がそれぞれ
設けられる管路が接続される。制御手段(10)には、
圧縮機(3)がサーモオフなどによって停止した後、起
動時までの停止時間が、たとえば2時間以上経過してい
るか否かを検知する長時間検知手段(22)と、過去の
発停の記憶を行う記憶手段(23)も接続される。さら
に、圧縮機(3)の吐出側と吸入側との圧力は、高圧検
出器(24)および低圧検出器(25)によって、それ
ぞれ検出される。
The expansion valve (6) is an external pressure equalizing type temperature-sensitive type, and a pipe line in which a capillary (16) and a solenoid valve (17) are connected in series is connected in parallel between a high pressure side and a low pressure side. Connected to. Further, a fan (18) for ventilating the air-side heat exchanger (5) and a chilled water tank (19) for storing chilled water for the chilled water pump (4) are also provided. Further, the pressure equalizing pipe (26) of the expansion valve (6) has a solenoid valve (20) for pumping down between the high pressure side of the expansion valve (6) and a capillary (26) between the suction side of the compressor (3). 21) are connected. The control means (10) includes:
After the compressor (3) is stopped due to thermo-off or the like, a long time detecting means (22) for detecting whether or not a stop time until start-up is, for example, two hours or more, and a storage of past start / stop. A storage means (23) is also connected. Further, the pressure on the discharge side and the pressure on the suction side of the compressor (3) are detected by a high pressure detector (24) and a low pressure detector (25), respectively.

【0015】図2は、図1の冷凍装置(1)の各機器の
動作状態を示す。また図3は、図2のように制御する際
の制御手段(10)の動作を示す。図3のステップa1
から動作を開始し、ステップa2ではカウンタ(12)
に、起動運転の繰返し回数である3を設定する。ステッ
プa3では、長時間検知手段(22)を参照して、停止
時間が2時間以上となっているか否かを判断する。2時
間以上停止していないと判断されるときには、ステップ
a4で、記憶手段(23)を参照して、発停のサイクル
が短く、たとえば3回前に起動してから今回起動し始め
るまでの時間が40分未満であるか否かを判断する。ス
テップa3またはステップa4の条件が成立するときに
は、ステップa5でカウンタ(12)の設定値を、たと
えば2だけ増加させ、5にする。
FIG. 2 shows an operation state of each device of the refrigeration system (1) of FIG. FIG. 3 shows the operation of the control means (10) when performing control as shown in FIG. Step a1 in FIG.
The operation starts from step a2, and in step a2, the counter (12)
Is set to 3, which is the number of repetitions of the start-up operation. In step a3, it is determined whether or not the stop time is 2 hours or more by referring to the long time detecting means (22). If it is determined that the vehicle has not stopped for two hours or more, the storage unit (23) is referred to in step a4, and the start / stop cycle is short, for example, the time from the start three times ago to the start of the current start. Is less than 40 minutes. When the condition of step a3 or step a4 is satisfied, the set value of the counter (12) is increased by, for example, 2 to 5 in step a5.

【0016】ステップa4で条件が成立しないとき、ま
たはステップa5が終了すると、ステップa6でファン
(18)を起動する。ファン(18)をたとえば3秒間
起動したら、ステップa7で、圧縮機(3)を約10%
程度の極低ステップで運転する。タイマ(11)には、
たとえば30秒を設定し、この30秒間が経過するとス
テップa8で、圧縮機(3)の容量を40%の最低ステ
ップに増加させて運転する。このときもタイマ(11)
には、たとえば30秒を設定し、30秒経過するとステ
ップa9でカウンタ(12)のカウント値を1減少させ
る。ステップa10で、カウンタ(12)の計数値が0
になっているか否かを判断する。0になっていないとき
には、ステップa7に戻る。ステップa3またはステッ
プa4の条件が成立しないときには、ステップa7から
ステップa10までの動作を3回繰返すことになり、ス
テップa5でカウンタの設定値を5に増加したときに
は、繰返し回数は5となる。
When the condition is not satisfied in step a4 or when step a5 is completed, the fan (18) is started in step a6. When the fan (18) is started, for example, for 3 seconds, in step a7, the compressor (3) is turned on by about 10%.
Driving at very low steps. Timer (11) has
For example, 30 seconds are set, and after the elapse of 30 seconds, the compressor (3) is operated by increasing the capacity of the compressor (3) to the minimum step of 40% in step a8. Also at this time, the timer (11)
Is set to, for example, 30 seconds, and when 30 seconds have elapsed, the count value of the counter (12) is decreased by 1 in step a9. At step a10, the count value of the counter (12) is 0.
It is determined whether or not it is. If not, the process returns to step a7. When the condition of step a3 or step a4 is not satisfied, the operation from step a7 to step a10 is repeated three times. When the set value of the counter is increased to 5 in step a5, the number of repetitions is 5.

