JPH11230623A - Freezer and its operation control method - Google Patents

Freezer and its operation control method

Info

Publication number
JPH11230623A
JPH11230623A JP5451698A JP5451698A JPH11230623A JP H11230623 A JPH11230623 A JP H11230623A JP 5451698 A JP5451698 A JP 5451698A JP 5451698 A JP5451698 A JP 5451698A JP H11230623 A JPH11230623 A JP H11230623A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
temperature
condenser
liquefied refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5451698A
Other languages
Japanese (ja)
Inventor
Cho Harada
聴 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP5451698A priority Critical patent/JPH11230623A/en
Publication of JPH11230623A publication Critical patent/JPH11230623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of oil shortage or defective lubrication caused by the repetition of short-time operation of a compressor. SOLUTION: A discharge pipe 24 led out of the discharge side of a compressor 14 is connected to the inlet side of a condenser 16, and a refrigerant pipe 26 led out of the condenser 16 is connected to the inlet side of an evaporator 12 through an expansion valve 10. A suction pipe 28 led out of the outlet side of the evaporator 12 is connected to the suction side of the compressor 14. The expansion valve 10 is opened and closed, according to the information on the refrigerant temperature on low pressure side detected by a temperature sensitive tube 30 arranged in the suction pipe 28. A bypass pipe 34 branched from the refrigerant supply pipe 26 between the condenser 16 and the expansion valve 10 is led and connected to the suction pipe 28 through a solenoid valve 36 and a capillary tube 38 inserted in series. The solenoid valve 36 is opened and closed, according to the information on the room temperature detected by an in-room thermostat 20 arranged inside the freezing room 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、庫内負荷に対し
て、大容量の圧縮機を備えた冷凍装置およびその運転制
御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus provided with a large-capacity compressor for a load in a refrigerator, and a method for controlling the operation of the refrigerating apparatus.

【0002】[0002]

【従来の技術】庫内に収納した収納物を急速に凍結する
急速凍結庫では、庫内負荷に対して大容量の圧縮機を備
えた冷凍装置が用いられる。図9は、従来の技術に係る
冷凍装置を示す概略図である。この冷凍装置には、高
圧の液化冷媒を膨張させて気化冷媒とする膨張弁10、
この液化冷媒が気化する際に奪取する気化熱により冷
却作用を営む蒸発器12、この蒸発器12で冷却作用
を営んだ後の気化冷媒を、凝縮器に向け圧縮状態で送り
込む圧縮機14およびこの圧縮機14で圧縮された気
化冷媒を凝縮させて液化冷媒とする凝縮器16が組み込
まれている。また凍結庫18の内部に庫内サーモ20が
配設され、該サーモ20が検出した庫内の温度情報に応
じて、前記圧縮機14の運転制御が行なわれるよう構成
される。なお凝縮器16にはファン22が併設され、こ
のファン22の回転により強制空冷がなされるようにな
っている。
2. Description of the Related Art In a quick-freezing refrigerator for rapidly freezing stored items stored in a refrigerator, a refrigerating device having a large-capacity compressor with respect to the load in the refrigerator is used. FIG. 9 is a schematic diagram showing a refrigeration apparatus according to the related art. The refrigeration apparatus includes an expansion valve 10 that expands a high-pressure liquefied refrigerant into a vaporized refrigerant,
The evaporator 12 performs a cooling operation by the heat of vaporization taken when the liquefied refrigerant is vaporized, the compressor 14 that sends the vaporized refrigerant having performed the cooling operation in the evaporator 12 to the condenser in a compressed state, and A condenser 16 is built in which the vaporized refrigerant compressed by the compressor 14 is condensed to become a liquefied refrigerant. A thermostat 20 in the refrigerator is arranged inside the freezer 18, and the operation of the compressor 14 is controlled in accordance with temperature information in the refrigerator detected by the thermometer 20. Note that a fan 22 is provided in the condenser 16, and forced air cooling is performed by rotation of the fan 22.

【0003】前記冷凍装置では、圧縮機14およびファ
ン22を作動(ON)して冷凍運転を開始すると、前記凍
結庫18の内部に配設された蒸発器12に循環供給され
る冷媒と庫内空気とが熱交換されることで、庫内温度は
徐々に低下する。庫内温度が低下して、その温度が庫内
サーモ20の設定温度より低下すると、圧縮機14およ
びファン22が停止(OFF)される。庫内温度は、庫外
からの侵入熱等により経時的に上昇し、庫内温度が庫内
サーモ20の設定温度より高くなると、圧縮機14とフ
ァン22とが作動(ON)され、再び冷凍運転が再開され
る。以上のサイクルを繰返すことによって、庫内温度は
庫内サーモ20の設定温度近傍に維持される。
In the refrigerating apparatus, when the compressor 14 and the fan 22 are operated (ON) to start the refrigerating operation, the refrigerant circulated and supplied to the evaporator 12 disposed inside the freezer 18 and the internal Due to the heat exchange with the air, the internal temperature gradually decreases. When the temperature in the refrigerator decreases and the temperature falls below the set temperature of the thermo 20 in the refrigerator, the compressor 14 and the fan 22 are stopped (OFF). The temperature in the refrigerator increases with time due to heat entering from the outside of the refrigerator and the like. When the temperature in the refrigerator becomes higher than the set temperature of the thermostat 20 in the refrigerator, the compressor 14 and the fan 22 are operated (ON), and the refrigerator is frozen again. Operation is resumed. By repeating the above cycle, the internal temperature is maintained near the set temperature of the internal thermo 20.

【0004】[0004]

【発明が解決しようとする課題】前記冷凍装置では、大
容量の圧縮機14を用いているため、該圧縮機14の作
動により短時間で庫内温度を下げることができる。この
ため、庫内温度を設定温度近傍に維持するべく圧縮機1
4の作動と停止とを繰返す発停運転に際しては、図10
に示すように、圧縮機14が作動(ON)している時間が
僅かであり、この短かい作動時間では潤滑油が冷凍回路
内を一巡するまでに至らない。すなわち、圧縮機14に
潤滑油が戻らず、油切れや潤滑不良を来たすおそれがあ
った。
In the refrigerating apparatus, since the compressor 14 having a large capacity is used, the operation of the compressor 14 can lower the internal temperature of the refrigerator in a short time. For this reason, the compressor 1 is maintained in order to maintain the internal temperature near the set temperature.
In the start / stop operation in which the operation and the stop of Step 4 are repeated, FIG.
As shown in (1), the time during which the compressor 14 is operating (ON) is short, and the short operating time does not allow the lubricating oil to make a round in the refrigeration circuit. That is, the lubricating oil does not return to the compressor 14, and there is a risk of running out of oil or poor lubrication.

【0005】[0005]

【発明の目的】この発明は、前述した従来の技術に内在
している前記欠点に鑑み、これを好適に解決するべく提
案されたものであって、圧縮機の短時間運転の繰返しに
よる油切れや潤滑不良の発生を防止し得る冷凍装置およ
びその運転制御方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks inherent in the prior art, and has been proposed in order to solve the problem suitably. It is an object of the present invention to provide a refrigeration apparatus and an operation control method for the refrigeration apparatus capable of preventing occurrence of poor lubrication and lubrication.

【0006】[0006]

【課題を解決するための手段】前述した課題を解決し、
所期の目的を好適に達成するため、本願の第1の発明に
係る冷凍装置は、気化冷媒を圧縮する圧縮機と、この圧
縮された気化冷媒を凝縮して液化冷媒にする凝縮器と、
この凝縮器から到来する液化冷媒を膨張させて気化冷媒
とする膨張弁と、この気化冷媒により冷却作用を営んだ
後に、該気化冷媒を前記圧縮機の吸入側に戻す蒸発器と
からなる冷凍装置において、前記凝縮器と膨張弁とを連
通接続する冷媒供給管から分岐して蒸発器と圧縮機とを
連通接続する吸入管に接続され、凝縮器からの液化冷媒
を前記圧縮機の吸入側にバイパスさせるキャピラリー管
と、前記キャピラリー管の高圧側に介挿され、前記蒸発
器が配設される庫内の温度を検出する庫内サーモの検出
温度に応じて開閉制御される電磁弁と、前記圧縮機の低
圧側の冷媒温度を検出し、前記膨張弁の開閉制御を行な
う温度検知手段とから構成したことを特徴とする。
[MEANS FOR SOLVING THE PROBLEMS]
In order to appropriately achieve the intended purpose, the refrigeration apparatus according to the first invention of the present application includes a compressor that compresses a vaporized refrigerant, a condenser that condenses the compressed vaporized refrigerant into a liquefied refrigerant,
A refrigerating apparatus comprising: an expansion valve that expands a liquefied refrigerant coming from the condenser to be a vaporized refrigerant; and an evaporator that returns the vaporized refrigerant to a suction side of the compressor after performing a cooling action by the vaporized refrigerant. In the above, the refrigerant is branched from a refrigerant supply pipe that connects and connects the condenser and the expansion valve, and is connected to a suction pipe that connects and connects the evaporator and the compressor, and the liquefied refrigerant from the condenser is supplied to the suction side of the compressor. A capillary pipe to be bypassed, an electromagnetic valve interposed on the high pressure side of the capillary pipe, and an electromagnetic valve that is opened and closed according to a detected temperature of a thermostat in the refrigerator for detecting a temperature in the refrigerator in which the evaporator is disposed, and Temperature detecting means for detecting the refrigerant temperature on the low pressure side of the compressor and controlling the opening and closing of the expansion valve.

【0007】前述した課題を解決し、所期の目的を好適
に達成するため、本願の第2の発明に係る冷凍装置の運
転制御方法は、気化冷媒を圧縮する圧縮機と、この圧縮
された気化冷媒を凝縮して液化冷媒にする凝縮器と、こ
の凝縮器から到来する液化冷媒を膨張させて気化冷媒と
する膨張弁と、この気化冷媒により冷却作用を営んだ後
に、該気化冷媒を前記圧縮機の吸入側に戻す蒸発器とか
らなる冷凍装置において、前記圧縮機を連続作動させた
状態で、前記蒸発器が配設される庫内温度を検出する庫
内サーモの設定値より庫内温度が低くなったときに、前
記凝縮器と膨張弁とを連通する冷媒供給管から分岐する
キャピラリー管の高圧側に介挿された電磁弁を開放して
凝縮器からの液化冷媒をキャピラリー管を介して圧縮機
の吸入側にバイパスさせ、前記液化冷媒のバイパスによ
り圧縮機の低圧側の温度が低くなったときに、前記膨張
弁を閉じる方向に制御して蒸発器への液化冷媒の供給量
を減少させ、前記庫内サーモの設定値より庫内温度が高
くなったときに、前記電磁弁を閉成して液化冷媒のバイ
パスを停止し、前記液化冷媒のバイパス停止により圧縮
機の低圧側の温度が高くなったときに、前記膨張弁を開
く方向に制御して蒸発器への液化冷媒の供給量を増加す
るよう制御することを特徴とする。
In order to solve the above-mentioned problems and appropriately achieve the intended purpose, a method for controlling the operation of a refrigeration apparatus according to a second aspect of the present invention includes a compressor for compressing a vaporized refrigerant and a compressor for compressing the compressed refrigerant. A condenser that condenses the vaporized refrigerant into a liquefied refrigerant, an expansion valve that expands the liquefied refrigerant arriving from the condenser and converts the vaporized refrigerant into a vaporized refrigerant, and performs a cooling operation with the vaporized refrigerant. In a refrigerating apparatus comprising an evaporator returning to the suction side of the compressor, in a state in which the compressor is continuously operated, the inside of the refrigerator is detected from a set value of a thermo in the refrigerator for detecting a temperature in the refrigerator in which the evaporator is disposed. When the temperature decreases, the solenoid valve inserted on the high pressure side of the capillary pipe branched from the refrigerant supply pipe communicating with the condenser and the expansion valve is opened to allow the liquefied refrigerant from the condenser to flow through the capillary pipe. To the suction side of the compressor When the temperature on the low pressure side of the compressor is reduced by the bypass of the liquefied refrigerant, the expansion valve is controlled to close so as to reduce the supply amount of the liquefied refrigerant to the evaporator. When the internal temperature becomes higher than the set value, the solenoid valve is closed to stop the bypass of the liquefied refrigerant, and when the low-pressure side temperature of the compressor becomes higher due to the stoppage of the bypass of the liquefied refrigerant, The expansion valve is controlled to open so as to increase the supply amount of the liquefied refrigerant to the evaporator.

【0008】前述した課題を解決し、所期の目的を好適
に達成するため、本願の第3の発明に係る冷凍装置は、
気化冷媒を圧縮する圧縮機と、この圧縮された気化冷媒
を凝縮して液化冷媒にする凝縮器と、この凝縮器から到
来する液化冷媒を膨張させて気化冷媒とする膨張弁と、
この気化冷媒により冷却作用を営んだ後に、該気化冷媒
を前記圧縮機の吸入側に戻す蒸発器とからなる冷凍装置
において、前記凝縮器と膨張弁とを連通接続する冷媒供
給管から分岐して蒸発器と圧縮機とを連通接続する吸入
管に接続され、凝縮器からの液化冷媒を前記圧縮機の吸
入側にバイパスさせるキャピラリー管と、前記キャピラ
リー管の高圧側に介挿される電磁弁と、前記蒸発器が配
設される庫内の温度を検出する庫内サーモの検出温度に
応じて前記圧縮機の作動・停止を制御すると共に、該圧
縮機の作動時間および停止時間の夫々の積算値で運転率
を計算し、その運転率に応じて前記電磁弁の開閉制御を
行なう制御装置と、前記圧縮機の低圧側の冷媒温度を検
出し、前記膨張弁の開閉制御を行なう温度検知手段とか
ら構成したことを特徴とする。
[0008] In order to solve the above-mentioned problems and appropriately achieve the intended object, a refrigeration apparatus according to a third invention of the present application comprises:
A compressor that compresses the vaporized refrigerant, a condenser that condenses the compressed vaporized refrigerant into a liquefied refrigerant, and an expansion valve that expands the liquefied refrigerant coming from the condenser into a vaporized refrigerant,
After performing a cooling action by the vaporized refrigerant, in a refrigeration apparatus including an evaporator that returns the vaporized refrigerant to the suction side of the compressor, the refrigerant is branched from a refrigerant supply pipe that connects and connects the condenser and the expansion valve. A capillary pipe connected to a suction pipe that connects and connects the evaporator and the compressor, and a liquefied refrigerant from a condenser to be bypassed to a suction side of the compressor; and an electromagnetic valve inserted on a high pressure side of the capillary pipe, Controlling the operation / stop of the compressor according to the temperature detected by the thermostat in the refrigerator for detecting the temperature in the refrigerator in which the evaporator is provided, and the integrated values of the operation time and the stop time of the compressor. A control device that calculates the operating rate in accordance with the operating rate, controls the opening and closing of the solenoid valve in accordance with the operating rate, detects a refrigerant temperature on the low pressure side of the compressor, and detects temperature in the opening and closing of the expansion valve. That it consists of And butterflies.

【0009】前述した課題を解決し、所期の目的を好適
に達成するため、本願の第4の発明に係る冷凍装置の運
転制御方法は、気化冷媒を圧縮する圧縮機と、この圧縮
された気化冷媒を凝縮して液化冷媒にする凝縮器と、こ
の凝縮器から到来する液化冷媒を膨張させて気化冷媒と
する膨張弁と、この気化冷媒により冷却作用を営んだ後
に、該気化冷媒を前記圧縮機の吸入側に戻す蒸発器とか
らなる冷凍装置において、前記圧縮機の作動・停止を繰
返す発停運転を行なうことで、前記蒸発器が配設される
庫内温度を、該温度を検出する庫内サーモの設定値に維
持し、前記発停運転による圧縮機の作動時間および停止
時間を夫々積算して、その停止時間の積算時における積
算値から求めた運転率が設定値より小さくなった場合
は、前記圧縮機を連続作動させる連続運転に移行し、前
記連続運転においては、前記庫内サーモの設定値より庫
内温度が低くなったときに、前記凝縮器と膨張弁とを連
通する冷媒供給管から分岐するキャピラリー管の高圧側
に介挿された電磁弁を開放して凝縮器からの液化冷媒を
キャピラリー管を介して圧縮機の吸入側にバイパスさ
せ、この液化冷媒のバイパスにより圧縮機の低圧側の温
度が低くなったときには前記膨張弁を閉じる方向に制御
して蒸発器への液化冷媒の供給量を減少させると共に、
前記庫内サーモの設定値より庫内温度が高くなったとき
に、前記電磁弁を閉成して液化冷媒のバイパスを停止
し、この液化冷媒のバイパス停止により圧縮機の低圧側
の温度が高くなったときには前記膨張弁を開く方向に制
御して蒸発器への液化冷媒の供給量を増加させ、前記運
転率が設定値より大きくなった場合は、前記圧縮機を発
停運転に移行させるようにしたことを特徴とする。
In order to solve the above-mentioned problems and appropriately achieve the intended object, an operation control method for a refrigeration apparatus according to a fourth aspect of the present invention includes a compressor for compressing a vaporized refrigerant, and a compressor for compressing the compressed refrigerant. A condenser that condenses the vaporized refrigerant into a liquefied refrigerant, an expansion valve that expands the liquefied refrigerant arriving from the condenser and converts the vaporized refrigerant into a vaporized refrigerant, and performs a cooling operation with the vaporized refrigerant. In a refrigeration system including an evaporator returned to the suction side of the compressor, a start / stop operation in which the operation of the compressor is repeatedly started and stopped is performed to detect a temperature in a refrigerator in which the evaporator is disposed. The operation time and the stop time of the compressor during the start / stop operation are respectively integrated, and the operation rate obtained from the integrated value at the time of the stop time becomes smaller than the set value. If so, connect the compressor In the continuous operation, the capillary pipe branches from a refrigerant supply pipe communicating the condenser and the expansion valve when the internal temperature is lower than a set value of the internal thermo in the continuous operation. The solenoid valve inserted on the high-pressure side of the compressor is opened to allow the liquefied refrigerant from the condenser to bypass to the suction side of the compressor through the capillary tube, and the bypass on the liquefied refrigerant lowers the temperature on the low-pressure side of the compressor. When it becomes, while controlling the expansion valve to the closing direction to reduce the supply amount of the liquefied refrigerant to the evaporator,
When the internal temperature becomes higher than the set value of the internal thermostat, the electromagnetic valve is closed to stop the bypass of the liquefied refrigerant, and the low-pressure side temperature of the compressor is increased by stopping the bypass of the liquefied refrigerant. When this happens, the expansion valve is controlled to open so as to increase the supply amount of the liquefied refrigerant to the evaporator, and when the operation rate becomes larger than a set value, the compressor is shifted to start / stop operation. It is characterized by the following.

【0010】前述した課題を解決し、所期の目的を好適
に達成するため、本願の第5の発明に係る冷凍装置は、
気化冷媒を圧縮する圧縮機と、この圧縮された気化冷媒
を凝縮して液化冷媒にする凝縮器と、この凝縮器から到
来する液化冷媒を膨張させて気化冷媒とする膨張弁と、
この気化冷媒により冷却作用を営んだ後に、該気化冷媒
を前記圧縮機の吸入側に戻す蒸発器とからなる冷凍装置
において、前記凝縮器と膨張弁とを連通接続する冷媒供
給管から分岐して蒸発器と圧縮機とを連通接続する吸入
管に接続され、凝縮器からの液化冷媒を前記圧縮機の吸
入側にバイパスさせるキャピラリー管と、前記キャピラ
リー管の高圧側に介挿される電磁弁と、前記蒸発器が配
設される庫内の温度を検出する庫内サーモの検出温度に
応じて前記圧縮機の作動・停止を制御すると共に、該圧
縮機の発停回数をカウントするカウンタのカウント数に
応じて前記電磁弁の開閉制御を行なう制御装置と、前記
圧縮機の低圧側の冷媒温度を検出し、前記膨張弁の開閉
制御を行なう温度検知手段とから構成したことを特徴と
する。
[0010] In order to solve the above-mentioned problems and appropriately achieve the intended object, a refrigeration apparatus according to a fifth aspect of the present invention includes:
A compressor that compresses the vaporized refrigerant, a condenser that condenses the compressed vaporized refrigerant into a liquefied refrigerant, and an expansion valve that expands the liquefied refrigerant coming from the condenser into a vaporized refrigerant,
After performing a cooling action by the vaporized refrigerant, in a refrigeration apparatus including an evaporator that returns the vaporized refrigerant to the suction side of the compressor, the refrigerant is branched from a refrigerant supply pipe that connects and connects the condenser and the expansion valve. A capillary pipe connected to a suction pipe that connects and connects the evaporator and the compressor, and a liquefied refrigerant from a condenser to be bypassed to a suction side of the compressor; and an electromagnetic valve inserted on a high pressure side of the capillary pipe, The number of counts of a counter that controls the operation and stop of the compressor according to the temperature detected by the thermostat in the refrigerator that detects the temperature in the refrigerator in which the evaporator is provided, and that counts the number of times the compressor starts and stops. And a temperature detecting means for detecting the temperature of the refrigerant on the low pressure side of the compressor and controlling the opening and closing of the expansion valve.