【0017】ステップa10でカウンタ(12)の計数
値が0になったときには、ステップa11で最低ステッ
プ運転をさらに2分間継続した後、ステップa12の通
常の制御に移る。ステップa11までの起動運転では、
出口側温度検出器(14)によって検出される冷温水出
口(9)での水温が凍結防止用に設定されるたとえば3
℃の凍結防止温度未満となったり、ファン(18)が停
止するような場合以外は、サーモオフの条件になっても
そのまま圧縮機(3)の運転を続ける。ステップa12
からの通常制御に移行すると、サーモオフになる場合も
含めて通常の温度制御が行われる。本実施形態では、通
常制御に迅速かつ円滑に移行することができるので、冷
水タンク(19)の容量が小さくても、安定な水温で冷
水を供給することができる。
When the count value of the counter (12) becomes 0 in step a10, the minimum step operation is continued for another 2 minutes in step a11, and thereafter, the process proceeds to the normal control in step a12. In the starting operation up to step all,
The water temperature at the cold / hot water outlet (9) detected by the outlet-side temperature detector (14) is set to prevent freezing, for example, 3
Unless the temperature is below the freezing prevention temperature of ° C. or the fan (18) stops, the compressor (3) continues to operate even when the thermo-off condition is reached. Step a12
When the process shifts to the normal control, the normal temperature control is performed including the case where the thermostat is turned off. In the present embodiment, since the control can be quickly and smoothly shifted to the normal control, the cold water can be supplied at a stable water temperature even if the capacity of the cold water tank (19) is small.

【0018】極低ステップは極めて低い容量での運転状
態であり、圧縮機(3)の吸入能力がほとんどないの
で、液冷媒も吸収しないけれども、潤滑油も吸収しな
い。ほんとんど圧縮能力がないので、冷凍装置としての
冷凍能力をほとんど発揮しない。一方、圧縮機(3)内
にある冷媒等を排出する程度の能力はあるので、少量の
液冷媒であれば、圧縮機(3)から排出し得る。
The extremely low step is an operation state with a very low capacity, and since the compressor (3) has almost no suction capacity, it does not absorb the liquid refrigerant, but does not absorb the lubricating oil. Since there is almost no compression capacity, the refrigeration capacity of the refrigeration system is hardly exhibited. On the other hand, the compressor (3) is capable of discharging the refrigerant and the like in the compressor (3), so that a small amount of liquid refrigerant can be discharged from the compressor (3).

【0019】したがって、吸入側に液冷媒があっても、
これを吸引して液圧縮を起こすおそれはないけれども、
長時間継続して運転すると、潤滑油が圧縮機(3)に吸
入側から戻らなくなるので、圧縮機(3)の焼き付き等
の原因となる。
Therefore, even if liquid refrigerant is present on the suction side,
Although there is no danger of sucking this and causing liquid compression,
If the operation is continued for a long time, the lubricating oil does not return to the compressor (3) from the suction side, which causes seizure of the compressor (3).

【0020】最低ステップは、小さいながらも吸入能力
を有する低い容量での運転状態であり、冷凍装置として
の冷凍能力を小さいながらも発揮する。吸入側に液冷媒
や潤滑油があれば、吸入し得る。
The lowest step is an operation state with a small capacity having a suction capacity, albeit small, and exerts the refrigeration capacity of the refrigeration apparatus although it is small. If there is liquid refrigerant or lubricating oil on the suction side, it can be sucked.

【0021】したがって、長時間運転を継続しても潤滑
油不足にはならないけれども、吸入側に液冷媒があれば
これを大量に吸引して液圧縮を起こすおそれがある。
Therefore, even if the operation is continued for a long time, the lubricating oil does not become insufficient, but if there is a liquid refrigerant on the suction side, a large amount of the liquid refrigerant may be sucked to cause liquid compression.

【0022】そこで、両ステップを短時間ずつ交互に運
転すれば、本願発明の請求項1に記載の発明となる。最
低ステップで液冷媒を吸入すると、短時間であれば、吸
入する液冷媒の量も少量ですむ。次の極低ステップでは
新たな液冷媒は吸入しないけれども、既に吸入した少量
の液冷媒を圧縮機(3)から排出することができる。
Therefore, if both steps are alternately operated for a short time, the invention according to claim 1 of the present invention is achieved. When the liquid refrigerant is sucked in at the minimum step, the amount of the liquid refrigerant to be sucked is small for a short time. Although no new liquid refrigerant is sucked in the next extremely low step, a small amount of liquid refrigerant that has already been sucked can be discharged from the compressor (3).

【0023】図4は、本発明の実施の他の形態として、
膨張弁開閉用電磁弁(20)およびキャピラリ用の電磁
弁(17)を用いて冷媒および潤滑油を循環させる制御
を行う動作を示す。ステップb1から動作を開始し、ス
テップb2では、膨張弁開閉用電磁弁(20)を開き、
キャピラリ用の電磁弁(17)を閉じる。ステップb3
で図2および図3に示すような圧縮機(3)の起動を開
始する。膨張弁開閉用電磁弁(20)を介して均圧管
(26)に高圧がかかるので、膨張弁は弁閉状態とな
り、高圧側と低圧側とは仕切られる。ステップb4で
は、圧縮機(3)の吸入側の低圧圧力を低圧検出器(2
5)によって検出し、予め定める下側基準圧力以下とな
っているか否かを判断する。下側基準圧力以下となる
と、ステップb5で膨張弁開閉用電磁弁(20)を閉
じ、キャピラリ用の電磁弁(17)を開く。ステップb
5が終了したとき、またはステップb4で条件が成立し
なかったときには、ステップb6で、低圧圧力が上側基
準を超えているか否かを判断する。条件が成立するとき
には、ステップb7で、膨張弁開閉用電磁弁(20)を
開き、キャピラリ用の電磁弁(17)を閉じる。ステッ
プb7が終了したとき、またはステップb6で条件が成
立しなかったときには、ステップb8で、図2および図
3に示す起動運転が終了したか否かを判断する。終了し
ていないときにはステップb4に戻り、終了していると
きにはステップb9で制御も終了する。
FIG. 4 shows another embodiment of the present invention.
The operation | movement which performs control which circulates a refrigerant | coolant and lubricating oil using the solenoid valve (20) for expansion valve opening / closing, and the solenoid valve (17) for capillaries is shown. The operation starts from step b1, and in step b2, the expansion valve opening / closing solenoid valve (20) is opened,
The solenoid valve (17) for the capillary is closed. Step b3
Then, the start of the compressor (3) as shown in FIGS. 2 and 3 is started. Since high pressure is applied to the pressure equalizing pipe (26) via the expansion valve opening / closing solenoid valve (20), the expansion valve is in a valve closed state, and the high pressure side and the low pressure side are separated. In step b4, the low pressure on the suction side of the compressor (3) is detected by the low pressure detector (2).
5), and determines whether the pressure is equal to or lower than a predetermined lower reference pressure. When the pressure becomes equal to or lower than the lower reference pressure, the expansion valve opening / closing solenoid valve (20) is closed and the capillary solenoid valve (17) is opened in step b5. Step b
When Step 5 is completed or when the condition is not satisfied in Step b4, it is determined in Step b6 whether the low pressure exceeds the upper reference. When the condition is satisfied, at step b7, the expansion valve opening / closing solenoid valve (20) is opened and the capillary solenoid valve (17) is closed. When step b7 is completed or when the condition is not satisfied in step b6, it is determined in step b8 whether or not the start-up operation shown in FIGS. 2 and 3 is completed. If not, the process returns to step b4. If it has been completed, the control also ends in step b9.