【0011】前述した課題を解決し、所期の目的を好適
に達成するため、本願の第6の発明に係る冷凍装置の運
転制御方法は、気化冷媒を圧縮する圧縮機と、この圧縮
された気化冷媒を凝縮して液化冷媒にする凝縮器と、こ
の凝縮器から到来する液化冷媒を膨張させて気化冷媒と
する膨張弁と、この気化冷媒により冷却作用を営んだ後
に、該気化冷媒を前記圧縮機の吸入側に戻す蒸発器とか
らなる冷凍装置において、前記圧縮機の作動・停止を繰
返す発停運転を行なうことで、前記蒸発器が配設される
庫内温度を、該温度を検出する庫内サーモの設定値に維
持し、前記発停運転による圧縮機の発停回数をカウント
して、そのカウント数が設定値となった場合は、前記圧
縮機を連続作動させる連続運転に移行し、前記連続運転
においては、前記庫内サーモの設定値より庫内温度が低
くなったときに、前記凝縮器と膨張弁とを連通する冷媒
供給管から分岐するキャピラリー管の高圧側に介挿され
た電磁弁を開放して凝縮器からの液化冷媒をキャピラリ
ー管を介して圧縮機の吸入側にバイパスさせ、この液化
冷媒のバイパスにより圧縮機の低圧側の温度が低くなっ
たときには前記膨張弁を閉じる方向に制御して蒸発器へ
の液化冷媒の供給量を減少させると共に、前記庫内サー
モの設定値より庫内温度が高くなったときに、前記電磁
弁を閉成して液化冷媒のバイパスを停止し、この液化冷
媒のバイパス停止により圧縮機の低圧側の温度が高くな
ったときには前記膨張弁を開く方向に制御して蒸発器へ
の液化冷媒の供給量を増加させ、前記電磁弁が閉成した
ときにカウント数をリセットし、次に庫内サーモの設定
値より庫内温度が低くなったときに前記発停運転に移行
するようにしたことを特徴とする。
In order to solve the above-mentioned problems and appropriately achieve the intended object, a method for controlling the operation of a refrigeration system according to a sixth aspect of the present invention includes a compressor for compressing a vaporized refrigerant and a compressor for compressing the compressed refrigerant. A condenser that condenses the vaporized refrigerant into a liquefied refrigerant, an expansion valve that expands the liquefied refrigerant arriving from the condenser and converts the vaporized refrigerant into a vaporized refrigerant, and performs a cooling operation with the vaporized refrigerant. In a refrigeration system including an evaporator returned to the suction side of the compressor, a start / stop operation in which the operation of the compressor is repeatedly started and stopped is performed to detect a temperature in a refrigerator in which the evaporator is disposed. The number of times the compressor is started and stopped by the start / stop operation is counted, and when the count reaches the set value, the operation mode shifts to a continuous operation in which the compressor is continuously operated. And in the continuous operation, When the internal temperature becomes lower than the set value of the internal thermometer, the electromagnetic valve inserted into the high pressure side of the capillary pipe branched from the refrigerant supply pipe communicating the condenser and the expansion valve is opened to open the condenser. The liquefied refrigerant from the compressor is bypassed to the suction side of the compressor via a capillary tube, and when the temperature on the low pressure side of the compressor is reduced by the bypass of the liquefied refrigerant, the expansion valve is controlled in the closing direction to the evaporator. The supply amount of the liquefied refrigerant is reduced, and when the internal temperature becomes higher than the set value of the internal thermostat, the solenoid valve is closed to stop the bypass of the liquefied refrigerant, and the bypass of the liquefied refrigerant is stopped. When the temperature on the low pressure side of the compressor increases due to the stop, the expansion valve is controlled to open to increase the amount of liquefied refrigerant supplied to the evaporator, and the count is reset when the solenoid valve is closed. And then The internal thermo setting inside temperature than is characterized in that so as to shift to the calling stop operation when it is low.

【0012】[0012]

【発明の実施の形態】次に、本発明に係る冷凍装置およ
びその運転制御方法につき、好適な実施例を挙げて、添
付図面を参照しながら以下説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a refrigeration apparatus and an operation control method thereof according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments.

【0013】[0013]

【第1実施例】図1は、第1実施例に係る冷凍装置の概
略構成を示すものであって、基本回路は図9に関して述
べたところと同一である。従って同一の部材について
は、同じ符号で指示することとする。すなわち、圧縮器
14の吐出側から導出した吐出管24は、凝縮器16の
入口側に接続され、この凝縮器16から導出した冷媒供
給管26は、膨張弁10を介して凍結庫18の内部に配
設された蒸発器12の入口側に接続されている。また、
蒸発器12の出口側から導出した吸入管28は、前記圧
縮機14の吸入側に接続されている。そして、第1実施
例の冷凍装置では、該装置の運転を開始してから停止す
るまでの間、圧縮機14を連続作動させる連続運転を行
なうことにより、大容量の圧縮機14を用いる冷凍装置
においても、該圧縮機14の油切れや潤滑不良の発生を
未然に防止するようになっている。
FIG. 1 shows a schematic configuration of a refrigeration apparatus according to a first embodiment. The basic circuit is the same as that described with reference to FIG. Therefore, the same members are designated by the same reference numerals. That is, the discharge pipe 24 led out from the discharge side of the compressor 14 is connected to the inlet side of the condenser 16, and the refrigerant supply pipe 26 led out of the condenser 16 is connected to the inside of the freezer 18 via the expansion valve 10. The evaporator 12 is connected to the inlet side of the evaporator 12. Also,
A suction pipe 28 led out from the outlet side of the evaporator 12 is connected to the suction side of the compressor 14. In the refrigeration apparatus of the first embodiment, the refrigeration apparatus using the large-capacity compressor 14 is performed by continuously operating the compressor 14 from the start to the stop of the operation of the apparatus. In this case, the compressor 14 is prevented from running out of oil and poor lubrication.

【0014】前記吸入管28の圧縮機14に近接する部
位に温度検知手段としての感温筒30が密着的に配設さ
れ、該感温筒30が検出した低圧側(圧縮機14の吸入
側)における冷媒温度の情報に応じて、前記膨張弁10
を開閉制御して過熱度を自動的に調整するよう構成され
る。すなわち、感温筒30の検出温度が低い場合には膨
張弁10は閉まる方向に制御され、蒸発器12への液化
冷媒の循環量を抑制し、感温筒30の検出温度が高い場
合には膨張弁10は開く方向に制御され、蒸発器12へ
の液化冷媒の循環量を増加する。また感温筒30の配設
位置と圧縮機14との間の吸入管28に、膨張弁10に
接続する均圧管32が接続されている。この均圧管32
は、蒸発器12の出口側と膨張弁10とを連結すること
で、蒸発器12での圧力降下を補正し、適正な過熱度を
維持するべく機能する。
A temperature sensing cylinder 30 as temperature detecting means is disposed in close contact with a portion of the suction pipe 28 close to the compressor 14, and the temperature sensing cylinder 30 detects a low pressure side (a suction side of the compressor 14). )), The expansion valve 10
Is configured to automatically control the degree of superheat by controlling the opening and closing of the air conditioner. That is, when the temperature detected by the temperature-sensitive cylinder 30 is low, the expansion valve 10 is controlled to be closed, the amount of circulation of the liquefied refrigerant to the evaporator 12 is suppressed, and when the temperature detected by the temperature-sensitive cylinder 30 is high, The expansion valve 10 is controlled to open, and increases the amount of liquefied refrigerant circulated to the evaporator 12. A pressure equalizing pipe 32 connected to the expansion valve 10 is connected to a suction pipe 28 between the position where the temperature sensing cylinder 30 is provided and the compressor 14. This equalizing tube 32
Is connected to the outlet side of the evaporator 12 and the expansion valve 10 so as to correct a pressure drop in the evaporator 12 and function to maintain an appropriate degree of superheat.

【0015】前記凝縮器16と膨張弁10との間の冷媒
供給管26から分岐したバイパス管34は、直列に介挿
される電磁弁36とキャピラリー管38とを介して吸入
管28に連通接続されている(電磁弁36はキャピラリ
ー管38の高圧側に接続される)。また電磁弁36は、
凍結庫18の内部に配設した庫内サーモ20が検出する
庫内温度の情報に応じて開閉制御されるよう構成され
る。すなわち、庫内温度Fが、庫内サーモ20に予め設
定された設定値E(設定温度)より低くなると電磁弁36
を開放(ON)し、高くなると閉成(OFF)するよう制御
される(図2参照)。そして、電磁弁36を開放(ON)し
た際には、凝縮器16からの液化冷媒をキャピラリー管
38を介して圧縮機14の吸入側(低圧側)に流入させ、
ここで気化することによって蒸発器の場合と同じく気化
熱の奪取を行ない、該圧縮機14を冷却して過熱防止を
図り得るようになっている。なお、前記吸入管28にお
けるバイパス管34との接続点Kより蒸発器側にチェッ
クバルブ40が介挿され、バイパス管34から吸入管2
8に流入する液化冷媒が蒸発器12に逆流するのを防止
するよう構成してある。
A bypass pipe 34 branched from the refrigerant supply pipe 26 between the condenser 16 and the expansion valve 10 is connected to a suction pipe 28 via a solenoid valve 36 and a capillary pipe 38 inserted in series. (The solenoid valve 36 is connected to the high pressure side of the capillary tube 38). The solenoid valve 36 is
Opening / closing control is performed in accordance with information on the inside temperature detected by the inside thermo 20 disposed inside the freezer 18. That is, when the internal temperature F becomes lower than the preset value E (set temperature) preset in the internal thermo 20, the solenoid valve 36
Is controlled to open (ON) and close (OFF) when it becomes high (see FIG. 2). When the solenoid valve 36 is opened (ON), the liquefied refrigerant from the condenser 16 flows into the suction side (low pressure side) of the compressor 14 through the capillary tube 38,
Here, by vaporizing, the heat of vaporization is taken as in the case of the evaporator, and the compressor 14 can be cooled to prevent overheating. In addition, a check valve 40 is inserted on the evaporator side from the connection point K of the suction pipe 28 with the bypass pipe 34, and the bypass pipe 34 is connected to the suction pipe 2.
The liquefied refrigerant flowing into the evaporator 8 is prevented from flowing back to the evaporator 12.

【0016】[0016]

【第1実施例の作用】次に、第1実施例に係る冷凍装置
の運転制御方法の実際につき、図2のタイミングチャー
トを参照して説明する。なお、冷凍装置の運転開始前の
状態では、前記膨張弁10は予め設定された過熱度を得
るための開度となっていると共に、前記電磁弁36は閉
成(OFF)している。
Next, the operation of the refrigeration system according to the first embodiment will be described with reference to the timing chart of FIG. Before the operation of the refrigerating apparatus, the expansion valve 10 has an opening degree for obtaining a preset degree of superheat, and the electromagnetic valve 36 is closed (OFF).

【0017】図示しない電源を投入して冷凍装置の運転
を開始すると、前記圧縮機14およびファン22が作動
(ON)し、圧縮機14で圧縮された気化冷媒は凝縮器1
6で液化し、この液化冷媒は膨張弁10で減圧され、前
記蒸発器12中で蒸発して庫内空気と熱交換を行ない、
庫内を冷却する。そして、蒸発気化した冷媒は、吸入管
28を経て圧縮機14に帰還するサイクルを繰返す。
When the power supply (not shown) is turned on to start the operation of the refrigerating apparatus, the compressor 14 and the fan 22 operate.
(ON), and the vaporized refrigerant compressed by the compressor 14 is supplied to the condenser 1
6, the liquefied refrigerant is decompressed by the expansion valve 10, evaporates in the evaporator 12, and exchanges heat with the air in the refrigerator.
Cool the chamber. Then, the cycle in which the vaporized refrigerant returns to the compressor 14 through the suction pipe 28 is repeated.