【0024】上述のような膨張弁(6)を開閉する制御
を行うことによって、圧縮機(3)は、吸入側の低圧が
下側基準と上側基準との間に収まるように動作するの
で、過剰に冷媒を吸引して液圧縮などを起こすことな
く、確実に凝縮器である空気側熱交換器(5)側に冷媒
を送込むことができる。また、潤滑油も確実に循環させ
ることができる。なお、膨張弁(6)として外部均圧方
式の感温式のものを用い、その均圧管(26)の圧力を
膨張弁開閉用電磁弁(20)で変化させて、膨張弁
(6)の開閉を行うようにしているけれども、直接開閉
制御可能な電動式膨張弁などを用いてタイマによって一
定時間毎に開閉させることもできる。また、圧縮機
(3)の吸入圧力を検出して外部均圧方式の膨張弁
(6)の開閉を均圧管(26)の圧力に基づいて行う方
法に代えて、圧力検出の電気信号で直接電動式膨張弁の
開閉を行うこともできる。また、タイマで一定時間毎に
均圧管の圧力に基づいて外部均圧方式の膨張弁(6)を
間接的に開閉制御しても、同様の効果を奏することがで
きる。ただし、圧縮機(3)の吸入圧力を検出して所定
の範囲内に保つ方が極端な低圧となる可能性をより確実
に避けることができる。
By controlling the opening and closing of the expansion valve (6) as described above, the compressor (3) operates so that the low pressure on the suction side falls between the lower reference and the upper reference. The refrigerant can be reliably sent to the air-side heat exchanger (5), which is a condenser, without excessively sucking the refrigerant and causing liquid compression or the like. In addition, the lubricating oil can be reliably circulated. The expansion valve (6) is an external pressure equalizing type temperature-sensitive type, and the pressure of the pressure equalizing pipe (26) is changed by the expansion valve opening / closing solenoid valve (20). Although opening and closing are performed, it is also possible to open and close at regular intervals by a timer using an electric expansion valve or the like that can be directly opened and closed. Further, instead of the method of detecting the suction pressure of the compressor (3) and opening and closing the external pressure equalizing type expansion valve (6) based on the pressure of the pressure equalizing pipe (26), an electric signal for pressure detection is used directly. The electric expansion valve can also be opened and closed. Also, the same effect can be obtained by indirectly controlling the opening and closing of the external pressure equalizing type expansion valve (6) based on the pressure of the pressure equalizing pipe at predetermined time intervals by a timer. However, detecting the suction pressure of the compressor (3) and keeping it within a predetermined range can more reliably avoid the possibility of extremely low pressure.

【0025】図5は、本発明のさらに他の実施形態の冷
凍装置(30)の概略的な冷媒配管系統を示す。本実施
形態で図1の実施形態に対応する部分には同一の参照符
を付し説明を省略する。本実施形態では、空気側熱交換
器(5)と膨張弁(6)との間に冷媒調整器(31)が
設けられる。膨張弁開閉用電磁弁(20)およびキャピ
ラリ(21)を含む管路は、冷媒調整器(31)と圧縮
機(3)の吸入側との間に接続される。圧縮機(3)の
吸入側には、感温筒(32)が取付けられ、膨張弁
(6)の過熱度制御を行う。圧縮機(3)の容量は、容
量切換弁(33a,33b,33c)を切換えて行われ
る。四路切換弁(34)は、冷凍装置(31)を冷凍運
転させる状態と、デフロスト運転させる状態とを切換え
る。制御装置(35)は、図1の制御手段(10)と同
様な制御を行う。
FIG. 5 shows a schematic refrigerant piping system of a refrigeration system (30) according to still another embodiment of the present invention. In this embodiment, portions corresponding to those in the embodiment of FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. In the present embodiment, a refrigerant regulator (31) is provided between the air-side heat exchanger (5) and the expansion valve (6). A pipeline including the expansion valve opening / closing solenoid valve (20) and the capillary (21) is connected between the refrigerant regulator (31) and the suction side of the compressor (3). A temperature-sensitive cylinder (32) is attached to the suction side of the compressor (3), and controls the degree of superheat of the expansion valve (6). The capacity of the compressor (3) is controlled by switching the capacity switching valves (33a, 33b, 33c). The four-way switching valve (34) switches between a state in which the refrigeration apparatus (31) is operated in a refrigeration operation and a state in which the refrigeration apparatus is operated in a defrost operation. The control device (35) performs the same control as the control means (10) in FIG.

【0026】図6は、本発明の実施のさらに他の形態の
概略的な冷媒配管系統を示す。本実施形態で図1および
図5の実施形態に対応する部分には同一の参照符を付し
て説明を省略する。本実施形態の冷凍装置(40)で
は、圧縮機(3a)と圧縮機(3b)との2台を用い
て、制御装置(45)はアンロード装置(7a)とアン
ロード装置(7b)とをそれぞれ制御する。2台の圧縮
機(3a,3b)を用いる制御では、2台とも動作を停
止する0%、2台とも極低ステップで動作させる10
%、1台のみ40%の最低ステップで動作させる20%
の3段階を使用して起動運転を行う。最低ステップの2
0%運転では、直前まで運転していた方とは異なる圧縮
機(3a,3b)のみを運転させる。停止状態から運転
開始させる際には、特定の圧縮機を動作させるように決
めておく。また通常制御時に、40%のステップから2
0%の最低ステップに移行する際には、先に起動してい
た方の圧縮機を停止させる。さらに20%の最低ステッ
プで運転していて、冷凍能力を上昇させる際には、もう
1台の停止していた圧縮機について前述のような起動制
御を行って立上げる。
FIG. 6 shows a schematic refrigerant piping system according to still another embodiment of the present invention. In this embodiment, portions corresponding to the embodiment of FIGS. 1 and 5 are denoted by the same reference numerals, and description thereof will be omitted. In the refrigerating device (40) of the present embodiment, using the two compressors (3a) and (3b), the control device (45) controls the unloading device (7a) and the unloading device (7b). Are respectively controlled. In the control using two compressors (3a, 3b), 0% stops the operation of both compressors, and both operate at extremely low steps.
20% to operate at the minimum step of 40% for only one unit
Start-up operation is performed using the three stages. 2 of minimum steps
In the 0% operation, only the compressors (3a, 3b) that are different from the one that was operating immediately before are operated. When starting the operation from the stop state, it is determined that a specific compressor is operated. At the time of normal control, a step of 2
When shifting to the lowest step of 0%, the compressor that was started first is stopped. Further, when the operation is performed at the minimum step of 20% and the refrigerating capacity is to be increased, the other stopped compressor is started up by performing the above-described start control.

【0027】以上の説明では、冷凍装置が停止状態から
起動しているけれども、四路切換弁などで冷凍と加熱と
を切換えたり冷凍とデフロストとを切換える直後や、そ
の終了時にも同様に起動すれば、円滑な冷媒の移動を行
うことができる。
In the above description, although the refrigerating apparatus is started from a stopped state, the refrigerating apparatus is also started immediately after switching between refrigeration and heating or between refrigeration and defrost by a four-way switching valve or the like, or at the end thereof. If it is, smooth movement of the refrigerant can be performed.

【0028】[0028]

【発明の効果】以上のように本発明によれば、制御手段
(10)は、圧縮機(3)の運転停止状態からの起動
時、またはデフロスト運転開始時および終了時に、圧縮
機(3)の冷凍能力の極低ステップで運転する状態と、
最低ステップで運転する状態とを繰返して行うので、蒸
発器に溜まっている液冷媒を迅速にかつ液圧縮を防止し
ながら凝縮器側に移行させ、通常運転への移行を円滑に
行うことができる。極低ステップと最低ステップとを繰
返して運転するので、最低ステップでは冷凍能力が過剰
となるような場合であっても、適正な冷凍能力で起動す
ることができ、能力過剰による圧縮機のサーモオフと起
動との発停の繰返し頻度を低下させ、圧縮機(3)の寿
命の短縮などを防ぐことができる。
As described above, according to the present invention, the control means (10) controls the operation of the compressor (3) when the compressor (3) is started from an operation stop state, or when the defrost operation starts and ends. Operating at an extremely low step of the refrigerating capacity of
Since the operation in the minimum step is repeatedly performed, the liquid refrigerant accumulated in the evaporator can be quickly transferred to the condenser side while preventing liquid compression, so that the transition to the normal operation can be smoothly performed. . Since the operation is performed by repeating the extremely low step and the minimum step, even if the refrigeration capacity becomes excessive at the minimum step, it can be started with an appropriate refrigeration capacity, and the thermostat of the compressor due to excessive capacity may be removed. It is possible to reduce the repetition frequency of starting and stopping and to shorten the life of the compressor (3).

【0029】また本発明によれば、長時間運転停止状態
が続いた後では、起動時の極低ステップと最低ステップ
との繰返し回数を増加させるので、蒸発器内に液冷媒が
多く貯留されていても、確実に凝縮器側に移行させるこ
とができる。
Further, according to the present invention, after the operation has been stopped for a long time, the number of repetitions of the extremely low step and the minimum step at startup is increased, so that a large amount of liquid refrigerant is stored in the evaporator. Even so, it is possible to reliably transfer to the condenser side.

【0030】また本発明によれば、記憶手段(23)内
に記憶されている圧縮機(3)の発停回数が、予め定め
る時間内で基準よりも大きいときには、起動時の極低ス
テップと最低ステップとの繰返し回数を増加させるの
で、冷凍能力が過剰となってサーモオフによる圧縮機
(3)の停止と再起動との繰返し頻度を小さくし、圧縮
機(3)の寿命が短くなるのを防ぐことができる。
Further, according to the present invention, when the number of start / stop of the compressor (3) stored in the storage means (23) is larger than a reference within a predetermined time, an extremely low step at the time of startup is set. Since the number of repetitions with the minimum step is increased, the refrigerating capacity becomes excessive, so that the frequency of stopping and restarting the compressor (3) due to thermo-off is reduced, and the life of the compressor (3) is shortened. Can be prevented.