【0018】前記冷媒の循環により庫内温度が徐々に低
下し、前記庫内サーモ20の設定値Eより庫内温度Fが
低くなると、前記圧縮機14は連続作動(ON)したまま
前記電磁弁36が開放(ON)し、凝縮器16からの液化
冷媒がキャピラリー管38を介して圧縮機14の低圧側
に流入する。この液化冷媒の流入口は蒸発器12の出口
側であるため熱吸収はなく、膨張弁用の感温筒30まで
液化状態で流れる。従って感温筒30の検出温度が低く
なり、膨張弁10は設定過熱度に調整するために閉まる
方向に制御される。このため蒸発器12への冷媒循環量
が必要以上に減少し、蒸発器12の蒸発温度が上昇して
庫内温度も徐々に上昇する。なお、圧縮機14に液化冷
媒を供給することにより、該圧縮機14の過熱は防止さ
れる。
When the internal temperature of the refrigerator gradually decreases due to the circulation of the refrigerant and the internal temperature F becomes lower than the set value E of the internal thermostat 20, the compressor 14 is continuously operated (ON) and the solenoid valve is continuously operated (ON). 36 is opened (ON), and the liquefied refrigerant from the condenser 16 flows into the low pressure side of the compressor 14 via the capillary tube 38. Since the inlet of the liquefied refrigerant is on the outlet side of the evaporator 12, there is no heat absorption, and the liquefied refrigerant flows to the expansion valve temperature-sensitive cylinder 30 in a liquefied state. Therefore, the detected temperature of the temperature-sensitive cylinder 30 becomes low, and the expansion valve 10 is controlled to close so as to adjust to the set degree of superheat. Therefore, the amount of refrigerant circulating to the evaporator 12 is reduced more than necessary, the evaporating temperature of the evaporator 12 rises, and the temperature inside the refrigerator gradually rises. By supplying the liquefied refrigerant to the compressor 14, overheating of the compressor 14 is prevented.

【0019】庫内温度Fが庫内サーモ20の設定値Eよ
り高くなると、前記電磁弁36が閉成(OFF)し、キャ
ピラリー管38を介しての低圧側への液化冷媒の供給が
停止する。これにより吸入管28の冷媒循環量が減少し
て前記感温筒30の検出温度が高くなり、前記膨張弁1
0は開く方向に制御される。従って、蒸発器12への液
化冷媒の循環量が増加し、蒸発器12の蒸発温度が下が
り、庫内は徐々に冷却される。そして、庫内温度Fが庫
内サーモ20の設定値Eより低下すると、再び電磁弁3
6が開放(ON)されてキャピラリー管38を介して低圧
側への液化冷媒の供給が開始され、以後はこのサイクル
が繰返されることで庫内温度Fは設定値E近傍に維持さ
れる。
When the internal temperature F becomes higher than the set value E of the internal thermo 20, the solenoid valve 36 is closed (OFF), and the supply of the liquefied refrigerant to the low pressure side via the capillary pipe 38 is stopped. . As a result, the amount of refrigerant circulating through the suction pipe 28 is reduced, and the temperature detected by the temperature-sensitive cylinder 30 is increased.
0 is controlled in the opening direction. Therefore, the circulation amount of the liquefied refrigerant to the evaporator 12 increases, the evaporating temperature of the evaporator 12 decreases, and the inside of the refrigerator is gradually cooled. When the internal temperature F falls below the set value E of the internal thermo 20, the solenoid valve 3
6 is opened (ON) and the supply of the liquefied refrigerant to the low pressure side via the capillary tube 38 is started. Thereafter, the cycle is repeated, so that the internal temperature F is maintained near the set value E.

【0020】前述したように第1実施例では、前記圧縮
機14を連続作動させるので、潤滑油は冷媒と共に冷凍
回路内を巡回し、再び圧縮機14に戻るサイクルを繰返
しており、油切れや潤滑不良の発生は防止される。すな
わち、庫内負荷に対して大容量の圧縮機14を用いる急
速凍結庫等において、庫内温度を設定値に維持するため
に圧縮機14の短時間作動を繰返すことに起因して生ず
る欠点を解消し得る。また、キャピラリー管38を介し
て液化冷媒を低圧側に流入させることで、圧縮機14の
各部品や潤滑油の温度上昇を抑制し、潤滑油の劣化を防
止し得る。更に、圧縮機14から吐出される気化冷媒の
温度を下げることも可能となる。
As described above, in the first embodiment, since the compressor 14 is operated continuously, the cycle of lubricating oil circulating in the refrigeration circuit together with the refrigerant and returning to the compressor 14 again is repeated. The occurrence of poor lubrication is prevented. That is, in a quick freezing storage or the like that uses a large-capacity compressor 14 with respect to the load in the refrigerator, a drawback caused by repeating the short-time operation of the compressor 14 to maintain the temperature in the refrigerator at a set value is eliminated. Can be resolved. Further, by causing the liquefied refrigerant to flow to the low pressure side through the capillary tube 38, it is possible to suppress the temperature rise of each component of the compressor 14 and the lubricating oil, and to prevent the deterioration of the lubricating oil. Further, the temperature of the vaporized refrigerant discharged from the compressor 14 can be reduced.

【0021】[0021]

【第2実施例】図3は、第2実施例に係る冷凍装置の概
略構成を示すものであって、基本回路は第1実施例と同
一であるので、異なる部分についてのみ説明する。
Second Embodiment FIG. 3 shows a schematic configuration of a refrigeration apparatus according to a second embodiment. The basic circuit is the same as that of the first embodiment, and only different portions will be described.

【0022】すなわち、冷凍装置は前記電磁弁36の開
閉制御を行なう制御装置42を備えている。この制御装
置42は、前記圧縮機14の作動時間(ON時間)と停止
時間(OFF時間)の夫々を積算し、停止時間(OFF時
間)が積算される毎に、その積算値にて運転率を計算す
るよう構成される。なお運転率は、作動時間の積算値:
X(秒),停止時間の積算値:Y(秒),運転率:T(%)と
した場合に、次の式で求められる。 T=(X/(X+Y))×100 そして、運転率Tが設定値U(例えば30%)より大きい
場合は、圧縮機14の作動と停止とを繰返す発停運転に
よる庫内温度制御を行ない、設定値Uより小さい場合
は、前記第1実施例で説明した圧縮機14を連続作動さ
せる連続運転での庫内温度制御を行なうよう設定されて
いる。
That is, the refrigeration system includes a control device 42 for controlling the opening and closing of the solenoid valve 36. The control device 42 integrates the operation time (ON time) and the stop time (OFF time) of the compressor 14, and each time the stop time (OFF time) is added, the operation rate is calculated by the integrated value. Is calculated. The operating rate is the integrated value of the operating time:
When X (second), the integrated value of the stop time: Y (second), and the operation rate: T (%), it can be obtained by the following equation. T = (X / (X + Y)) × 100 When the operation rate T is larger than the set value U (for example, 30%), the inside temperature control by the start / stop operation in which the operation and the stop of the compressor 14 are repeated is performed. If the set value U is smaller than the set value U, the internal temperature control is performed in the continuous operation for continuously operating the compressor 14 described in the first embodiment.

【0023】なお、第2実施例の冷凍装置では、前記庫
内サーモ20の温度情報は制御装置42に入力され、該
温度情報に基づいて前記圧縮機14の作動・停止を制御
するようになっている。すなわち、庫内温度Fが、庫内
サーモ20に予め設定された設定値Eより低くなると圧
縮機14を停止(OFF)し、高くなると作動(ON)する
よう制御される。また前記蒸発器12に、タイマ等によ
り定期的に行なわれる除霜運転の終了を検知する除霜サ
ーモ44が配設され、該サーモ44の除霜終了検知に基
づいて、前記制御装置42は前記積算値X,Yを夫々
「0」にリセットするよう設定してある。
In the refrigerating apparatus of the second embodiment, the temperature information of the thermostat 20 in the refrigerator is inputted to the control device 42, and the operation / stop of the compressor 14 is controlled based on the temperature information. ing. That is, the compressor 14 is controlled so as to stop (OFF) when the in-compartment temperature F becomes lower than a preset value E preset in the in-compartment thermostat 20, and to operate (ON) when it becomes higher. Further, the evaporator 12 is provided with a defrosting thermometer 44 for detecting the end of the defrosting operation periodically performed by a timer or the like, and based on the detection of the defrosting end of the thermostat 44, the control device 42 The integrated values X and Y are set to be reset to “0”, respectively.

【0024】[0024]

【第2実施例の作用】次に、第2実施例に係る冷凍装置
の運転制御方法の実際につき、図4のタイミングチャー
トおよび図5のフローチャートを参照して説明する。な
お、冷凍装置の運転開始前の状態では、前記膨張弁10
は予め設定された過熱度を得るための開度となっている
と共に、前記電磁弁36は閉成(OFF)している。
Next, the operation of the refrigeration system according to the second embodiment will be described with reference to the timing chart of FIG. 4 and the flowchart of FIG. Before the operation of the refrigeration system, the expansion valve 10
Is an opening for obtaining a preset degree of superheat, and the solenoid valve 36 is closed (OFF).

【0025】図5のフローチャートに示すように、ステ
ップS1で冷凍装置の運転が開始されると、ステップS
2で圧縮機14が作動(ON)された後、ステップS3に
おいて、圧縮機発停回数N、作動時間の積算値Xおよび
停止時間の積算値Yを夫々「0」にリセットする。圧縮機
14が作動(ON)されると、該圧縮機14で圧縮された
液化冷媒は凝縮器16で液化し、この液化冷媒は膨張弁
10で減圧され、前記蒸発器12中で蒸発して庫内空気
と熱交換を行ない、庫内を冷却する。そして、蒸発気化
した冷媒は、吸入管28を経て圧縮機14に帰還するサ
イクルを繰返すことで、庫内温度Fは徐々に低下する。
As shown in the flowchart of FIG. 5, when the operation of the refrigerating apparatus is started in step S1, step S1 is started.
After the compressor 14 is operated (ON) in step 2, the compressor start / stop number N, the integrated value X of the operating time, and the integrated value Y of the stop time are reset to "0" in step S3. When the compressor 14 is operated (ON), the liquefied refrigerant compressed by the compressor 14 is liquefied in the condenser 16, and the liquefied refrigerant is decompressed by the expansion valve 10 and evaporated in the evaporator 12. It exchanges heat with the air inside the refrigerator to cool the refrigerator. Then, the cycle of returning the evaporated and vaporized refrigerant to the compressor 14 via the suction pipe 28 is repeated, so that the internal temperature F gradually decreases.

【0026】前記庫内サーモ20の設定値Eより庫内温
度Fが低くなると、ステップS4で圧縮機14が停止
(OFF)されると共に、作動時間を積算する。圧縮機1
4の停止(OFF)により冷媒は蒸発器12に循環されな
くなるので、庫外からの侵入熱等により庫内温度は経時
的に上昇し、該庫内温度Fが庫内サーモ20の設定値E
より高くなると、ステップS5で圧縮機14が作動(O
N)され、再び冷媒の循環が開始される。またステップ
S5では、圧縮機14の停止時間を積算する。
When the internal temperature F becomes lower than the set value E of the internal thermo 20, the compressor 14 is stopped in step S 4.
(OFF) and accumulates the operation time. Compressor 1
Since the refrigerant is not circulated to the evaporator 12 due to the stop (OFF) of Step 4, the temperature inside the refrigerator rises with time due to heat entering from outside the refrigerator and the like, and the temperature F inside the refrigerator becomes the set value E of the thermo 20 inside the refrigerator.
If it becomes higher, the compressor 14 operates (O) in step S5.
N), and the circulation of the refrigerant is started again. In step S5, the stop time of the compressor 14 is integrated.