【0031】また本発明によれば、膨張弁(6)を開閉
する制御によって一度に蒸発器に冷媒が流れて、液冷媒
が圧縮機(3)に流れるのを防止し、圧縮機(3)の液
圧縮を防止する一方、圧縮機(3)に適宜潤滑油を戻す
ことができる。
Further, according to the present invention, by controlling the opening and closing of the expansion valve (6), the refrigerant is prevented from flowing into the evaporator at one time and the liquid refrigerant is prevented from flowing into the compressor (3). While the liquid compression is prevented, the lubricating oil can be appropriately returned to the compressor (3).

【0032】また本発明によれば、圧縮機(3)の起動
時には、外部均圧方式の感温式膨張弁(6)の均圧管
(26)の圧力を制御して開閉させ、冷媒が蒸発器から
凝縮機に液圧縮を避けて円滑に移行するように制御する
ことができる。また、圧縮機(3)が極端に低圧になっ
たり、潤滑油がなくなることも防止可能である。
According to the present invention, when the compressor (3) is started, the pressure of the pressure equalizing pipe (26) of the external pressure equalizing type temperature-sensitive expansion valve (6) is controlled to open and close, and the refrigerant evaporates. It can be controlled to smoothly transfer from the condenser to the condenser while avoiding liquid compression. Further, it is possible to prevent the compressor (3) from being extremely low in pressure and running out of lubricating oil.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態の概略的な冷媒配管系統
および制御のための電気的な構成を示すブロック図であ
る。
FIG. 1 is a block diagram illustrating a schematic refrigerant piping system and an electrical configuration for control according to an embodiment of the present invention.

【図2】図1の冷凍装置(1)の動作状態を示すタイム
チャートである。
FIG. 2 is a time chart showing an operation state of the refrigeration apparatus (1) of FIG.

【図3】図2の動作状態に対応するフローチャートであ
る。
FIG. 3 is a flowchart corresponding to the operation state of FIG. 2;

【図4】本発明の実施の他の形態の動作を示すフローチ
ャートである。
FIG. 4 is a flowchart showing the operation of another embodiment of the present invention.

【図5】本発明の実施のさらに他の形態の概略的な構成
を示す冷媒配管系統図である。
FIG. 5 is a refrigerant piping system diagram showing a schematic configuration of still another embodiment of the present invention.

【図6】本発明の実施のさらに他の形態の概略的な構成
を示す冷媒配管系統図である。
FIG. 6 is a refrigerant piping diagram showing a schematic configuration of still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,30,40 冷凍装置 2 水側熱交換器 3,3a,3b 圧縮機 5 空気側熱交換器 6 膨張弁 7,7a,7b アンロード装置 10 制御手段 11 タイマ 12 カウンタ 13 入口側温度検出器 14 出口側温度検出器 16,21 キャピラリ 17 電磁弁 18 ファン 19 冷水タンク 20 膨張弁開閉用電磁弁 22 長時間検知手段 23 記憶手段 35,45 制御装置 Reference Signs List 1,30,40 Refrigeration device 2 Water side heat exchanger 3,3a, 3b Compressor 5 Air side heat exchanger 6 Expansion valve 7,7a, 7b Unload device 10 Control means 11 Timer 12 Counter 13 Inlet side temperature detector 14 Outlet temperature detector 16, 21 Capillary 17 Solenoid valve 18 Fan 19 Chilled water tank 20 Expansion valve opening / closing solenoid valve 22 Long time detecting means 23 Storage means 35, 45 Controller