【0027】次に、ステップS6で圧縮機発停回数Nを
比較し、N<1であればステップS7に移行して、作動
時間の積算値Xおよび停止時間の積算値Yを夫々「0」に
リセットし、圧縮機発停回数Nに「1」を加算(ステップ
S8)した後にステップS4に戻る。またステップS6
でN≧1と判定された場合は、ステップS9に移行し、
作動時間の積算値Xと停止時間の積算値Yとで運転率T
を計算する。次にステップS10で除霜中か否かを確認
し、肯定(YES)であればステップS3に戻り、圧縮機
発停回数N、作動時間の積算値X、および停止時間の積
算値Yを夫々「0」にリセットして前述したフローを繰返
す。またステップS10で否定(NO)された場合は、ス
テップS11に移行し、前記運転率Tと設定値Uとを比
較し、T>Uであれば、ステップS8で圧縮機発停回数
Nに「1」を加算した後にステップS4に戻り、前述した
圧縮機14の発停運転のフローを繰返す。
Next, in step S6, the number of compressor start / stop times N is compared. If N <1, the process proceeds to step S7, where the integrated value X of the operating time and the integrated value Y of the stop time are each set to "0". After adding “1” to the compressor start / stop number N (step S8), the process returns to step S4. Step S6
When it is determined that N ≧ 1, the process proceeds to step S9,
The operation rate T is calculated based on the integrated value X of the operating time and the integrated value Y of the stop time.
Is calculated. Next, in step S10, it is checked whether or not defrosting is being performed. If the result is affirmative (YES), the process returns to step S3. Reset to "0" and repeat the flow described above. If the result of the determination in step S10 is negative (NO), the process proceeds to step S11, where the operation rate T is compared with the set value U. If T> U, the compressor start / stop number N is set to "N" in step S8. After adding "1", the process returns to step S4, and the flow of the start / stop operation of the compressor 14 described above is repeated.

【0028】前記ステップS11でT<Uであれば、圧
縮機14を連続作動させる連続運転に移行する。すなわ
ち、圧縮機14を作動(ON)させたまま、ステップS1
2で前記電磁弁36を開放(ON)し、凝縮器16からの
液化冷媒をキャピラリー管38を介して圧縮機14の吸
入側にバイパスさせ、蒸発器12での庫内冷却を抑制す
る。ステップS13で庫内温度Fが設定値Eより高くな
ったことを確認した後、ステップ14で電磁弁36を閉
成(OFF)して蒸発器12での庫内冷却を再開させる。
そして、この連続運転で冷却される庫内温度Fが庫内サ
ーモ20の設定値Eより再び低くなったときには、ステ
ップS8で圧縮機発停回数Nに「1」を加算した後にステ
ップS4に戻り、前述した圧縮機14の発停運転のフロ
ーに移行する。
If T <U in step S11, the operation shifts to a continuous operation in which the compressor 14 is continuously operated. That is, while the compressor 14 is operated (ON), step S1 is performed.
In step 2, the solenoid valve 36 is opened (ON), the liquefied refrigerant from the condenser 16 is bypassed to the suction side of the compressor 14 via the capillary tube 38, and the internal cooling of the evaporator 12 is suppressed. After confirming that the inside temperature F has become higher than the set value E in step S13, the solenoid valve 36 is closed (OFF) in step 14, and the inside cooling in the evaporator 12 is restarted.
When the internal temperature F cooled by the continuous operation becomes lower than the set value E of the internal thermo 20 again, "1" is added to the compressor start / stop number N in step S8, and the process returns to step S4. Then, the flow shifts to the flow of the start / stop operation of the compressor 14 described above.

【0029】前述したように第2実施例では、圧縮機1
4の運転率Tに基づいて、該圧縮機14を発停運転から
連続運転に定期的に切換えるので、その連続運転時には
潤滑油は冷媒と共に冷凍回路内を巡回して再び圧縮機1
4に戻るため、油切れや潤滑不良を未然に防止し得る。
すなわち、庫内負荷に対して大容量の圧縮機14を用い
る急速凍結庫等において、庫内温度を設定値に維持する
ために圧縮機14の短時間作動を繰返している途中で潤
滑油を巡回する連続運転を行なうことで、油切れや潤滑
不良が生ずるのを未然に防止し得るものである。また、
連続運転に際して電磁弁36を開放(ON)したときに
は、キャピラリー管38を介して液化冷媒が低圧側に流
入するので、圧縮機14の各部品や潤滑油の温度上昇を
抑制し、潤滑油の劣化を防止し得る。更に、圧縮機14
から吐出される気化冷媒の温度を下げることも可能であ
る。なお、通常は圧縮機14の発停運転により庫内温度
を制御するので、第1実施例のように冷凍装置の運転中
は圧縮機14を連続作動させる制御に比べ、消費電力を
抑えることができる。
As described above, in the second embodiment, the compressor 1
4, the compressor 14 is periodically switched from the start / stop operation to the continuous operation, so that during the continuous operation, the lubricating oil circulates in the refrigeration circuit together with the refrigerant and returns to the compressor 1 again.
4, the oil shortage and poor lubrication can be prevented beforehand.
That is, in a quick freezing storage or the like using a compressor 14 having a large capacity with respect to the load in the refrigerator, the lubricating oil circulates while the compressor 14 is repeatedly operated for a short time in order to maintain the temperature in the refrigerator at a set value. By performing such a continuous operation, it is possible to prevent oil shortage and poor lubrication from occurring. Also,
When the solenoid valve 36 is opened (ON) during the continuous operation, the liquefied refrigerant flows into the low-pressure side through the capillary tube 38, so that the temperature rise of each component of the compressor 14 and the lubricating oil is suppressed, and the deterioration of the lubricating oil is suppressed. Can be prevented. Further, the compressor 14
It is also possible to lower the temperature of the vaporized refrigerant discharged from the heater. Normally, the internal temperature is controlled by the start / stop operation of the compressor 14, so that the power consumption can be suppressed during the operation of the refrigeration apparatus as compared with the control of continuously operating the compressor 14 as in the first embodiment. it can.

【0030】[0030]

【第3実施例】図6は、第3実施例に係る冷凍装置の概
略構成を示すものであって、基本回路は第2実施例と同
一であるので、異なる部分についてのみ説明する。
Third Embodiment FIG. 6 shows a schematic configuration of a refrigerating apparatus according to a third embodiment. Since the basic circuit is the same as that of the second embodiment, only different portions will be described.

【0031】すなわち、冷凍装置は前記電磁弁36の開
閉制御を行なう制御装置46を備えている。この制御装
置46は、圧縮機14の発停回数をカウントするカウン
タ48を備え、そのカウント数Gが設定値H(例えば4
回)になるまでは、圧縮機14を作動・停止させる発停
運転による庫内温度制御を行ない、設定値Hになったと
きに、前記第1実施例で説明した圧縮機14の連続運転
での庫内温度制御を行なうよう制御する。また圧縮機1
4が連続運転に移行した後に、前記電磁弁36が閉成
(OFF)したことを条件として、前記制御装置46はカ
ウント数Gをリセットし、次に庫内サーモ20の設定値
Eより庫内温度Fが低くなったときには圧縮機14を発
停運転に戻す制御を行なうようになっている。
That is, the refrigeration system has a control device 46 for controlling the opening and closing of the solenoid valve 36. The control device 46 includes a counter 48 that counts the number of times the compressor 14 starts and stops, and the count number G is set to a set value H (for example, 4
Until the compressor 14 is operated, the internal temperature control is performed by a start / stop operation for operating / stopping the compressor 14. When the set value H is reached, the compressor 14 is operated continuously as described in the first embodiment. Is controlled to perform the inside temperature control. Compressor 1
After the shift to the continuous operation, the solenoid valve 36 is closed.
(OFF), the control device 46 resets the count number G, and then returns the compressor 14 to the start / stop operation when the internal temperature F becomes lower than the set value E of the internal thermo 20 next time. Control is performed.

【0032】[0032]

【第3実施例の作用】次に、第3実施例に係る冷凍装置
の運転制御方法の実際につき、図7のタイミングチャー
トおよび図8のフローチャートを参照して説明する。な
お、冷凍装置の運転開始前の状態では、前記膨張弁10
は予め設定された過熱度を得るための開度となっている
と共に、前記電磁弁36は閉成(OFF)している。ま
た、圧縮機14の発停回数の設定値Hは「4」に設定して
いるものとする。
Next, the operation of the refrigeration system according to the third embodiment will be described with reference to the timing chart of FIG. 7 and the flowchart of FIG. Before the operation of the refrigeration system, the expansion valve 10
Is an opening for obtaining a preset degree of superheat, and the solenoid valve 36 is closed (OFF). Also, it is assumed that the set value H of the number of start / stop times of the compressor 14 is set to “4”.

【0033】図8のフローチャートに示すように、ステ
ップS20で冷凍装置の運転が開始されると、先ずステ
ップ21で庫内サーモ20の設定値Eと庫内温度Fとが
比較される。このとき庫内温度Fは設定値Eよりも高い
ので、ステップ21でE<Fと判定され、ステップS2
2に移行して圧縮機14の発停回数のカウント数Gと設
定値Hとを比較する。カウント数Gは「0」であるので、
ステップ22でG<Hと判定され、ステップS23に移
行して圧縮機14を作動(ON)すると共にカウント数G
に「1」を加算した後にステップS21に戻る。
As shown in the flowchart of FIG. 8, when the operation of the refrigerating apparatus is started in step S20, first, in step 21, the set value E of the thermostat 20 in the refrigerator and the temperature F in the refrigerator are compared. At this time, since the internal temperature F is higher than the set value E, it is determined in step 21 that E <F, and step S2
The process proceeds to step S2, where the count value G of the number of start / stop times of the compressor 14 is compared with the set value H. Since the count number G is “0”,
In step 22, it is determined that G <H, and the process proceeds to step S23, where the compressor 14 is operated (ON) and the count number G is set.
Then, the process returns to step S21.

【0034】前記のように圧縮機14が作動(ON)され
ると、該圧縮機14で圧縮された液化冷媒は凝縮器16
で液化し、この液化冷媒は膨張弁10で減圧され、前記
蒸発器12中で蒸発して庫内空気と熱交換を行ない、庫
内を冷却する。そして、蒸発気化した冷媒は、吸入管2
8を経て圧縮機14に帰還するサイクルを繰返すこと
で、庫内温度は急速に低下する。そして、庫内サーモ2
0の設定値Eより庫内温度Fが低くなると、ステップS
21でE≧Fと判定され、ステップS24に移行して圧
縮機14の発停回数のカウント数Gと設定値Hとを比較
する。このときのカウント数Gは「1」であるので、ステ
ップS24ではG<Hと判定され、ステップS25で圧
縮機14を停止(ON)した後、ステップS21に戻る。
When the compressor 14 is operated (ON) as described above, the liquefied refrigerant compressed by the compressor 14 is
The liquefied refrigerant is decompressed by the expansion valve 10 and evaporates in the evaporator 12 to exchange heat with the air in the refrigerator, thereby cooling the refrigerator. Then, the vaporized refrigerant is supplied to the suction pipe 2
By repeating the cycle of returning to the compressor 14 via 8, the internal temperature rapidly decreases. And in-chamber thermo 2
When the internal temperature F becomes lower than the set value E of 0, the step S
At 21 it is determined that E ≧ F, and the process proceeds to step S24 to compare the count G of the number of times of starting and stopping of the compressor 14 with the set value H. Since the count number G at this time is "1", it is determined that G <H in step S24, the compressor 14 is stopped (ON) in step S25, and then the process returns to step S21.