フロントページの続き (72)発明者 川岸 孝至 大阪府摂津市西一津屋1番1号 ダイキン 工業株式会社淀川製作所内 (72)発明者 松浦 克好 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内Continued on the front page (72) Inventor Takashi Kawagishi 1-1-1, Nishiichitsuya, Settsu-shi, Osaka Daikin Industries, Ltd.Yodogawa Works (72) Inventor Katsuyoshi Matsuura 1304, Kanaokacho, Sakai-shi, Osaka Daikin Industries Sakai Works, Ltd. Kanaoka factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ほとんど冷凍能力のない極低ステップ
と、通常運転領域で最低の冷凍能力である最低ステップ
とを含む複数段階で容量制御が可能な圧縮機(3)を備
える冷凍装置(1)において、 圧縮機(3)の運転時間を計時するタイマ(11)と、 予め定める回数が設定されるカウンタ(12)と、 運転停止状態からの起動時、またはデフロスト運転開始
時および終了時に、タイマ(11)によって計時される
所定時間だけ圧縮機(3)を極低ステップで運転する状
態と、タイマ(11)によって計時される所定時間だけ
圧縮機(3)を最低ステップで運転する状態とを、カウ
ンタ(12)に設定される回数に達するまで繰返す起動
運転を行った後、通常運転領域で圧縮機(3)を動作さ
せるように制御する制御手段(10)とを含むことを特
徴とする冷凍装置。
1. A refrigerating apparatus (1) including a compressor (3) capable of controlling the capacity in a plurality of stages including an extremely low step having almost no refrigerating capacity and a lowest step having the lowest refrigerating capacity in a normal operation range. A timer (11) for measuring the operating time of the compressor (3), a counter (12) for setting a predetermined number of times, and a timer when starting from a stopped state or when starting and ending defrost operation. A state in which the compressor (3) is operated in an extremely low step for a predetermined time measured by (11), and a state in which the compressor (3) is operated in the minimum step for a predetermined time measured by the timer (11). And control means (10) for controlling the compressor (3) to operate in the normal operation range after performing the start-up operation repeatedly until the number set in the counter (12) is reached. And a refrigeration apparatus characterized by the following.
【請求項2】 前記圧縮機(3)の運転停止後に予め定
める時間以上の長時間が経過しているか否かを検知する
長時間検知手段(22)を備え、 前記制御手段(10)は、長時間検知手段(22)を参
照して、圧縮機(3)の運転停止後に長時間が経過して
いるとき、前記起動運転の繰返し回数を増加させること
を特徴とする請求項1記載の冷凍装置。
2. A control device according to claim 1, further comprising a long-time detecting means for detecting whether or not a long time equal to or longer than a predetermined time has elapsed after the operation of the compressor is stopped. 2. The refrigeration system according to claim 1, wherein, when a long time elapses after the operation of the compressor (3) is stopped, the number of repetitions of the start-up operation is increased with reference to the long-time detection means (22). apparatus.
【請求項3】 前記圧縮機(3)の運転および停止の発
停状態を記憶する記憶手段(23)を備え、 前記制御手段(10)は、記憶手段(23)を参照し
て、予め定める時間内での圧縮機(3)の発停回数が予
め定める基準よりも大きいとき、前記起動運転の繰返し
回数を増加させることを特徴とする請求項1または2記
載の冷凍装置。
3. A storage unit (23) for storing a start / stop state of operation and stop of the compressor (3), wherein the control unit (10) determines in advance by referring to the storage unit (23). The refrigeration system according to claim 1 or 2, wherein when the number of start / stop operations of the compressor (3) within a time period is larger than a predetermined reference, the number of repetitions of the start-up operation is increased.
【請求項4】 開閉制御可能な膨張弁(6)を備え、前
記制御手段(10)は、前記起動運転で極低ステップと
最低ステップとを繰返す間、膨張弁(6)の開閉も繰返
して行うように制御することを特徴とする請求項1記載
の冷凍装置。
4. An expansion valve (6) that can be controlled to open and close, wherein the control means (10) repeatedly opens and closes the expansion valve (6) while repeating the extremely low step and the minimum step in the start-up operation. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is controlled to perform the refrigeration.
【請求項5】 前記膨張弁(6)は、外部均圧方式の感
温式膨張弁(6)であり、 膨張弁(6)の高圧側と均圧管(26)との間に設けら
れる電磁弁(20)と、 均圧管(26)と前記圧縮機(3)の吸入側との間に設
けられるキャピラリ(21)とを備え、 前記制御手段(10)は、前記起動運転に併せて、圧縮
機(3)の吸入側の圧力が所定範囲内となるように、電
磁弁(20)を弁開させて膨張弁(6)を弁閉状態と
し、電磁弁(20)を弁閉させて膨張弁(6)を弁開状
態とする制御を行うことを特徴とする請求項4記載の冷
凍装置。
5. The expansion valve (6) is an external pressure equalizing type temperature-sensitive expansion valve (6), and an electromagnetic valve provided between a high pressure side of the expansion valve (6) and a pressure equalizing pipe (26). A valve (20), a capillary (21) provided between the pressure equalizing pipe (26) and the suction side of the compressor (3), and the control means (10) includes: The solenoid valve (20) is opened, the expansion valve (6) is closed, and the solenoid valve (20) is closed so that the pressure on the suction side of the compressor (3) is within a predetermined range. The refrigeration apparatus according to claim 4, wherein control is performed to open the expansion valve (6).
JP34184296A 1996-12-20 1996-12-20 Refrigeration equipment Expired - Fee Related JP3603514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34184296A JP3603514B2 (en) 1996-12-20 1996-12-20 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34184296A JP3603514B2 (en) 1996-12-20 1996-12-20 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH10185334A true JPH10185334A (en) 1998-07-14
JP3603514B2 JP3603514B2 (en) 2004-12-22