【0035】前記圧縮機14の停止(OFF)により冷媒
は蒸発器12に循環されなくなるので、庫外からの侵入
熱等により庫内温度Fは経時的に上昇し、該庫内温度F
が庫内サーモ20の設定値Eより高くなると、ステップ
S21でE<Fと判定され、ステップS22に移行して
圧縮機14の発停回数のカウント数Gと設定値Hとを比
較する。そして、カウント数Gが設定値Hと一致するま
で、前述した圧縮機14の作動と停止とが繰返される発
停運転により庫内の温度制御が行なわれる。
Since the refrigerant is not circulated to the evaporator 12 when the compressor 14 is stopped (OFF), the internal temperature F rises with the passage of time due to heat entering from the outside and the like, and the internal temperature F
Is higher than the set value E of the thermostat 20 in the refrigerator, it is determined that E <F in step S21, and the process proceeds to step S22 to compare the count G of the number of times of start / stop of the compressor 14 with the set value H. Until the count number G becomes equal to the set value H, the temperature inside the refrigerator is controlled by the start / stop operation in which the operation and the stop of the compressor 14 described above are repeated.

【0036】前記ステップS23でカウント数Gが「4」
となった後、前記圧縮機14が作動(ON)している状態
で、前記ステップ21で庫内サーモ20の設定値Eより
庫内温度Fが低くなった(E≧F)と判定されると、ステ
ップS24に移行してG≧Hと判定される。従って、こ
の場合はステップS26で前記電磁弁36が開放(ON)
され、凝縮器16からの液化冷媒をキャピラリー管38
を介して圧縮機14の吸入側にバイパスさせ、蒸発器1
2での庫内冷却を抑制し、ステップS21に戻る。
In step S23, the count G is "4".
Then, in the state where the compressor 14 is operating (ON), it is determined in step 21 that the internal temperature F has become lower than the set value E of the internal thermo 20 (E ≧ F). Then, the process proceeds to step S24, where it is determined that G ≧ H. Therefore, in this case, the solenoid valve 36 is opened (ON) in step S26.
The liquefied refrigerant from the condenser 16 is supplied to the capillary tube 38.
To the suction side of the compressor 14 through the evaporator 1
The internal cooling in step 2 is suppressed, and the process returns to step S21.

【0037】前記圧縮機14の連続運転において、ステ
ップS21で庫内温度Fが設定値Eより高くなった(E
<F)と判定すると、ステップS22で圧縮機14の発
停回数のカウント数Gと設定値Hとが比較される。この
ときにはカウント数Gが「4」となっているので、ステッ
プS27に移行して前記電磁弁36を閉成(OFF)して
蒸発器12での庫内冷却を再開させる。また、ここで圧
縮機14の発停回数のカウント数Gを「0」にリセットし
た後、ステップS21に戻る。そして、この連続運転で
冷却される庫内温度Fが庫内サーモ20の設定値Eより
再び低くなったときには、ステップS21でE≧Fと判
定され、ステップS24に移行する。前述したようにカ
ウント数Gは「0」にリセットされているので、ステップ
S24ではG<Hと判定され、ステップS25で圧縮機
14を停止(OFF)した後、ステップS21に戻り、以
後はカウント数Gが再び「4」となるまで圧縮機14の発
停運転による庫内温度制御が行なわれる。
In the continuous operation of the compressor 14, the internal temperature F became higher than the set value E in step S21 (E
If the determination is <F), the count value G of the number of times of starting and stopping of the compressor 14 is compared with the set value H in step S22. At this time, since the count number G is "4", the process shifts to step S27 to close (OFF) the electromagnetic valve 36 and restart the internal cooling in the evaporator 12. Further, after resetting the count G of the number of times of starting and stopping of the compressor 14 to “0”, the process returns to step S21. Then, when the internal temperature F cooled in the continuous operation becomes lower than the set value E of the internal thermo 20 again, it is determined that E ≧ F in step S21, and the process proceeds to step S24. As described above, since the count number G has been reset to "0", it is determined that G <H in step S24, the compressor 14 is stopped (OFF) in step S25, and the process returns to step S21. Until the number G becomes "4" again, the internal temperature control by the start / stop operation of the compressor 14 is performed.

【0038】前述したように第3実施例では、圧縮機1
4の発停回数のカウント数Gに基づいて、該圧縮機14
を発停運転から連続運転に定期的に切換えるので、その
連続運転時には潤滑油は冷媒と共に冷凍回路内を巡回
し、再び圧縮機14に戻るため、油切れや潤滑不良を未
然に防止し得る。すなわち、庫内負荷に対して大容量の
圧縮機14を用いる急速凍結庫等において、庫内温度を
設定値に維持するために圧縮機14の短時間作動を繰返
している途中で潤滑油を巡回する連続運転を行なうこと
で、油切れや潤滑不良が生ずるのを未然に防止し得るも
のである。また、連続運転に際して電磁弁36を開放
(ON)したときには、キャピラリー管38を介して液化
冷媒が低圧側に流入するので、圧縮機14の各部品や潤
滑油の温度上昇を抑制し、潤滑油の劣化を防止し得る。
更に、圧縮機14から吐出される気化冷媒の温度を下げ
ることもできる。なお、通常は圧縮機14の発停運転に
より庫内温度を制御するので、第1実施例のように冷凍
装置の運転中は圧縮機14を連続作動させる制御に比
べ、消費電力を抑えることができる。
As described above, in the third embodiment, the compressor 1
4 based on the count G of the number of start / stop times of the compressor 14.
Is periodically switched from the start / stop operation to the continuous operation, and during the continuous operation, the lubricating oil circulates in the refrigeration circuit together with the refrigerant and returns to the compressor 14 again, so that it is possible to prevent oil shortage and poor lubrication. That is, in a quick freezing storage or the like using a compressor 14 having a large capacity with respect to the load in the refrigerator, the lubricating oil circulates while the compressor 14 is repeatedly operated for a short time in order to maintain the temperature in the refrigerator at a set value. By performing such a continuous operation, it is possible to prevent oil shortage and poor lubrication from occurring. Also, open the solenoid valve 36 during continuous operation
When (ON), the liquefied refrigerant flows into the low pressure side via the capillary tube 38, so that the temperature rise of each component of the compressor 14 and the lubricating oil can be suppressed, and deterioration of the lubricating oil can be prevented.
Further, the temperature of the vaporized refrigerant discharged from the compressor 14 can be reduced. Normally, the internal temperature is controlled by the start / stop operation of the compressor 14, so that the power consumption can be suppressed during the operation of the refrigeration apparatus as compared with the control of continuously operating the compressor 14 as in the first embodiment. it can.

【0039】[0039]

【発明の効果】以上説明したように、本発明に係る冷凍
装置およびその運転制御方法によれば、圧縮機を連続作
動したもとで庫内温度を設定値近傍に維持し得るので、
潤滑油は冷媒と共に冷凍回路内を常に巡回しており、油
切れや潤滑不良を未然に防止し得る。また、キャピラリ
ー管を介して液化冷媒を圧縮機の低圧側に流入させるこ
とで、圧縮機の各部品や潤滑油の温度上昇を抑制し、潤
滑油の劣化を防止し得る。更に、圧縮機から吐出される
気化冷媒の温度を下げることもできる。
As described above, according to the refrigerating apparatus and the operation control method thereof according to the present invention, the internal temperature can be maintained near the set value while the compressor is continuously operated.
The lubricating oil always circulates in the refrigeration circuit together with the refrigerant, and can prevent running out of oil and poor lubrication. In addition, by causing the liquefied refrigerant to flow into the low-pressure side of the compressor via the capillary tube, it is possible to suppress a rise in the temperature of each component of the compressor and the lubricating oil, thereby preventing deterioration of the lubricating oil. Further, the temperature of the vaporized refrigerant discharged from the compressor can be reduced.

【0040】また、圧縮機の運転率や発停回数に基づい
て、該圧縮機を発停運転から連続運転に定期的に切換え
ることにより、その連続運転時には潤滑油は冷媒と共に
冷凍回路内を巡回して再び圧縮機に戻るため、油切れや
潤滑不良を未然に防止し得る。なお、連続運転に際して
電磁弁を開放したときには、キャピラリー管を介して低
圧側に流入する液化冷媒により圧縮機の各部品や潤滑油
の温度上昇を抑制し、潤滑油の劣化を防止し得ると共
に、圧縮機から吐出される気化冷媒の温度を下げること
もできる。更に、通常は圧縮機の発停運転により庫内温
度を制御しているもとで、定期的に連続運転を行なうの
で、冷凍装置の運転中は圧縮機を常に連続作動させる制
御に比べ、消費電力を抑えることが可能となる。
Also, by periodically switching the compressor from the start / stop operation to the continuous operation based on the operation rate of the compressor and the number of start / stop operations, the lubricating oil circulates in the refrigeration circuit together with the refrigerant during the continuous operation. Then, since the compressor returns to the compressor again, running out of oil and poor lubrication can be prevented. When the solenoid valve is opened during continuous operation, the liquefied refrigerant flowing into the low-pressure side through the capillary pipe suppresses the temperature rise of each component of the compressor and the lubricating oil, thereby preventing deterioration of the lubricating oil. The temperature of the vaporized refrigerant discharged from the compressor can be reduced. Furthermore, normally, the continuous operation is periodically performed under the control of the internal temperature of the refrigerator by the start / stop operation of the compressor. Power can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施例に係る冷凍装置を示す概
略構成図である。
FIG. 1 is a schematic configuration diagram illustrating a refrigeration apparatus according to a first embodiment of the present invention.

【図2】 第1実施例に係る冷凍装置の運転時のタイミ
ングチャート図である。
FIG. 2 is a timing chart during operation of the refrigeration apparatus according to the first embodiment.

【図3】 本発明の第2実施例に係る冷凍装置を示す概
略構成図である。
FIG. 3 is a schematic configuration diagram illustrating a refrigeration apparatus according to a second embodiment of the present invention.

【図4】 第2実施例に係る冷凍装置の運転時のタイミ
ングチャート図である。
FIG. 4 is a timing chart of the operation of the refrigeration apparatus according to the second embodiment.

【図5】 第2実施例に係る冷凍装置の運転時のフロー
チャート図である。
FIG. 5 is a flowchart when the refrigeration apparatus according to the second embodiment operates.

【図6】 本発明の第3実施例に係る冷凍装置を示す概
略構成図である。
FIG. 6 is a schematic configuration diagram illustrating a refrigeration apparatus according to a third embodiment of the present invention.

【図7】 第3実施例に係る冷凍装置の運転時のタイミ
ングチャート図である。
FIG. 7 is a timing chart of the operation of the refrigeration apparatus according to the third embodiment.

【図8】 第3実施例に係る冷凍装置の運転時のフロー
チャート図である。
FIG. 8 is a flowchart of the operation of the refrigeration apparatus according to the third embodiment.

【図9】 従来の技術に係る冷凍装置を示す概略構成図
である。
FIG. 9 is a schematic configuration diagram showing a refrigeration apparatus according to a conventional technique.

【図10】 従来の技術に係る冷凍装置を運転したとき
のタイミングチャート図である。
FIG. 10 is a timing chart when a refrigeration apparatus according to a conventional technique is operated.

【符号の説明】[Explanation of symbols]

10 膨張弁,12 蒸発器,14 圧縮機,16 凝縮
器,20 庫内サーモ26 冷媒供給管,28 吸入管,
30 感温筒(温度検知手段),36 電磁弁38 キャピ
ラリー管,40 チェックバルブ,42 制御装置,46
制御装置48 カウンタ,E 庫内サーモの設定値,F
庫内温度,G カウント数H カウント数の設定値,K
接続点,T 運転率,U 運転率の設定値X 作動時間の
積算値,Y 停止時間の積算値
DESCRIPTION OF SYMBOLS 10 Expansion valve, 12 Evaporator, 14 Compressor, 16 Condenser, 20 Internal thermostat 26 Refrigerant supply pipe, 28 Suction pipe,
Reference Signs List 30 temperature sensing cylinder (temperature detecting means), 36 solenoid valve 38 capillary tube, 40 check valve, 42 control device, 46
Control device 48 counter, E setting value of thermo in the refrigerator, F
Internal temperature, G count number H Set value of count number, K
Connection point, set value of T operation rate, U operation rate X Integrated value of operating time, Y Integrated value of stop time

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 気化冷媒を圧縮する圧縮機(14)と、この
圧縮された気化冷媒を凝縮して液化冷媒にする凝縮器(1
6)と、この凝縮器(16)から到来する液化冷媒を膨張させ
て気化冷媒とする膨張弁(10)と、この気化冷媒により冷
却作用を営んだ後に、該気化冷媒を前記圧縮機(14)の吸
入側に戻す蒸発器(12)とからなる冷凍装置において、 前記凝縮器(16)と膨張弁(10)とを連通接続する冷媒供給
管(26)から分岐して蒸発器(12)と圧縮機(14)とを連通接
続する吸入管(28)に接続され、凝縮器(16)からの液化冷
媒を前記圧縮機(14)の吸入側にバイパスさせるキャピラ
リー管(38)と、 前記キャピラリー管(38)の高圧側に介挿され、前記蒸発
器(12)が配設される庫内の温度を検出する庫内サーモ(2
0)の検出温度に応じて開閉制御される電磁弁(36)と、 前記圧縮機(14)の低圧側の冷媒温度を検出し、前記膨張
弁(10)の開閉制御を行なう温度検知手段(30)とから構成
したことを特徴とする冷凍装置。
A compressor (14) for compressing a vaporized refrigerant, and a condenser (1) for condensing the compressed vaporized refrigerant into a liquefied refrigerant.
6), an expansion valve (10) that expands the liquefied refrigerant arriving from the condenser (16) and converts the liquefied refrigerant into a vaporized refrigerant. The evaporator (12) returns to the suction side of the evaporator (12), and branches off from the refrigerant supply pipe (26) that connects the condenser (16) and the expansion valve (10) in communication. A capillary pipe (38) connected to a suction pipe (28) that connects the compressor (14) and the compressor (14) to bypass the liquefied refrigerant from the condenser (16) to the suction side of the compressor (14); A thermostat (2) that is inserted on the high pressure side of the capillary tube (38) and detects the temperature inside the refrigerator where the evaporator (12) is disposed
(0), an electromagnetic valve (36) that is controlled to open and close in accordance with the detected temperature, and a temperature detecting means () that detects a low-pressure side refrigerant temperature of the compressor (14) and controls opening and closing of the expansion valve (10). 30) A refrigeration system characterized by comprising:
【請求項2】 気化冷媒を圧縮する圧縮機(14)と、この
圧縮された気化冷媒を凝縮して液化冷媒にする凝縮器(1
6)と、この凝縮器(16)から到来する液化冷媒を膨張させ
て気化冷媒とする膨張弁(10)と、この気化冷媒により冷
却作用を営んだ後に、該気化冷媒を前記圧縮機(14)の吸
入側に戻す蒸発器(12)とからなる冷凍装置において、 前記圧縮機(14)を連続作動させた状態で、前記蒸発器(1
2)が配設される庫内温度(F)を検出する庫内サーモ(20)
の設定値(E)より庫内温度(F)が低くなったときに、前記
凝縮器(16)と膨張弁(10)とを連通する冷媒供給管(26)か
ら分岐するキャピラリー管(38)の高圧側に介挿された電
磁弁(36)を開放して凝縮器(16)からの液化冷媒をキャピ
ラリー管(38)を介して圧縮機(14)の吸入側にバイパスさ
せ、 前記液化冷媒のバイパスにより圧縮機(14)の低圧側の温
度が低くなったときに、前記膨張弁(10)を閉じる方向に
制御して蒸発器(12)への液化冷媒の供給量を減少させ、 前記庫内サーモ(20)の設定値(E)より庫内温度(F)が高く
なったときに、前記電磁弁(36)を閉成して液化冷媒のバ
イパスを停止し、 前記液化冷媒のバイパス停止により圧縮機(14)の低圧側
の温度が高くなったときに、前記膨張弁(10)を開く方向
に制御して蒸発器(12)への液化冷媒の供給量を増加する
よう制御することを特徴とする冷凍装置の運転制御方
法。
2. A compressor (14) for compressing a vaporized refrigerant, and a condenser (1) for condensing the compressed vaporized refrigerant into a liquefied refrigerant.
6), an expansion valve (10) that expands the liquefied refrigerant arriving from the condenser (16) and converts the liquefied refrigerant into a vaporized refrigerant. ), The evaporator (12) returning to the suction side of the evaporator (1) in a state where the compressor (14) is continuously operated.
In-chamber thermo (20) that detects the in-chamber temperature (F) where 2) is installed
When the internal temperature (F) becomes lower than the set value (E), the capillary pipe (38) branched from the refrigerant supply pipe (26) communicating the condenser (16) and the expansion valve (10). The liquefied refrigerant from the condenser (16) is opened to bypass the liquefied refrigerant from the condenser (16) to the suction side of the compressor (14) through the capillary tube (38), and the liquefied refrigerant is opened. When the low-pressure side temperature of the compressor (14) becomes low due to the bypass, the supply amount of the liquefied refrigerant to the evaporator (12) is reduced by controlling the expansion valve (10) in the closing direction, When the internal temperature (F) becomes higher than the set value (E) of the internal thermo (20), the solenoid valve (36) is closed to stop the bypass of the liquefied refrigerant, and the bypass of the liquefied refrigerant is stopped. When the temperature on the low pressure side of the compressor (14) increases due to the stop, the expansion valve (10) is controlled to open so as to increase the supply amount of the liquefied refrigerant to the evaporator (12). Specially An operation control method for a refrigeration system.
【請求項3】 気化冷媒を圧縮する圧縮機(14)と、この
圧縮された気化冷媒を凝縮して液化冷媒にする凝縮器(1
6)と、この凝縮器(16)から到来する液化冷媒を膨張させ
て気化冷媒とする膨張弁(10)と、この気化冷媒により冷
却作用を営んだ後に、該気化冷媒を前記圧縮機(14)の吸
入側に戻す蒸発器(12)とからなる冷凍装置において、 前記凝縮器(16)と膨張弁(10)とを連通接続する冷媒供給
管(26)から分岐して蒸発器(12)と圧縮機(14)とを連通接
続する吸入管(28)に接続され、凝縮器(16)からの液化冷
媒を前記圧縮機(14)の吸入側にバイパスさせるキャピラ
リー管(38)と、 前記キャピラリー管(38)の高圧側に介挿される電磁弁(3
6)と、 前記蒸発器(12)が配設される庫内の温度を検出する庫内
サーモ(20)の検出温度に応じて前記圧縮機(14)の作動・
停止を制御すると共に、該圧縮機(14)の作動時間および
停止時間の夫々の積算値(X,Y)で運転率(T)を計算し、そ
の運転率(T)に応じて前記電磁弁(36)の開閉制御を行な
う制御装置(42)と、 前記圧縮機(14)の低圧側の冷媒温度を検出し、前記膨張
弁(10)の開閉制御を行なう温度検知手段(30)とから構成
したことを特徴とする冷凍装置。
3. A compressor (14) for compressing a vaporized refrigerant, and a condenser (1) for condensing the compressed vaporized refrigerant into a liquefied refrigerant.
6), an expansion valve (10) that expands the liquefied refrigerant arriving from the condenser (16) and converts the liquefied refrigerant into a vaporized refrigerant. The evaporator (12) returns to the suction side of the evaporator (12), and branches off from the refrigerant supply pipe (26) that connects the condenser (16) and the expansion valve (10) in communication. A capillary pipe (38) connected to a suction pipe (28) that connects the compressor (14) and the compressor (14) to bypass the liquefied refrigerant from the condenser (16) to the suction side of the compressor (14); The solenoid valve (3) inserted on the high pressure side of the capillary tube (38)
6), the operation of the compressor (14) according to the temperature detected by the in-chamber thermo (20) for detecting the temperature in the chamber in which the evaporator (12) is disposed.
In addition to controlling the stop, the operation rate (T) is calculated based on the integrated value (X, Y) of the operation time and the stop time of the compressor (14), and the solenoid valve is operated according to the operation rate (T). A control device (42) for controlling the opening and closing of the (36), and a temperature detecting means (30) for detecting the low-pressure side refrigerant temperature of the compressor (14) and controlling the opening and closing of the expansion valve (10). A refrigeration apparatus characterized by comprising.
【請求項4】 気化冷媒を圧縮する圧縮機(14)と、この
圧縮された気化冷媒を凝縮して液化冷媒にする凝縮器(1
6)と、この凝縮器(16)から到来する液化冷媒を膨張させ
て気化冷媒とする膨張弁(10)と、この気化冷媒により冷
却作用を営んだ後に、該気化冷媒を前記圧縮機(14)の吸
入側に戻す蒸発器(12)とからなる冷凍装置において、 前記圧縮機(14)の作動・停止を繰返す発停運転を行なう
ことで、前記蒸発器(12)が配設される庫内温度(F)を、
該温度(F)を検出する庫内サーモ(20)の設定値(E)に維持
し、 前記発停運転による圧縮機(14)の作動時間および停止時
間を夫々積算して、その停止時間の積算時における積算
値(X,Y)から求めた運転率(T)が設定値(U)より小さくな
った場合は、前記圧縮機(14)を連続作動させる連続運転
に移行し、 前記連続運転においては、前記庫内サーモ(20)の設定値
(E)より庫内温度(F)が低くなったときに、前記凝縮器(1
6)と膨張弁(10)とを連通する冷媒供給管(26)から分岐す
るキャピラリー管(38)の高圧側に介挿された電磁弁(36)
を開放して凝縮器(16)からの液化冷媒をキャピラリー管
(38)を介して圧縮機(14)の吸入側にバイパスさせ、この
液化冷媒のバイパスにより圧縮機(14)の低圧側の温度が
低くなったときには前記膨張弁(10)を閉じる方向に制御
して蒸発器(12)への液化冷媒の供給量を減少させると共
に、前記庫内サーモ(20)の設定値(E)より庫内温度(F)が
高くなったときに、前記電磁弁(36)を閉成して液化冷媒
のバイパスを停止し、この液化冷媒のバイパス停止によ
り圧縮機(14)の低圧側の温度が高くなったときには前記
膨張弁(10)を開く方向に制御して蒸発器(12)への液化冷
媒の供給量を増加させ、 前記運転率(T)が設定値(U)より大きくなった場合は、前
記圧縮機(14)を発停運転に移行させるようにしたことを
特徴とする冷凍装置の運転制御方法。
4. A compressor (14) for compressing a vaporized refrigerant, and a condenser (1) for condensing the compressed vaporized refrigerant into a liquefied refrigerant.
6), an expansion valve (10) that expands the liquefied refrigerant arriving from the condenser (16) and converts the liquefied refrigerant into a vaporized refrigerant. ), The evaporator (12) returning to the suction side of the compressor (14). Temperature (F)
The temperature (F) is maintained at the set value (E) of the in-compartment thermometer (20) for detecting the temperature (F), and the operation time and the stop time of the compressor (14) due to the start / stop operation are respectively integrated, and the stop time is calculated. When the operation rate (T) obtained from the integrated value (X, Y) at the time of integration becomes smaller than the set value (U), the operation shifts to the continuous operation in which the compressor (14) is continuously operated, and the continuous operation is performed. In the setting value of the thermo in the refrigerator (20)
When the internal temperature (F) becomes lower than (E), the condenser (1
An electromagnetic valve (36) inserted on the high pressure side of a capillary tube (38) branching from a refrigerant supply tube (26) communicating the expansion valve (6) with the expansion valve (10).
And release the liquefied refrigerant from the condenser (16) to the capillary tube.
When the temperature on the low-pressure side of the compressor (14) is reduced by the bypass of the liquefied refrigerant, the expansion valve (10) is controlled to be closed. And the supply amount of the liquefied refrigerant to the evaporator (12), and when the internal temperature (F) becomes higher than the set value (E) of the internal thermo (20), the electromagnetic valve ( 36) to stop the bypass of the liquefied refrigerant, and control the expansion valve (10) to open when the low pressure side temperature of the compressor (14) becomes higher due to the stoppage of the liquefied refrigerant bypass. The supply amount of the liquefied refrigerant to the evaporator (12) is increased, and when the operation rate (T) becomes larger than a set value (U), the compressor (14) is shifted to a start / stop operation. An operation control method for a refrigeration apparatus, comprising:
【請求項5】 気化冷媒を圧縮する圧縮機(14)と、この
圧縮された気化冷媒を凝縮して液化冷媒にする凝縮器(1
6)と、この凝縮器(16)から到来する液化冷媒を膨張させ
て気化冷媒とする膨張弁(10)と、この気化冷媒により冷
却作用を営んだ後に、該気化冷媒を前記圧縮機(14)の吸
入側に戻す蒸発器(12)とからなる冷凍装置において、 前記凝縮器(16)と膨張弁(10)とを連通接続する冷媒供給
管(26)から分岐して蒸発器(12)と圧縮機(14)とを連通接
続する吸入管(28)に接続され、凝縮器(16)からの液化冷
媒を前記圧縮機(14)の吸入側にバイパスさせるキャピラ
リー管(38)と、 前記キャピラリー管(38)の高圧側に介挿される電磁弁(3
6)と、 前記蒸発器(12)が配設される庫内の温度を検出する庫内
サーモ(20)の検出温度に応じて前記圧縮機(14)の作動・
停止を制御すると共に、該圧縮機(14)の発停回数をカウ
ントするカウンタ(48)のカウント数(G)に応じて前記電
磁弁(36)の開閉制御を行なう制御装置(46)と、 前記圧縮機(14)の低圧側の冷媒温度を検出し、前記膨張
弁(10)の開閉制御を行なう温度検知手段(30)とから構成
したことを特徴とする冷凍装置。
5. A compressor (14) for compressing a vaporized refrigerant, and a condenser (1) for condensing the compressed vaporized refrigerant into a liquefied refrigerant.
6), an expansion valve (10) that expands the liquefied refrigerant arriving from the condenser (16) and converts the liquefied refrigerant into a vaporized refrigerant. The evaporator (12) returns to the suction side of the evaporator (12), and branches off from the refrigerant supply pipe (26) that connects the condenser (16) and the expansion valve (10) in communication. A capillary pipe (38) connected to a suction pipe (28) that connects the compressor (14) and the compressor (14) to bypass the liquefied refrigerant from the condenser (16) to the suction side of the compressor (14); The solenoid valve (3) inserted on the high pressure side of the capillary tube (38)
6), the operation of the compressor (14) according to the temperature detected by the in-chamber thermo (20) for detecting the temperature in the chamber in which the evaporator (12) is disposed.
A control device (46) for controlling the stop and controlling the opening and closing of the solenoid valve (36) according to the count (G) of a counter (48) for counting the number of times the compressor (14) starts and stops; A refrigeration system comprising: a temperature detecting means (30) for detecting a refrigerant temperature on a low pressure side of the compressor (14) and controlling opening and closing of the expansion valve (10).
【請求項6】 気化冷媒を圧縮する圧縮機(14)と、この
圧縮された気化冷媒を凝縮して液化冷媒にする凝縮器(1
6)と、この凝縮器(16)から到来する液化冷媒を膨張させ
て気化冷媒とする膨張弁(10)と、この気化冷媒により冷
却作用を営んだ後に、該気化冷媒を前記圧縮機(14)の吸
入側に戻す蒸発器(12)とからなる冷凍装置において、 前記圧縮機(14)の作動・停止を繰返す発停運転を行なう
ことで、前記蒸発器(12)が配設される庫内温度(F)を、
該温度(F)を検出する庫内サーモ(20)の設定値(E)に維持
し、 前記発停運転による圧縮機(14)の発停回数をカウントし
て、そのカウント数(G)が設定値(H)となった場合は、前
記圧縮機(14)を連続作動させる連続運転に移行し、 前記連続運転においては、前記庫内サーモ(20)の設定値
(E)より庫内温度(F)が低くなったときに、前記凝縮器(1
6)と膨張弁(10)とを連通する冷媒供給管(26)から分岐す
るキャピラリー管(38)の高圧側に介挿された電磁弁(36)
を開放して凝縮器(16)からの液化冷媒をキャピラリー管
(38)を介して圧縮機(14)の吸入側にバイパスさせ、この
液化冷媒のバイパスにより圧縮機(14)の低圧側の温度が
低くなったときには前記膨張弁(10)を閉じる方向に制御
して蒸発器(12)への液化冷媒の供給量を減少させると共
に、前記庫内サーモ(20)の設定値(E)より庫内温度(F)が
高くなったときに、前記電磁弁(36)を閉成して液化冷媒
のバイパスを停止し、この液化冷媒のバイパス停止によ
り圧縮機(14)の低圧側の温度が高くなったときには前記
膨張弁(36)を開く方向に制御して蒸発器(12)への液化冷
媒の供給量を増加させ、 前記電磁弁(36)が閉成したときにカウント数(G)をリセ
ットし、次に庫内サーモ(20)の設定値(E)より庫内温度
(F)が低くなったときに前記発停運転に移行するように
したことを特徴とする冷凍装置の運転制御方法。
6. A compressor (14) for compressing a vaporized refrigerant, and a condenser (1) for condensing the compressed vaporized refrigerant into a liquefied refrigerant.
6), an expansion valve (10) that expands the liquefied refrigerant arriving from the condenser (16) and converts the liquefied refrigerant into a vaporized refrigerant. ), The evaporator (12) returning to the suction side of the compressor (14). Temperature (F)
The temperature (F) is kept at the set value (E) of the thermostat (20) for detecting the temperature, and the number of start / stop of the compressor (14) by the start / stop operation is counted. When the set value (H) is reached, the operation shifts to a continuous operation in which the compressor (14) is continuously operated.In the continuous operation, the set value of the in-chamber thermo (20) is set.
When the internal temperature (F) becomes lower than (E), the condenser (1
An electromagnetic valve (36) inserted on the high pressure side of a capillary tube (38) branching from a refrigerant supply tube (26) communicating the expansion valve (6) with the expansion valve (10).
And release the liquefied refrigerant from the condenser (16) to the capillary tube.
When the temperature on the low-pressure side of the compressor (14) is reduced by the bypass of the liquefied refrigerant, the expansion valve (10) is controlled to be closed. And the supply amount of the liquefied refrigerant to the evaporator (12), and when the internal temperature (F) becomes higher than the set value (E) of the internal thermo (20), the electromagnetic valve ( 36) is closed to stop the bypass of the liquefied refrigerant, and when the low pressure side temperature of the compressor (14) becomes higher due to the stoppage of the liquefied refrigerant bypass, the expansion valve (36) is controlled to open. The supply amount of the liquefied refrigerant to the evaporator (12) is increased, the count number (G) is reset when the solenoid valve (36) is closed, and then the set value (E ) Than internal temperature
An operation control method for a refrigeration system, wherein the operation shifts to the start / stop operation when (F) becomes low.
【請求項7】 前記キャピラリー管(38)と吸入管(28)と
の接続点(K)より蒸発器側の吸入管(28)にチェックバル
ブ(40)が介挿されている請求項1,3または5の何れか
に記載の冷凍装置。
7. A check valve (40) is inserted in the suction pipe (28) on the evaporator side from the connection point (K) between the capillary pipe (38) and the suction pipe (28). The refrigeration apparatus according to any of 3 or 5.
JP5451698A 1998-02-18 1998-02-18 Freezer and its operation control method Pending JPH11230623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5451698A JPH11230623A (en) 1998-02-18 1998-02-18 Freezer and its operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5451698A JPH11230623A (en) 1998-02-18 1998-02-18 Freezer and its operation control method