Family

ID=18349177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34184296A Expired - Fee Related JP3603514B2 (en) 1996-12-20 1996-12-20 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3603514B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1287299A1 (en) * 2000-06-07 2003-03-05 Samsung Electronics Co. Ltd. Air conditioner control system and control method thereof
EP1995536A1 (en) * 2006-02-20 2008-11-26 Daikin Industries, Ltd. Air conditioner and heat source unit
JP2009250123A (en) * 2008-04-07 2009-10-29 Calsonic Kansei Corp Motor-driven compressor
CN102465867A (en) * 2010-10-29 2012-05-23 阿耐思特岩田株式会社 Compression device and operation control method thereof
JP2012167897A (en) * 2011-02-16 2012-09-06 Daikin Industries Ltd Outdoor unit
CN108731311A (en) * 2018-07-12 2018-11-02 珠海凌达压缩机有限公司 Compressor assembly and air conditioning system thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1287299A1 (en) * 2000-06-07 2003-03-05 Samsung Electronics Co. Ltd. Air conditioner control system and control method thereof
EP1287299A4 (en) * 2000-06-07 2007-08-01 Samsung Electronics Co Ltd Air conditioner control system and control method thereof
EP1995536A1 (en) * 2006-02-20 2008-11-26 Daikin Industries, Ltd. Air conditioner and heat source unit
EP1995536A4 (en) * 2006-02-20 2014-06-18 Daikin Ind Ltd Air conditioner and heat source unit
JP2009250123A (en) * 2008-04-07 2009-10-29 Calsonic Kansei Corp Motor-driven compressor
CN102465867A (en) * 2010-10-29 2012-05-23 阿耐思特岩田株式会社 Compression device and operation control method thereof
JP2012097618A (en) * 2010-10-29 2012-05-24 Anest Iwata Corp Compression apparatus and operation control method for the same
JP2012167897A (en) * 2011-02-16 2012-09-06 Daikin Industries Ltd Outdoor unit
CN108731311A (en) * 2018-07-12 2018-11-02 珠海凌达压缩机有限公司 Compressor assembly and air conditioning system thereof
CN108731311B (en) * 2018-07-12 2024-05-10 珠海凌达压缩机有限公司 Compressor assembly and air conditioning system thereof

Also Published As

Publication number Publication date
JP3603514B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
US8925337B2 (en) Air conditioning systems and methods having free-cooling pump-protection sequences
EP2545332B1 (en) Refrigerant distribution apparatus and methods for transport refrigeration system
KR101917941B1 (en) Air conditioner and control method thereof
JP4179927B2 (en) Method for setting refrigerant filling amount of cooling device
TWI272365B (en) Refrigerating device
EP3627067B1 (en) Refrigeration cycle device
JP2002107014A (en) Air conditioner
KR101275184B1 (en) Control method of refrigerating system
JP2013104606A (en) Refrigeration cycle apparatus and hot water producing apparatus
JP3603514B2 (en) Refrigeration equipment
KR101275182B1 (en) Control method of refrigerating system
JPH04251158A (en) Operation control device for refrigerating device
JP4269476B2 (en) Refrigeration equipment
JP3127818B2 (en) Refrigeration equipment
KR101275183B1 (en) Control method of refrigerating system
JP2910849B1 (en) Air conditioner defrost control device
JP3348465B2 (en) Binary refrigeration equipment
JPH0634224A (en) Room heater/cooler
JP2927230B2 (en) Binary refrigeration equipment
JP3033260B2 (en) Defrosting control device for refrigeration equipment
JPH0719620A (en) Operation control device for refrigerating plant
JPH11230623A (en) Freezer and its operation control method
JPH0579712A (en) Operation controller of refrigerator
JP4326274B2 (en) Refrigeration circuit
JP3780955B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040610

A131 Notification of reasons for refusal

Effective date: 20040615

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040810

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040907

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091008

LAPS Cancellation because of no payment of annual fees