Publications (1)

Publication Number Publication Date
JPH11230623A true JPH11230623A (en) 1999-08-27

Family

ID=12972824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5451698A Pending JPH11230623A (en) 1998-02-18 1998-02-18 Freezer and its operation control method

Country Status (1)

Country Link
JP (1) JPH11230623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010781A (en) * 2013-06-28 2015-01-19 株式会社東芝 Cold storage chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010781A (en) * 2013-06-28 2015-01-19 株式会社東芝 Cold storage chamber

Similar Documents

Publication Publication Date Title
EP2545332B1 (en) Refrigerant distribution apparatus and methods for transport refrigeration system
JP3988779B2 (en) Refrigeration equipment
US6986259B2 (en) Refrigerator
RU2480684C2 (en) Method and device for defrosting with hot steam
CN108369046B (en) Refrigeration cycle device
JP4178646B2 (en) refrigerator
JP4269459B2 (en) Freezer refrigerator
JP3993540B2 (en) Refrigeration equipment
JP3175706B2 (en) Binary refrigeration equipment
JPWO2003083380A1 (en) Refrigeration equipment
JP3127818B2 (en) Refrigeration equipment
JP3603514B2 (en) Refrigeration equipment
EP4300004A1 (en) Refrigeration cycle device
JP7022772B2 (en) Refrigerating equipment and how to use the refrigerating equipment
JP2007147274A (en) Refrigerating device
JP2000180026A (en) Refrigerating unit for refrigerator
JP2018173195A (en) Refrigerator
JP3317222B2 (en) Refrigeration equipment
JPH11230623A (en) Freezer and its operation control method
JPH07294073A (en) Refrigeration device
JP2002228284A (en) Refrigerating machine
JP2003139459A (en) Refrigerator
WO2024095339A1 (en) Refrigeration cycle device
JP2004162998A (en) Refrigeration unit for vehicle and its control method
JPH0712439A (en) Binary refrigerator